Teoria delle Decisioni. Lezioni 1 e 2 a.a J. Mortera, Università Roma Tre

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it"

Transcript

1 Teoria delle Decisioni Lezioni 1 e 2 a.a J. Mortera, Università Roma Tre

2 Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi, aziende, sindacati ecc.) si trovano spesso in situazioni in cui debbono scegliere tra diverse azioni. Per esempio, il governo deve decidere tra diverse politiche economiche (regimi pensionistici). Decisioni personali, di imprenditori, politici... Producono CONSEGUENZE che possono coinvolgere altre persone o cose.

3 Si deve distinguere tra problemi di decisione per: singole unità (anche l intero corpo elettorale puo essere considerata una singola unità ) più unità in condizioni di conflitto (teoria dei giochi) Si propongono delle linee guida per decisori che consentono di SUDDIVIDERE COMPLESSI problemi decisionali in SOTTOPROBLEMI PIU SEMPLICI. Questi vengono analizzati e ricombinati per fornire la soluzione al problema più ampio. Si cerchera di individuare le CONDIZIONI DI COERENZA da rispettare in ogni processo decisionale.

4 Non sarà uno studio DESCRITTIVO ma NORMATIVO o PRESCRITTIVO Come prima cosa si deve costruire un elenco delle decisioni e/o azioni possibili. Quest elenco deve essere ESAUSTIVO e ESCLUSIVO. Una decisione deve essere presa e al massimo una di esse PUO essere presa. Le decisioni sono prese in condizioni di INCERTEZZA. Esempio: n. di articoli da ordinare nel nostro negozio. Dipende dalla domanda futura di diversi articoli, che NON E NOTA!!

5 Decisioni possibili L elenco delle decisioni possibili deve essere esaustiva ed esclusiva. Indichiamo l insieme (il vettore) delle decisioni possibili con: δ = (δ 1, δ 2,, δ m ) con insieme degli eventi incerti : θ = (θ 1, θ 2,, θ n ), dove il numero di eventi n non è neccessariamente uguale al numero di decisioni m. Il problema è di scegliere un singolo δ i, i = 1,, m senza sapere quale evento θ i si verifica.

6 RICHIAMI DI CALCOLO DELLE PROBABILITÀ Sia dato un evento A, ci si chiede: Cosa è la probabilità di un evento A? Cosa significa che P (A) = 1/6. Ci sono due interpretazioni della probabilità : l impostazione soggetivista l impostazione frequentista IMPOSTAZIONE SOGGETTIVA (B. de Finetti) La probabilità di un evento il grado di fiducia di un individuo nel verificarsi di un evento.

7 Ne consegue: non esistono probabiltà incognite individui diversi possono avere probabilità diverse sul verificarsi dell evento A. La probabilità di A per te rappresenta il tuo stato di informazione su A. La modalità operativa per quantificare la valutazione soggettiva della probabilità è basata sullo schema delle scomesse.

8 Quantificazione delle Probabilità Come assegnare/elicitare le probabilità? A. Criterio della Scommessa: Valutazioni di probabilità di un individuo vengono basate su scommesse ipotetiche. La tua probabilità di A è p se sei indifferente tra: a) ricevere p con certezza; b) scommettere e ricevere { 1 se A 0 se Ā La probabilità è quindi il prezzo equo di un evento incerto.

9 Il guadagno (aleatorio) è dato da { 1 p se A g = p se Ā B. Criterio della Penalizzazione: Sceglierai la tua probabilità di A, P (A) = p, sapendo che subirai una penalizzazione pari a: { (1 p) 2 se A p 2 se Ā (si tornerà in seguito sulle funzoni di perdita) (1)

10 Coerenza La scelta di p sia in 1) che in 2) deve essere coerente, cioè non deve produrre nè una vincita certa nè una perdita certa. Esercizio 1 Seguendo il principio di coerenza dimostrare che: a) p(a) 0 b) P (Ω) = 1 c) P (A B) = P (A) + P (B), per A B = *** esempio di Savage ***

11 Impostazione Frequentista ( Oggettiva ) La probabilità è definita come il limite delle frequenza osservate in un gran numero di prove ripetute dello stesso evento ( nelle medesime condizioni). Nè consegue che: i) P (A) è incognita perchè non si ripeterà mai infinite volte un esperimento (non è osservabile) ii) Solo eventi ai quali è possibile pensare di effettuare infinite prove ripetute sono probabilizzabili i) esiste una probabilità vera generalmente incognita che si cerca di stimare. ii) solo risultati di misure ripetute, estrazioni casuali, ecc. sono probabilizzabili.

