Teoria delle Decisioni. Lezioni 1 e 2 a.a J. Mortera, Università Roma Tre

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it"

Transcript

1 Teoria delle Decisioni Lezioni 1 e 2 a.a J. Mortera, Università Roma Tre

2 Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi, aziende, sindacati ecc.) si trovano spesso in situazioni in cui debbono scegliere tra diverse azioni. Per esempio, il governo deve decidere tra diverse politiche economiche (regimi pensionistici). Decisioni personali, di imprenditori, politici... Producono CONSEGUENZE che possono coinvolgere altre persone o cose.

3 Si deve distinguere tra problemi di decisione per: singole unità (anche l intero corpo elettorale puo essere considerata una singola unità ) più unità in condizioni di conflitto (teoria dei giochi) Si propongono delle linee guida per decisori che consentono di SUDDIVIDERE COMPLESSI problemi decisionali in SOTTOPROBLEMI PIU SEMPLICI. Questi vengono analizzati e ricombinati per fornire la soluzione al problema più ampio. Si cerchera di individuare le CONDIZIONI DI COERENZA da rispettare in ogni processo decisionale.

4 Non sarà uno studio DESCRITTIVO ma NORMATIVO o PRESCRITTIVO Come prima cosa si deve costruire un elenco delle decisioni e/o azioni possibili. Quest elenco deve essere ESAUSTIVO e ESCLUSIVO. Una decisione deve essere presa e al massimo una di esse PUO essere presa. Le decisioni sono prese in condizioni di INCERTEZZA. Esempio: n. di articoli da ordinare nel nostro negozio. Dipende dalla domanda futura di diversi articoli, che NON E NOTA!!

5 Decisioni possibili L elenco delle decisioni possibili deve essere esaustiva ed esclusiva. Indichiamo l insieme (il vettore) delle decisioni possibili con: δ = (δ 1, δ 2,, δ m ) con insieme degli eventi incerti : θ = (θ 1, θ 2,, θ n ), dove il numero di eventi n non è neccessariamente uguale al numero di decisioni m. Il problema è di scegliere un singolo δ i, i = 1,, m senza sapere quale evento θ i si verifica.

6 RICHIAMI DI CALCOLO DELLE PROBABILITÀ Sia dato un evento A, ci si chiede: Cosa è la probabilità di un evento A? Cosa significa che P (A) = 1/6. Ci sono due interpretazioni della probabilità : l impostazione soggetivista l impostazione frequentista IMPOSTAZIONE SOGGETTIVA (B. de Finetti) La probabilità di un evento il grado di fiducia di un individuo nel verificarsi di un evento.

7 Ne consegue: non esistono probabiltà incognite individui diversi possono avere probabilità diverse sul verificarsi dell evento A. La probabilità di A per te rappresenta il tuo stato di informazione su A. La modalità operativa per quantificare la valutazione soggettiva della probabilità è basata sullo schema delle scomesse.

8 Quantificazione delle Probabilità Come assegnare/elicitare le probabilità? A. Criterio della Scommessa: Valutazioni di probabilità di un individuo vengono basate su scommesse ipotetiche. La tua probabilità di A è p se sei indifferente tra: a) ricevere p con certezza; b) scommettere e ricevere { 1 se A 0 se Ā La probabilità è quindi il prezzo equo di un evento incerto.

9 Il guadagno (aleatorio) è dato da { 1 p se A g = p se Ā B. Criterio della Penalizzazione: Sceglierai la tua probabilità di A, P (A) = p, sapendo che subirai una penalizzazione pari a: { (1 p) 2 se A p 2 se Ā (si tornerà in seguito sulle funzoni di perdita) (1)

10 Coerenza La scelta di p sia in 1) che in 2) deve essere coerente, cioè non deve produrre nè una vincita certa nè una perdita certa. Esercizio 1 Seguendo il principio di coerenza dimostrare che: a) p(a) 0 b) P (Ω) = 1 c) P (A B) = P (A) + P (B), per A B = *** esempio di Savage ***

11 Impostazione Frequentista ( Oggettiva ) La probabilità è definita come il limite delle frequenza osservate in un gran numero di prove ripetute dello stesso evento ( nelle medesime condizioni). Nè consegue che: i) P (A) è incognita perchè non si ripeterà mai infinite volte un esperimento (non è osservabile) ii) Solo eventi ai quali è possibile pensare di effettuare infinite prove ripetute sono probabilizzabili i) esiste una probabilità vera generalmente incognita che si cerca di stimare. ii) solo risultati di misure ripetute, estrazioni casuali, ecc. sono probabilizzabili.

