CAMMINI MINIMI SUI POLIEDRI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CAMMINI MINIMI SUI POLIEDRI"

Transcript

1 CAMMINI MINIMI SUI POLIEDRI Consideriamo un cubo e due suoi vertici opposti, A e B come in figura, come si può andare da un vertice all altro facendo il cammino minimo, e muovendosi solo lungo gli spigoli? si scopre che il cammino minimo, sotto la condizione di muoversi esclusivamente lungo gli spigoli, è pari a tre volte la lunghezza del lato e che di questi cammini ce ne sono in tutto sei. Che cosa succede se si considera l intera superficie del cubo? Qual è il cammino più corto sulla superficie del cubo per andare dal vertice A al vertice B? Questi che si vedono tratteggiati in figura, pur essendo intuitivamente dei buoni candidati, non sono i cammini minimi: Proviamo ad aprire il cubo e a svilupparlo sul piano, qui segniamo i segmenti da A a B:

2 Si trovano due percorsi, rimontando il cubo in tre dimensioni otteniamo la risposta corretta: Si può continuare provando a considerare problemi di cammini minimi. altri poliedri e risolvere analoghi TOPOLOGIA E CARATTERISTICA DI EULERO Topologia e invarianti Ogni branca della geometria studia gli oggetti concentrandosi su specifici aspetti (o strutture ), ad esempio la geometria euclidea ha per oggetti figure geometriche, che vengono considerate equivalenti ovvero indistinguibili se esiste una isometria che porta una figura in una altra: due quadrati di pari lato sono lo stesso quadrato, perché dopo un movimento coincidono, ovvero la geometria euclidea è interessata al

3 quadrato in sé, non alla posizione che occupa nel piano. In effetti, l equivalenza per isometrie è tecnicamente una relazione di equivalenza sull insieme di tutti i sottoinsiemi del piano (geometria euclidea piana), dello spazio ( geometria euclidea tridimensionale), e in generale per i sottoinsiemi di E n, spazio euclideo n- dimensionale. Se siamo interessati a studiare altri aspetti degli oggetti geometrici, dobbiamo cambiare ambito geometrico. Ad esempio, la topologia è quella branca della geometria, nata nella seconda metà dell'ottocento, che si occupa degli insiemi (dotati di una certa struttura che li individua come spazi topologici ) a meno di trasformazioni bicontinue, cioè trasformazioni continue con trasformazione inversa continua. Dunque, sono considerati topologicamente equivalenti due spazi topologici (figure) che si possono deformare l'uno nell'altro come se fossero fatti di gomma, allungando o accorciando le distanze (che infatti in topologia non vengono definite), ma comunque senza mai effettuare strappi o incollamenti. In topologia dunque il concetto chiave è l esistenza di funzioni continue tra gli oggetti, e di connessioni continue tra i punti di una figura. La continuità ha una sua definizione rigorosa che a questo livello di studio risulterebbe troppo tecnica, e dunque tralasciamo. Per chiarire le idee, consideriamo una qualsiasi curva chiusa nel piano, non intrecciata, ad esempio il bordo di un poligono, se lo immaginiamo costituito da una corda, questa può assumere il bordo di un triangolo, come di un quadrato, di un esagono.. di un cerchio. Dal punto di vista topologico questi oggetti sono tutti uguali: gli spigoli non contano. Se però intrecciamo il nostro laccio, e disegniamo un 8, il punto di incrocio dell 8 non può essere scollato e quindi l 8 non è topologicamente equivalente a uno 0. Come distinguere un oggetto da un altro? In geometria euclidea classifichiamo le figure piane poligonali per numero dei lati, e tra quelle di pari lato, per lunghezza di lati e per ampiezza di angoli, tutte caratteristiche che non possono essere alterate da un movimento rigido, ovvero una isometria, ovvero tutte caratteristiche che rimangono inalterati all interno della classe di equivalenza della relazione che abbiamo scelto nell ambito della geometria euclidea: quella delle isometrie. Ciò che rimane inalterato all interno di una classe di equivalenza è definito invariante, rispetto alla geometria prescelta. La chiave per la comprensione è proprio questa: il primo strumento di indagine geometrica è individuare gli invarianti e classificare gli oggetti in funzione degli invarianti. Gli invarianti più semplici sono dei numeri naturali (come il numero dei lati di un poligono per la geometria piana), ma via via che si studiano oggetti più complessi si possono introdurre degli invarianti che hanno essi stessi una struttura (algebrica, topologica..) ad esempio quella di gruppo. Si noti che anche la quantità degli invarianti aumenta in genere, con l aumentare della complessità della struttura sotto indagine. Osserviamo ora che le misure, ad esempio la lunghezza, il perimetro, l area, il volume, non sono dati significativi dal punto di vista topologico, perché possono