12 In questa impostazione come possiamo assegnare la probabilità ad eventi come 1. La Roma vincerà la prossima partita 2. Il tasso di inflazione nel prossimo trimestre scenderà sotto il 2%

13 Assiomatizzazione La probabilità è una funzione di insieme definita sulla classe A di eventi e assume valori reali in [0, 1]. P : A [0, 1] Assiomi 1. A è un algebra di sottoinsiemi di Ω 2. 0 P (A) 1, A A 3. P (Ω) = 1, P ( ) = 0 4. P ( n i=1 A i) = n i=1 P (A i), se A i A j =, i j L assioma 1. significa che utilizzando le operazioni, e c (Ā) (unione, intersezione e complemento tra insiemi

14 (eventi)) su un numero finito di s.i. di A si ottengono ancora elementi di A. (Diremo anche che P d insieme) Assiomi aggiuntivi una misura di A, funzione additiva 1 A è una σ algebra di s.i. di A. (cioè contiene anche l unioni numerabili di propri elementi) 4 P ( i=1 A i) = i=1 P (A i), se A i A j =, i j Spazio di probabilità (Ω, A, P )

15 Richiami: probabilità condizionata P (A B) = P (A B)/P (B) se P (B) > 0 (2) Dipendenza e Indipendenza Stocastica Dati due eventi A ed B possono sussistere le seguenti relazioni a) P (A) < P (A B) (associazione positiva) b) P (A) > P (A B) (associazione negativa) c) P (A) = P (A B) e scriveremo A B Inoltre dalla (2) si ha che A B implica P (A B) = P (A)P (B)

16 Si dice che due eventi sono stocasticamente indipendenti se P (A B) = P (A)P (B) Inoltre l indipendenza è una proprietà simmetrica se A B allora B A. Esercizio 2. Dimostrare: Se A B allora A B, B Ā e Ā B. Diremo che n eventi E 1, E 2,, E n sono mutauamente indipendenti tra loro se susiste l independenza a due a due, a tre a tre,...ecc., cioè P (E 1 E k ) = P (E 1 ) P (E k ) per k = 2, 3, n (e per qualsiasi ordine dei fattori).

17 Indipendenza Condizionata Attenzione il concetto di indipendenza A B non si deve confondere con quello di indipendenza condizionata (condizionale) A B C P (A B C) = P (A C)P (B C) Esercizio 3: Monty Hall west/javahtml/letsmakeadeal

18 Teorema di Bayes Sia {H 1,, H k } una partizione di Ω. Per qualunque evento A Ω con P (A) > 0 si ha: P (H i A) = P (H i )P (A H i ) k j=1 P (H j)p (A H j ). Nel caso più semplice la partizione di Ω è H H e si ha P (H A) = P (H)P (A H) P (A) dove P (A) = P (A H)P (H) + P (A H)P ( H).

19 Esempio: Test Elisa per HIV+ T -Test positivo, T -Test negativo, M-malato P (T M) = 0.99 P ( T M) = 0.9 Popolazione USA 300 millioni e circa un millione sono HIV+ quindi P (M) =? Ora, se un individuo risulta positivo al test che probabilità ha di essere HIV+? Dobbiamo calcolare la probabilità a posteriori P (M T )? Applicando il teorema di Bayes abbiamo: P (M T ) = P (M)P (T M) P (T )

20 dove P (T ) = P (T M)P (M) + P (T M)P ( M) quindi P (M T ) = e P (M T ) =. Si è quindi passati da una probabilità a priori di essere HIV+ pari a P (M) = ad una probabilità a posteriori di essere HIV+ P (M T ) (condizionata all informazione di essere risultato positivo al test) pari a.