12 In questa impostazione come possiamo assegnare la probabilità ad eventi come 1. La Roma vincerà la prossima partita 2. Il tasso di inflazione nel prossimo trimestre scenderà sotto il 2%

13 Assiomatizzazione La probabilità è una funzione di insieme definita sulla classe A di eventi e assume valori reali in [0, 1]. P : A [0, 1] Assiomi 1. A è un algebra di sottoinsiemi di Ω 2. 0 P (A) 1, A A 3. P (Ω) = 1, P ( ) = 0 4. P ( n i=1 A i) = n i=1 P (A i), se A i A j =, i j L assioma 1. significa che utilizzando le operazioni, e c (Ā) (unione, intersezione e complemento tra insiemi

14 (eventi)) su un numero finito di s.i. di A si ottengono ancora elementi di A. (Diremo anche che P d insieme) Assiomi aggiuntivi una misura di A, funzione additiva 1 A è una σ algebra di s.i. di A. (cioè contiene anche l unioni numerabili di propri elementi) 4 P ( i=1 A i) = i=1 P (A i), se A i A j =, i j Spazio di probabilità (Ω, A, P )

15 Richiami: probabilità condizionata P (A B) = P (A B)/P (B) se P (B) > 0 (2) Dipendenza e Indipendenza Stocastica Dati due eventi A ed B possono sussistere le seguenti relazioni a) P (A) < P (A B) (associazione positiva) b) P (A) > P (A B) (associazione negativa) c) P (A) = P (A B) e scriveremo A B Inoltre dalla (2) si ha che A B implica P (A B) = P (A)P (B)

16 Si dice che due eventi sono stocasticamente indipendenti se P (A B) = P (A)P (B) Inoltre l indipendenza è una proprietà simmetrica se A B allora B A. Esercizio 2. Dimostrare: Se A B allora A B, B Ā e Ā B. Diremo che n eventi E 1, E 2,, E n sono mutauamente indipendenti tra loro se susiste l independenza a due a due, a tre a tre,...ecc., cioè P (E 1 E k ) = P (E 1 ) P (E k ) per k = 2, 3, n (e per qualsiasi ordine dei fattori).

17 Indipendenza Condizionata Attenzione il concetto di indipendenza A B non si deve confondere con quello di indipendenza condizionata (condizionale) A B C P (A B C) = P (A C)P (B C) Esercizio 3: Monty Hall west/javahtml/letsmakeadeal

18 Teorema di Bayes Sia {H 1,, H k } una partizione di Ω. Per qualunque evento A Ω con P (A) > 0 si ha: P (H i A) = P (H i )P (A H i ) k j=1 P (H j)p (A H j ). Nel caso più semplice la partizione di Ω è H H e si ha P (H A) = P (H)P (A H) P (A) dove P (A) = P (A H)P (H) + P (A H)P ( H).

19 Esempio: Test Elisa per HIV+ T -Test positivo, T -Test negativo, M-malato P (T M) = 0.99 P ( T M) = 0.9 Popolazione USA 300 millioni e circa un millione sono HIV+ quindi P (M) =? Ora, se un individuo risulta positivo al test che probabilità ha di essere HIV+? Dobbiamo calcolare la probabilità a posteriori P (M T )? Applicando il teorema di Bayes abbiamo: P (M T ) = P (M)P (T M) P (T )

20 dove P (T ) = P (T M)P (M) + P (T M)P ( M) quindi P (M T ) = e P (M T ) =. Si è quindi passati da una probabilità a priori di essere HIV+ pari a P (M) = ad una probabilità a posteriori di essere HIV+ P (M T ) (condizionata all informazione di essere risultato positivo al test) pari a.

21 Esercizio 4. NSA (National Security Agency) ha un programma illegale di spionaggio domestico (DSP). La NSA valuta che se sei un terrorista DSP porta alla tua cattura (spesso violenta!) con alta probabilità pari a ; mentre se non sei un terrorista la probabilità di essere catturato è pari all 1%. Vi sembra che DSP è un programma efficace? Risulta che in un anno tra gli 31,000 sospettati catturati con DSP soltanto 0.32% erano realmente terroristi. Spiegare l accaduto? Il programma di spionaggio domestico vi sembra una strategia buona?