4 esistere trasformazioni continue e con inversa continua tra figure che hanno diverse misure (perimetri aree, volumi). Neanche la proprietà di convessità è invariante per trasformazioni continue: una curva chiusa semplice che delimita una regione di piano non convessa può essere sempre trasformata in un cerchio (provare con un laccetto di cotone appoggiato su un tavolo!) dunque la convessità non è un invariante topologico. Vale anche la pena di notare che le parole sopra/sotto, destra/sinistra, alto/basso non hanno significato topologico (è però accettabile dentro/fuori), così come orizzontale/verticale non ha significato n geometria euclidea. Se in geometria euclidea distinguiamo il bordo dei triangoli da quello dei quadrati, in topologia questi sono equivalenti, ed entrambi equivalgono a un cerchio, ovvero a uno 0, ma un 8 dobbiamo distinguerlo dallo 0: in effetti 0 e 8 hanno un diverso invariante topologico, che è detto gruppo fondamentale,, il quale memorizza tutti i modi possibili ed essenzialmente diversi di compiere un percorso chiuso a partire da un punto dell oggetto. Per esempio, se p è un punto sull anello 0, ho un solo modo per compiere un percorso chiuso che parte e termina in p sopra lo 0: girare su tutto lo 0, se p è un punto sull 8, in particolare il punto di incrocio dell 8, posso girare sul cappio inferiore e tornare su p, oppure girare sul cappio superiore e ritornare ancora in p: questo due percorsi sono diversi, e vengono memorizzati nel gruppo fondamentale 0) o 8). Triangolazione di figure e caratteristica di Eulero Un importante invariante topologico, che risulta facile da visualizzare nel caso delle superfici, è la caratteristica di Eulero-Poincaré, χ, introdotta da Eulero per le superfici, poi generalizzata a varietà di dimensione qualsiasi da Poincaré. Per capire di cosa si tratta dobbiamo definire cosa sia una triangolarizzazione. Una triangolarizzazione è un metodo di indagine della topologia, che è alla base di calcoli, i quali hanno lo scopo di indagare e la struttura topologica degli oggetti. Una delle prime applicazioni che si incontrano è proprio il calcolo della caratteristica di Eulero. Una triangolazione di una superficie è il ricoprimento completo e senza sovrapposizione della stessa con triangoli, in generale, per un oggetto di dimensione n una triangolazione è il ricoprimento senza sovrapposizioni dell oggetto con triangoli n-dimensionali (ad esempio, tetraedri per dimensione 3, triangoli in dimensione 2, segmenti, compresi dei loro estremi, in dimensione 1), detti simplessi. Si dimostra che un oggetto compatto (chiuso e limitato, come una figura piana poligonale, o superficie esterna di un solido, in dimensione due, ovvero un solido poliedrale, in dimensione 3..) può sempre essere triangolarizzato, cioè ricoperto da una quantità finita di simplessi. Il modo per effettuare questi ricoprimenti non è unico, basta provare disegnare un esempio per convincersene, ma Eulero ha