21 Esercizio 4. NSA (National Security Agency) ha un programma illegale di spionaggio domestico (DSP). La NSA valuta che se sei un terrorista DSP porta alla tua cattura (spesso violenta!) con alta probabilità pari a ; mentre se non sei un terrorista la probabilità di essere catturato è pari all 1%. Vi sembra che DSP è un programma efficace? Risulta che in un anno tra gli 31,000 sospettati catturati con DSP soltanto 0.32% erano realmente terroristi. Spiegare l accaduto? Il programma di spionaggio domestico vi sembra una strategia buona?

22 Esercizio 5. Pippo vuole investire in certe azioni e pensa che la probabilità con cui saliranno (S) nel prossimo mese è pari a P (S) = 0.6. Pippo deve decidere se consultare l agente di cambio Paperone. Paperone, dopo un compenso, puo consigliare di comperare C o non comperare C e Pippo valuta l affidabilità di Paperone come segue: P (C S) = 0.8 e P (C S) = 0.3. Basandovi sulla probabilità a posteriori che le azioni salgono quando Paperone consiglia di comperare e quando consiglia di non comperare (P (S C) e P (S C)) date un consiglio a Pippo.

23 ODDS-Ragione di scommessa Nell esempio 5., P (S) = 0.6 e quindi P ( S) = 1 P (S) = 0.4 e potremo dire che le azioni sono date 6:4, cioè con odds (a priori) a favore di S pari a O(S) = P (S)/(1 P (S)) = P (S)/P ( S) =. Inoltre, gli odds a favore di S a posteriori sono dati da O(S C) = P (S C) P ( S C). Possiamo dunque, riscrivere il teorema di Bayes in termini di odds come P (S C) P (S) P (C S) = P ( S C) P ( S) P (C S) ossia O(S C) = O(S) P (C S) P (C S), dove l ultimo termine è il rapporto di verosimiglianza (Likelihood ratio) Odds a Posteriori = Odds a Priori LR

24 La Scomessa Olandese- Dutch book Ricordiamo che P (A) + P (Ā) = 1. Supponiamo che agite in modo incoerente ed assegnate a P (A) = 0.2 ed a P (Ā) = 0.7. Questo significa che la ragione di scommessa (1 P (A)) (odds) contro A sono 4 : 1, poichè P (A) = 0.8/0.2), cioè per voi è equo pagare 4x a chi ne scommette x. Il vostro guadagno è : { 4x se A x se Ā Analogamente gli odds contro Ā sono di 3 : 7 quindi il vostro guadagno è : { 3/7y y se Ā se A

25 Calcolate il vostro guadagno/perdita complessiva con x = 2 e y = 7 Euro. Una combinazioni di scommesse che da una perdita certa viene detta scommessa olandese (Dutch book)

26 Paradosso di Simpson Esempio: 40 aziende adottano una nuova strategia di marketing M e 40 non l adottano M. Si registra se hanno incrementato le vendite I oppure no Ī. La tabella seguente indica i risultati per le 80 aziende: I Ī totale % incremento M % M % Mentre se esamino separatamente le tabelle per le aziende dell Italia Centrale C: I Ī totale % incremento M % M %

27 e quella delle aziende dell Italia Settentrionale, C: I Ī totale % incremento M % M % Dalla prima tabella si deduce che P (I M) = 0.5 e P (I M) = 0.4. Mentre risulta che: P (I M, C) = 0.6 e P (I M, C) = 0.7, P (I M, C) = 0.2 e P (I M, C) = 0.3 ma poichè dal teorema delle probabilità totali: P (I M) = P (I M, C)P (C M) + P (I M, C)P ( C M)

28 si ha dove P (C M) = p e inoltre 0.5 = 0.6p + 0.2(1 p) P (I M) = P (I M, C)P (C M) + P (I M, C)P ( C M) e pern P (C M) = r si ha: 0.40 = 0.7r + 0.3(1 r). Nel nostro esempio p = 30/40 = 0.75 e molto diverso da r = 0.25 e quindi l incremento di vendite nelle aziende che hanno aderito alla strategia di marketing risulta superiore quando queste vengono aggregate, mentre se condizioniamo alla zona geografica C e C la proporzione si roverscia. Se p e q fossero circa uguali la composizione sarebbe stata la stessa e il paradosso non sarebbe sorto.