22 Esercizio 5. Pippo vuole investire in certe azioni e pensa che la probabilità con cui saliranno (S) nel prossimo mese è pari a P (S) = 0.6. Pippo deve decidere se consultare l agente di cambio Paperone. Paperone, dopo un compenso, puo consigliare di comperare C o non comperare C e Pippo valuta l affidabilità di Paperone come segue: P (C S) = 0.8 e P (C S) = 0.3. Basandovi sulla probabilità a posteriori che le azioni salgono quando Paperone consiglia di comperare e quando consiglia di non comperare (P (S C) e P (S C)) date un consiglio a Pippo.

23 ODDS-Ragione di scommessa Nell esempio 5., P (S) = 0.6 e quindi P ( S) = 1 P (S) = 0.4 e potremo dire che le azioni sono date 6:4, cioè con odds (a priori) a favore di S pari a O(S) = P (S)/(1 P (S)) = P (S)/P ( S) =. Inoltre, gli odds a favore di S a posteriori sono dati da O(S C) = P (S C) P ( S C). Possiamo dunque, riscrivere il teorema di Bayes in termini di odds come P (S C) P (S) P (C S) = P ( S C) P ( S) P (C S) ossia O(S C) = O(S) P (C S) P (C S), dove l ultimo termine è il rapporto di verosimiglianza (Likelihood ratio) Odds a Posteriori = Odds a Priori LR

24 La Scomessa Olandese- Dutch book Ricordiamo che P (A) + P (Ā) = 1. Supponiamo che agite in modo incoerente ed assegnate a P (A) = 0.2 ed a P (Ā) = 0.7. Questo significa che la ragione di scommessa (1 P (A)) (odds) contro A sono 4 : 1, poichè P (A) = 0.8/0.2), cioè per voi è equo pagare 4x a chi ne scommette x. Il vostro guadagno è : { 4x se A x se Ā Analogamente gli odds contro Ā sono di 3 : 7 quindi il vostro guadagno è : { 3/7y y se Ā se A

25 Calcolate il vostro guadagno/perdita complessiva con x = 2 e y = 7 Euro. Una combinazioni di scommesse che da una perdita certa viene detta scommessa olandese (Dutch book)

26 Paradosso di Simpson Esempio: 40 aziende adottano una nuova strategia di marketing M e 40 non l adottano M. Si registra se hanno incrementato le vendite I oppure no Ī. La tabella seguente indica i risultati per le 80 aziende: I Ī totale % incremento M % M % Mentre se esamino separatamente le tabelle per le aziende dell Italia Centrale C: I Ī totale % incremento M % M %

27 e quella delle aziende dell Italia Settentrionale, C: I Ī totale % incremento M % M % Dalla prima tabella si deduce che P (I M) = 0.5 e P (I M) = 0.4. Mentre risulta che: P (I M, C) = 0.6 e P (I M, C) = 0.7, P (I M, C) = 0.2 e P (I M, C) = 0.3 ma poichè dal teorema delle probabilità totali: P (I M) = P (I M, C)P (C M) + P (I M, C)P ( C M)

28 si ha dove P (C M) = p e inoltre 0.5 = 0.6p + 0.2(1 p) P (I M) = P (I M, C)P (C M) + P (I M, C)P ( C M) e pern P (C M) = r si ha: 0.40 = 0.7r + 0.3(1 r). Nel nostro esempio p = 30/40 = 0.75 e molto diverso da r = 0.25 e quindi l incremento di vendite nelle aziende che hanno aderito alla strategia di marketing risulta superiore quando queste vengono aggregate, mentre se condizioniamo alla zona geografica C e C la proporzione si roverscia. Se p e q fossero circa uguali la composizione sarebbe stata la stessa e il paradosso non sarebbe sorto.

29 Esempio Famoso: Florida murderers Le Sentenze in 4863 casi di assassinio in Florida dal Sentenza Assassino Morte Altro % Morte Nero % Bianco % Vi è una percentuale di condannati a morte leggermente più alta per i condannati bianchi rispetto a quelli neri.

30 Se controlliamo il colore della vittima Sentenza Vittima Assassino Morte Altro % Morte Nero Nero % Bianco % Bianco Nero % Bianco % Ora condizionatamente al colore della vittima le cose sono molto diverse. Da notare in particolare che tra 111 bianchi che hanno amazzato una vittima nera nessuno è stato condannato a morte! Condizionatamente al colore della vittima, colore dell assassino e sentenza SONO stocasticamente dipendenti.