5 dimostrato che, data una superficie S e una sua triangolarizzazione, il numero naturale χ(s)= v-s+f ove v sono i vertici dei triangoli della tassellazione, s gli spigoli, f i triangoli stessi (le facce), contati senza ripetizione, non solo non dipende dalla triangolarizzazione effettuata, ma non varia all interno della classe di equivalenza topologica di S, ovvero (teorema) χ(s)= v-s+f è un invariante topologico, come il numero dei lati è un invariante per isometrie dei poligoni in geometria euclidea. La quantità χ(s) viene detta Caratteristica di Eulero, e si può calcolare anche con ricoprimenti fatti da poligoni. Questo risultato si può generalizzare a dimensione qualsiasi, infatti, data una varietà X di dimensione n, si può definire χ(x) come la somma a segni alterni χ(x) = v 0 -v 1 +v 2 - v n ove v i è il numero delle componenti di dimensione i di una qualsiasi triangolarizzazione (v 0 punti, v 1 segmenti, v 2 facce ), χ(x) risulta non dipendere dalla triangolarizzazione, e risulta essere un invariante topologico anche in questa definizione generale. La formula di Eulero per le superfici poliedrali Un solido si dice semplice se è topologicamente equivalente ad una sfera, ad esempio, un cubo, un parallelepipedo, un prisma, un cono, una piramide. Tutti questi poliedri possono essere deformati in maniera continua ad una sfera, senza essere tagliati. Per visualizzare che i poliedri (definiti come l intersezione di un numero finito di semispazi, che sia non vuota e limitata..) sono topogicamente equivalenti ad una sfera basta immaginare di costruire dei modelli in pongo e lavorarli per rimodellare una sfera, osservando non è necessario aggiungere pongo, né separare il materiale in più parti. In effetti, rigorosamente bisognerebbe mostrare che esiste una trasformazione continua che porta un poliedro quale un cubo o un cono in una sfera, e viceversa.

6 Essendo un invariante topologico, ha senso calcolare la caratteristica di Eulero della classe di figure equivalenti ad una sfera, nella quale, per definizione, rientrano tutti i poliedri semplici. Vale la seguente proposizione. Per qualsiasi superficie poliedrale vale la relazione χ(s) = v-s+f=2 dove v è il numero dei vertici f quello delle facce e s quello degli spigoli. Nota: nell enunciato abbiamo usato il sintagma superficie poliedrale, piuttosto che poliedro per evidenziare che si sta lavorando sulla superfice del poliedro, non sul solido, benchè, come abbiamo già detto, la caratteristicadi Eulero possa essere definita anche sul solido pieno (ma allora non varrà più 2!). Nel testo che segue si userà la parola poliedro, anche per indicarne la sua superficie totale, cosa si intende è chiaro dal senso della frase. Per dimostrare questa affermazione, basta prendere uno dei poliedri in questione, e contare vertici, spigoli, facce, più in generale, se vogliamo utilizzare un qualsiasi poliedro, possiamo procedere come segue. Costruiamo il poliedro partendo da una sua faccia e aggiungendo una alla volta le altre, fino a completarlo. Partiamo da una faccia, cioè un poligono, diciamo con p 1 lati, e quindi si hanno p 1 spigoli e p 1 vertici, cosicché: v-s+f = p p 1 = 1. Fig. 1 (Qui p 1 = 4). Aggiungiamo un altra faccia, di p 2 lati, con uno spigolo e 2 vertici a comune con quella precedente, quindi aggiungiamo (p 2-1) vertici, - (p 2-2) spigoli e 1 faccia, in tutto aggiungiamo nella formula: v-s+f = 1 + { (p 2-2) - (p 2-1) + 1} = 1.

7 Fig. 2 Continuando, a ogni passo aggiungiamo una nuova faccia di p spigoli, di cui alcuni (diciamo q) saranno a comune con le facce precedenti, e quindi anche q + 1 vertici saranno a comune con le facce precedenti, cosicché aggiungiamo solo (p - q) spigoli, e (p q - 1) vertici; di nuovo aggiungiamo (p q+ 1) - (p - q) + 1 = 0, alla quantità v- s+f=1, che rimane sempre pari a 1. Fig. 3 (Qui q = 2). All ultimo passo l ultima faccia che aggiungiamo ha tutti gli spigoli e i vertici in comune con le facce precedenti, quindi a questo passo aggiungiamo alla quantità v- s+f solo 1 (una faccia) e quindi alla fine avremo v-s+f = 2.

8 Fig. 4 Dunque, anche per la sfera χ(s) = 2. Ci sono superficie per cui χ(s) non è uguale a 2; ad esempio per il toro: Infatti per questa superficie χ(s) = 0, cioè comunque si scelga una sua triangolazione, essa avrà v-s+f = 0. Questo vuol dire che non il toro non è equivalente topologicamente ad una sfera, ovvero che non può essere deformato plasticamente ad una sfera: che cosa hanno di diverso? Il toro ha un buco la sfera no! Provate a disegnare un toro cubico, cioè un cubo con un buco, a forma di parallelepipedo al centro: avrà χ(s) = 0 (ma non è un poliedro in senso stretto!). In generale le superfici compatte differiscono topologicamente tra loro proprio per il numero di buchi, che è anche esso un invariante topologico, detto genere di una superficie: un buco non si può eliminare, o creare, se non rompendo la superficie.