29 Esempio Famoso: Florida murderers Le Sentenze in 4863 casi di assassinio in Florida dal Sentenza Assassino Morte Altro % Morte Nero % Bianco % Vi è una percentuale di condannati a morte leggermente più alta per i condannati bianchi rispetto a quelli neri.

30 Se controlliamo il colore della vittima Sentenza Vittima Assassino Morte Altro % Morte Nero Nero % Bianco % Bianco Nero % Bianco % Ora condizionatamente al colore della vittima le cose sono molto diverse. Da notare in particolare che tra 111 bianchi che hanno amazzato una vittima nera nessuno è stato condannato a morte! Condizionatamente al colore della vittima, colore dell assassino e sentenza SONO stocasticamente dipendenti.

31 Ammissione a Berkeley Dipartimento Sesso Ammesso? Si No % ammessi I Maschio % Femmina % II Maschio % Femmina % III Maschio % Femmina % IV Maschio % Femmina % V Maschio % Femmina % VI Maschio % Femmina % Per le tre variabili A: Ammesso?, S: Sesso, and D: Dipartmento è interessante vedere se vi è indipendenza tra due variabli mantenendo fissa una. Per esempio, l ammissione è indipende dal sesso per ogni dipartimento separatamente A S D? Graphicamente possiamo rappresentarlo come

32

33 Indipendenza marginale Consideriamo la tabella marginale Sesso Ammesso? Si No % Maschio % Femmina % Notate che nella tabella marginale le ammissioni sono molto più basse per le femmine. Se invece consideriamo i dipartimenti separatamente vi è una differenza solo per il dipartmento I, ed inoltre le ammissioni sono più alte per le femmine.! Cioè non è vero che A S.

34 Paradosso di Simpson Le due condizioni S A, S A D sono diverse e sono entrambe valide solo nel caso in cui una delle variabili è completamente indipendente da entrambe le altre due, cioè S (A, D) oppure (S, D) A. Questo fatto è noto come paradosso di Yule-Simpson.

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it TEORIA DELLE DECISIONI DOCENTE: JULIA MORTERA mortera@uniroma3.it 1 Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi, aziende, sindacati ecc. si trovano

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011 Università di Siena Sede di Grosseto Secondo Semestre 2010-2011 Macroeconomia Paolo Pin ( pin3@unisi.it ) Lezione 3 18 Aprile 2011 Nuovo Orario Riassunto lezione precedente Definizione e misurazione: PIL

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo.

Macroeconomia, Esercitazione 2. 1 Esercizi. 1.1 Moneta/1. 1.2 Moneta/2. 1.3 Moneta/3. A cura di Giuseppe Gori (giuseppe.gori@unibo. acroeconomia, Esercitazione 2. A cura di Giuseppe Gori (giuseppe.gori@unibo.it) 1 Esercizi. 1.1 oneta/1 Sapendo che il PIL reale nel 2008 è pari a 50.000 euro e nel 2009 a 60.000 euro, che dal 2008 al

Dettagli

Lezione 5 (BAG cap. 3) Il mercato dei beni. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 5 (BAG cap. 3) Il mercato dei beni. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 5 (BAG cap. 3) Il mercato dei beni Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia 1 Interazione tra produzione, reddito e domanda Variazione della domanda di beni Variazione della

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco sicco@dm.unito.it Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale

IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale IL CAPITALE 1) Domanda di capitale 2) Offerta di capitale CAPITALE FINANZIARIO E CAPITALE REALE Col termine capitale i si può riferire a due concetti differenti Il capitale finanziario è costituito dalla

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Appunti: elementi di Probabilità

Appunti: elementi di Probabilità Università di Udine, Facoltà di Scienze della Formazione Corso di Laurea in Scienze e Tecnologie Multimediali Corso di Matematica e Statistica (Giorgio T. Bagni) Appunti: elementi di Probabilità. LA PROBABILITÀ..