31 Ammissione a Berkeley Dipartimento Sesso Ammesso? Si No % ammessi I Maschio % Femmina % II Maschio % Femmina % III Maschio % Femmina % IV Maschio % Femmina % V Maschio % Femmina % VI Maschio % Femmina % Per le tre variabili A: Ammesso?, S: Sesso, and D: Dipartmento è interessante vedere se vi è indipendenza tra due variabli mantenendo fissa una. Per esempio, l ammissione è indipende dal sesso per ogni dipartimento separatamente A S D? Graphicamente possiamo rappresentarlo come

32

33 Indipendenza marginale Consideriamo la tabella marginale Sesso Ammesso? Si No % Maschio % Femmina % Notate che nella tabella marginale le ammissioni sono molto più basse per le femmine. Se invece consideriamo i dipartimenti separatamente vi è una differenza solo per il dipartmento I, ed inoltre le ammissioni sono più alte per le femmine.! Cioè non è vero che A S.

34 Paradosso di Simpson Le due condizioni S A, S A D sono diverse e sono entrambe valide solo nel caso in cui una delle variabili è completamente indipendente da entrambe le altre due, cioè S (A, D) oppure (S, D) A. Questo fatto è noto come paradosso di Yule-Simpson.

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it TEORIA DELLE DECISIONI DOCENTE: JULIA MORTERA mortera@uniroma3.it 1 Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi, aziende, sindacati ecc. si trovano

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il problema di Monty Hill nel film 21 Elementare!! Statistiche, cambio di variabili. 1 Il coefficiente di correlazione tra Indicee Stipendio vale 0,94. E possibile asserire che

Dettagli

LA PROVA STATISTICA NEL PROCESSO PENALE

LA PROVA STATISTICA NEL PROCESSO PENALE Benito V. Frosini Università Cattolica del Sacro Cuore LA PROVA STATISTICA NEL PROCESSO PENALE Roma, 26 gennaio 2013 1. Processo civile e processo penale 1.1. Riguardo alla valutazione delle prove statistiche,

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

Appunti: elementi di Probabilità

Appunti: elementi di Probabilità Università di Udine, Facoltà di Scienze della Formazione Corso di Laurea in Scienze e Tecnologie Multimediali Corso di Matematica e Statistica (Giorgio T. Bagni) Appunti: elementi di Probabilità. LA PROBABILITÀ..

Dettagli

Pigreco-Day 14 marzo 2014 Matematica e Incertezza. Melchiorre Simone 5 a sez. C Liceo Scientifico G. Galilei Lanciano

Pigreco-Day 14 marzo 2014 Matematica e Incertezza. Melchiorre Simone 5 a sez. C Liceo Scientifico G. Galilei Lanciano Pigreco-Day 14 marzo 2014 Matematica e Incertezza Imparare a conoscere i possibili errori che si commettono in situazioni di incertezza per evitare di fare scelte sbagliate e dare giudizi errati. PasquiniIlaria

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza La probabilità Teoria della probabilità: eventi, proprietà additiva e moltiplicativa L incertezza Nella maggior parte delle situazioni la nostra condizione è caratterizzata dallincertezza Incertezza relativa

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Contenuti. Fatti stilizzati microeconomici. L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller.

Contenuti. Fatti stilizzati microeconomici. L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller. Contenuti L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller. ECONOMIA MONETARIA E FINANZIARIA (7) Esistono quindi delle imperfezioni dei mercati. Le imperfezioni dei mercati

Dettagli

Molti aderenti ci hanno posto alcuni quesiti sul tema pensionistico/liquidativo:

Molti aderenti ci hanno posto alcuni quesiti sul tema pensionistico/liquidativo: Nonostante la riforma Fornero qualcuno riesce ancora ad andare in pensione. Come si inserisce il Fondo Pensione in questa eventualità, quali sono le scelte che è possibile ed è meglio fare. Molti aderenti

Dettagli

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 1 Riepilogo di alcuni concetti base Concetti di base: unità e collettivo statistico; popolazione e campione; caratteri e

Dettagli

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco sicco@dm.unito.it Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes.