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il problema di Monty Hill nel film 21 Elementare!! Statistiche, cambio di variabili. 1 Il coefficiente di correlazione tra Indicee Stipendio vale 0,94. E possibile asserire che

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes.

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1 Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Probabilità, verosimiglianza e teorema di Bayes Se A e B sono

Dettagli

LA PROVA STATISTICA NEL PROCESSO PENALE

LA PROVA STATISTICA NEL PROCESSO PENALE Benito V. Frosini Università Cattolica del Sacro Cuore LA PROVA STATISTICA NEL PROCESSO PENALE Roma, 26 gennaio 2013 1. Processo civile e processo penale 1.1. Riguardo alla valutazione delle prove statistiche,

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Capitolo Terzo Valore attuale e costo opportunità del capitale

Capitolo Terzo Valore attuale e costo opportunità del capitale Capitolo Terzo Valore attuale e costo opportunità del capitale 1. IL VALORE ATTUALE La logica di investimento aziendale è assolutamente identica a quella adottata per gli strumenti finanziari. Per poter

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 26 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html COOPERAZIONE Esempio: strategie correlate e problema

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Corso di Economia Politica (a.a. 2006-7) Esercitazioni - Macroeconomia Capitoli dal 10 al 21

Corso di Economia Politica (a.a. 2006-7) Esercitazioni - Macroeconomia Capitoli dal 10 al 21 Corso di Economia Politica (a.a. 2006-7) Esercitazioni - Macroeconomia Capitoli dal 10 al 21 Sezione 2: Macroeconomia Capitolo 10: Problemi 1, 2, 4; Capitolo 11: Problemi 4, 5, 9: Capitolo 12: Problemi

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata? Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica

CAPITOLO I. Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Programmazione Dinamica CAPITOLO I. - PROGRAMMAZIONE DINAMICA La programmazione dinamica è una parte della programmazione matematica che si occupa della soluzione di problemi di ottimizzazione di tipo particolare, mediante una

Dettagli

Esame del corso di MACROECONOMIA Del 22.07.2015 VERSIONE A) COGNOME NOME

Esame del corso di MACROECONOMIA Del 22.07.2015 VERSIONE A) COGNOME NOME Esame del corso di MACROECONOMIA Del 22.07.2015 VERSIONE A) COGNOME NOME MATRICOLA 1) A B C D 2) A B C D 3) A B C D 4) A B C D 5) A B C D 6) A B C D 7) A B C D 8) A B C D 9) A B C D 10) A B C D 11) A B

Dettagli

Università di Bari Facoltà di Economia ESAME DEL CORSO DI ECONOMIA POLITICA II del 9-06.2010 (VERSIONE A) COGNOME NOME MATRICOLA

Università di Bari Facoltà di Economia ESAME DEL CORSO DI ECONOMIA POLITICA II del 9-06.2010 (VERSIONE A) COGNOME NOME MATRICOLA Università di Bari Facoltà di Economia ESAME DEL CORSO DI ECONOMIA POLITICA II del 9-06.2010 (VERSIONE A) COGNOME NOME MATRICOLA 1) A Ω B Ω C Ω D Ω 2) A Ω B Ω C Ω D Ω 3) A Ω B Ω C Ω D Ω 4) A Ω B Ω C Ω

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

L apertura di una economia ha 3 dimensioni

L apertura di una economia ha 3 dimensioni Lezione 19 (BAG cap. 6.1 e 6.3 e 18.1-18.4) Il mercato dei beni in economia aperta: moltiplicatore politica fiscale e deprezzamento Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Economia

Dettagli

Problema del condannato*

Problema del condannato* Problema del condannato* Esempio 35 In un paese orientale un prigioniero è stato condannato a morte da uno sceicco. Prima dell esecuzione, lo sceicco o re una possibilità di salvezza al condannato, mettendogli

Dettagli

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta Economia Aperta In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta Analizziamo i mercati finanziari in economia aperta 167 Economia aperta applicata ai mercati dei beni mercati

Dettagli

Esercizi di Ricerca Operativa II

Esercizi di Ricerca Operativa II Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Comprendere meglio la riforma Monti-Fornero. il raffronto Ante e Post Legge 214/2011

Comprendere meglio la riforma Monti-Fornero. il raffronto Ante e Post Legge 214/2011 Comprendere meglio la riforma Monti-Fornero il raffronto Ante e Post Legge 214/2011 Nello scorso articolo abbiamo spiegato, per sommi capi, le linee guida della recente riforma della previdenza pubblica,

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

Pigreco-Day 14 marzo 2014 Matematica e Incertezza. Melchiorre Simone 5 a sez. C Liceo Scientifico G. Galilei Lanciano

Pigreco-Day 14 marzo 2014 Matematica e Incertezza. Melchiorre Simone 5 a sez. C Liceo Scientifico G. Galilei Lanciano Pigreco-Day 14 marzo 2014 Matematica e Incertezza Imparare a conoscere i possibili errori che si commettono in situazioni di incertezza per evitare di fare scelte sbagliate e dare giudizi errati. PasquiniIlaria

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Equilibrio economico generale e benessere

Equilibrio economico generale e benessere Scambio Equilibrio economico generale e benessere Equilibrio economico generale e benessere (KR 12 + NS 8) Dipartimento di Economia Politica Università di Milano Bicocca Outline Scambio 1 Scambio 2 3 4

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 1 Riepilogo di alcuni concetti base Concetti di base: unità e collettivo statistico; popolazione e campione; caratteri e

Dettagli

VINCERE AL BLACKJACK

VINCERE AL BLACKJACK VINCERE AL BLACKJACK Il BlackJack è un gioco di abilità e fortuna in cui il banco non può nulla, deve seguire incondizionatamente le regole del gioco. Il giocatore è invece posto continuamente di fronte

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 03/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 03/11/2015 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott.

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Modello probabilistico di un esperimento aleatorio Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Un esperimento è il processo attraverso il quale un osservazione

Dettagli

Economia del Lavoro 2010

Economia del Lavoro 2010 Economia del Lavoro 2010 Capitolo 1-3 Offerta di lavoro -Le preferenze del lavoratore 1 Offerta di lavoro Le preferenze del lavoratore Il comportamento dell offerta di lavoro è analizzato dagli economisti

Dettagli

Teoria del Prospetto: avversione alle perdita, framing e status quo

Teoria del Prospetto: avversione alle perdita, framing e status quo - DPSS - Università degli Studi di Padova http://decision.psy.unipd.it/ Teoria del Prospetto: avversione alle perdita, framing e status quo Corso di Psicologia del Rischio e della Decisione Facoltà di

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8

Facoltà di Scienze Politiche Corso di Economia Politica. Esercitazione di Microeconomia sui capitoli 7 e 8 Facoltà di Scienze Politiche Corso di Economia Politica Esercitazione di Microeconomia sui capitoli 7 e 8 Domanda 1 Dite quale delle seguenti non è una caratteristica di un mercato perfettamente competitivo:

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti colori, tra cui 382 rosse. Qualche tempo dopo il donatore

Dettagli

GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI

GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI ALLA PROBABILITÀ 17 II.1 Probabilità in senso classico

Dettagli

Dato il Mercato, è possibile individuare il valore e la duration del portafoglio:

Dato il Mercato, è possibile individuare il valore e la duration del portafoglio: TEORIA DELL IMMUNIZZAZIONE FINANZIARIA Con il termine immunizzazione finanziaria si intende una metodologia matematica finalizzata a neutralizzare gli effetti della variazione del tasso di valutazione

Dettagli

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta Economia Aperta In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta Analizziamo i mercati finanziari in economia aperta 158 Economia aperta applicata ai mercati dei beni mercati

Dettagli