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1 Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Probabilità, verosimiglianza e teorema di Bayes Se A e B sono

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

La probabilità nella vita quotidiana

La probabilità nella vita quotidiana La probabilità nella vita quotidiana Introduzione elementare ai modelli probabilistici Bruno Betrò bruno.betro@mi.imati.cnr.it CNR - IMATI San Pellegrino, 6/9/2011 p. 1/31 La probabilità fa parte della

Dettagli

L avversione al rischio e l utilità attesa

L avversione al rischio e l utilità attesa L avversione al rischio e l utilità attesa Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE In questa lezione introdurremo il modello dell utilità attesa, che descrive le scelte individuali

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli

Lezione 5 (BAG cap. 3) Il mercato dei beni. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 5 (BAG cap. 3) Il mercato dei beni. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 5 (BAG cap. 3) Il mercato dei beni Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia 1 Interazione tra produzione, reddito e domanda Variazione della domanda di beni Variazione della

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011 Università di Siena Sede di Grosseto Secondo Semestre 2010-2011 Macroeconomia Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011 Nuovo Orario Riassunto lezione precedente Definizione e misurazione: PIL

Dettagli

PROBABILITÀ E DECISIONI IN MEDICINA: I TEST DIAGNOSTICI

PROBABILITÀ E DECISIONI IN MEDICINA: I TEST DIAGNOSTICI Università degli Studi di Padova CICLO DI LEZIONI SCIENZE DI BASE PER I DOTTORATI DI RICERCA DELL AREA MEDICA Anno accademico 2005-06 Temi di Statistica ed Epidemiologia PROBABILITÀ E DECISIONI IN MEDICINA:

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Problema del condannato*

Problema del condannato* Problema del condannato* Esempio 35 In un paese orientale un prigioniero è stato condannato a morte da uno sceicco. Prima dell esecuzione, lo sceicco o re una possibilità di salvezza al condannato, mettendogli

Dettagli

GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI

GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI ALLA PROBABILITÀ 17 II.1 Probabilità in senso classico

Dettagli

Esercizi di Ricerca Operativa II

Esercizi di Ricerca Operativa II Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

Analfabetismo statistico

Analfabetismo statistico Analfabetismo statistico e decisioni informate Matteo Paris Dipartimento di Fisica Università di Milano matteo.paris@fisica.unimi.it http://qinf.fisica.unimi.it/ paris Analfabetismo statistico e decisione

Dettagli

Economia Pubblica Rischio e Incertezza

Economia Pubblica Rischio e Incertezza Economia Pubblica Rischio e Incertezza Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Seconda parte del corso di Economia Pubblica I problemi dell

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo.

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo. acroeconomia, Esercitazione 2. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 oneta/1 Sapendo che il PIL reale nel 2008 è pari a 50.000 euro e nel 2009 a 60.000 euro, che dal 2008 al

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

Lezione 8 (Capitolo 12 De Long)

Lezione 8 (Capitolo 12 De Long) Lezione 8 (Capitolo 12 De Long) Curva di Phillips e aspettative R. Capolupo- Macro 2 1 Legame tra modello a prezzi vischiosi e quello a prezzi flessibili Il passaggio dal modello a prezzi vischiosi al

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8 Facoltà di Scienze Politiche Corso di Economia Politica Esercitazione di Microeconomia sui capitoli 7 e 8 Domanda 1 Dite quale delle seguenti non è una caratteristica di un mercato perfettamente competitivo:

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

CORSO DI VALUTAZIONE DI IMPATTO AMBIENTALE (VIA) TEORIA DELLE DECISIONI E MODELLI DECISIONALI

CORSO DI VALUTAZIONE DI IMPATTO AMBIENTALE (VIA) TEORIA DELLE DECISIONI E MODELLI DECISIONALI CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI VALUTAZIONE DI IMPATTO AMBIENTALE (VIA) TEORIA DELLE DECISIONI E MODELLI DECISIONALI dr. Arch. P. Luria Dip. IMAGE (ingegneria Idraulica

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario

Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario Scelta fra lavoro e tempo libero con un po di matematica e qualche esercizio Appendice al capitolo 3 Mario Mario frequenta la facoltà di Biologia dell Università di Vattelapesca. Vuole avere un buon voto

Dettagli

Giudizio Probabilistico

Giudizio Probabilistico Giudizio Probabilistico COME LE PERSONE NON ESPERTE VALUTANO GLI EVENTI INCERTI Fondamenti di Psicologia Generale Cap. 20 Dott.ssa Stefania Pighin - stefania.pighin@unitn.it Psicologia del Pensiero Come

Dettagli

IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale

IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale IL CAPITALE 1) Domanda di capitale 2) Offerta di capitale CAPITALE FINANZIARIO E CAPITALE REALE Col termine capitale i si può riferire a due concetti differenti Il capitale finanziario è costituito dalla

Dettagli

ESERCIZI EVENTI E VARIABILI ALEATORIE

ESERCIZI EVENTI E VARIABILI ALEATORIE ESERCIZI EVENTI E VARIABILI ALEATORIE 1) Considera la tabella seguente, che descrive la situazione occupazionale di 63 persone in relazione al titolo di studio. Occupazione SI NO Titolo Licenza media 5%

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini 1 Elementi di calcolo delle probabilitá, teorema di Bayes e applicazioni 1.1 Definizione di probabilitá

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri

ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri ECONOMIA INTERNAZIONALE Biennio CLEM - Prof. B. Quintieri IL TASSO DI CAMBIO Anno Accademico 2013-2014, I Semestre (Tratto da: Feenstra-Taylor: International Economics) Si propone, di seguito, una breve

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Fonti di finanziamento: l effetto positivo della leva finanziaria

Fonti di finanziamento: l effetto positivo della leva finanziaria Il caso Fonti di finanziamento: l effetto positivo della leva finanziaria di Silvia Tommaso - Università della Calabria Nella scelta delle fonti di finanziamento, necessarie alla copertura del fabbisogno

Dettagli

Possiamo calcolare facilmente il valore attuale del bond A e del bond B come segue: VA A = 925.93 = 1000/1.08 VA B = 826.45 = 1000/(1.

Possiamo calcolare facilmente il valore attuale del bond A e del bond B come segue: VA A = 925.93 = 1000/1.08 VA B = 826.45 = 1000/(1. Appendice 5A La struttura temporale dei tassi di interesse, dei tassi spot e del rendimento alla scadenza Nel capitolo 5 abbiamo ipotizzato che il tasso di interesse rimanga costante per tutti i periodi

Dettagli

Capitolo IV. I mercati finanziari

Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 2 I MERCATI FINANZIARI OBIETTIVO: SPIEGARE COME SI DETERMINANO I TASSI DI INTERESSE E COME LA BANCA CENTRALE PUO INFLUENZARLI LA DOMANDA DI MONETA DETERMINAZIONE DEL TASSO

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 26 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html COOPERAZIONE Esempio: strategie correlate e problema

Dettagli

La Massimizzazione del profitto

La Massimizzazione del profitto La Massimizzazione del profitto Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. Ora vedremo un modello per analizzare le scelte di quantità prodotta e come produrla.

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Calcolo delle probabilità Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si vuole studiare la distribuzione del sesso dei figli nelle famiglie aventi due figli

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

Bruno de Finetti, probabilità e logica

Bruno de Finetti, probabilità e logica Bruno de Finetti, probabilità e logica Daniele Mundici Dipartimento di Matematica e Informatica Università di Firenze Viale Morgagni 67/a 50134 Firenze mundici@math.unifi.it Qual è la probabilità p che

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006 Calcolo delle probabilità riassunto veloce Laboratorio di Bioinformatica Corso aa 2005-2006 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 03/11/2015 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

Metodo di gioco VINCENTE e GARANTITO. Non lasci possibilità per il bookmaker. Annienti le probabilità di perdere. Riduci il rischio del 100%

Metodo di gioco VINCENTE e GARANTITO. Non lasci possibilità per il bookmaker. Annienti le probabilità di perdere. Riduci il rischio del 100% Metodo di gioco VINCENTE e GARANTITO Non lasci possibilità per il bookmaker Annienti le probabilità di perdere Riduci il rischio del 100% da Zero a 50.000 Euro in meno di un anno Investimento a partire

Dettagli

Esercitazione del 5/10/09

Esercitazione del 5/10/09 Esercitazione del 5/10/09 A cura di Giuseppe Gori (giuseppe.gori@unibo.it) Corso di Microeconomia, Docente Luigi Marattin 1 Esercizi. 1.1 Le curve di domanda e di offerta in un dato mercato sono date da:

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

Richiami di teoria della probabilitá e Modelli Grafici

Richiami di teoria della probabilitá e Modelli Grafici Modelli di computazione affettiva e comportamentale Data: 23 Aprile 2010 Richiami di teoria della probabilitá e Modelli Grafici Docente: Prof. Giuseppe Boccignone Scriba: Matteo Battistini 1 Richiami di

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE AREA TECNICO ASSISTENZIALI

Dettagli

Capitolo Terzo Valore attuale e costo opportunità del capitale

Capitolo Terzo Valore attuale e costo opportunità del capitale Capitolo Terzo Valore attuale e costo opportunità del capitale 1. IL VALORE ATTUALE La logica di investimento aziendale è assolutamente identica a quella adottata per gli strumenti finanziari. Per poter

Dettagli