9 toro con due buchi toro con tre buchi Quindi la sfera ha genere g=0, la ciambella genere g=1, le figure sopra genere g=2 e g=3 rispettivamente. Si trova che le triangolarizzazione e i buchi non sono indipendenti tra loro, per le superfici vale infatti la relazione ove g è il genere. χ(s) =2 2g (per g=0, il caso di un un poliedro semplice, ritroviamo, ovviamente χ(s) =2!) Perché è importante la caratteristica di Eulero? Il calcolo di v-s+f viene presentato spesso come un semplice giochino nei testi di matematica di base, senza che venga menzionato il motivo per il quale i matematici lavorano su tali apparentemente bizzarri giochini. In realtà la caratteristica di Eulero, come abbiamo evidenziato, è un invariante topologico, è dunque importante proprio perché la sua proprietà di essere un invariante, cioè ci aiuta a distinguere oggetti topologicamente diversi tra loro. Si noti che la caratteristica di Eulero implica dei vincoli all esistenza, e dunque alla costruzione, di poliedri: non è possibile costruire un poliedro con delle bacchette che

10 ne costituiscano gli spigoli che non rispettino la formula, non è possibile, ad esempio, costruire un poliedro con tre spigoli, tre vertici e tre facce. Oltre ad aiutarci a distinguere oggetti diversi tra loro dal punto di vista topologico, la caratteristica di Eulero ci dà anche una altra importante informazione, che solo apparentemente è di carattere metrico. In effetti un importante teorema, detto teorema di Gauss-Bonnet, lega χ(s) con la curvatura di una superficie. L idea intuitiva di curvatura di un oggetto può essere matematizzata e definita rigorosamente, e anche misurata, punto per punto, su una figura geometrica. Ad esempio, in ogni suo punto, la curvatura della retta o del piano ha misura 0, quella di una circonferenza di raggio r, o di una sfera di raggio r vale 1/r, evidentemente, la curvatura che viene definita su una ellisse non sarà la stessa in ogni suo punto. Inoltre su una curva chiusa, e anche su una superficie chiusa, si può anche fare la somma di tutti i valori della curvatura, al variare del punto sulla curva, o sulla superficie. Tale valore prende il nome di curvatura totale. Poiché parliamo di misurare una curvatura, sarebbe intuitivo pensare che essa non sia un invariante topologico, giacché in topologia non siamo in grado di effettuare misure: due sfere - di gomma- sono topologicamente equivalenti, indipendentemente dalla loro misura, ovvero dal loro raggio. Ma il teorema di Gauss-Bonnet ci dice che la curvatura totale è in realtà un invariante topologico, essendo essa pari a χ(s), cosa piuttosto sorprendente ad un primo sguardo intuitivo. Questo spiega, ad esempio, perché se gonfiamo un palloncino, pigiamo in un punto col dito, in quel punto la curvatura aumenta mentre da qualche altra parte il palloncino si gonfia, aumentando in raggio e dunque diminuendo la sua curvatura (è un esempio ideale, siamo interessati solo alla forma del palloncino, non ci interessano valutazioni di carattere fisico circa la pressione all interno dello stesso!). Osserviamo anche che per una sfera, il teorema di Gauss-Bonnet ci dice che la curvatura totale è 4, cioè il rapporto tra la superficie 4 r 2 e il suo raggio al quadrato; mentre per un toro, che ha χ(s) nulla, la curvatura totale è nulla: non essendo un piano, significa che esso ha zone di curvatura positiva e zone di curvatura negativa, che si compensano. La spiegazione sta nel fatto che stiamo valutando una informazione di carattere globale, quale è la curvatura totale, definita dalla somma di valori della curvatura punto per punto, somma effettuata su tutti i punti della superficie, pur essendo la curvatura definita su un punto una informazione di carattere locale, e metrico.

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Eulero e i poliedri V + F - S = 2. è nota la relazione. V = numero dei vertici. F = numero delle facce. S = numero degli spigoli. perché?

Eulero e i poliedri V + F - S = 2. è nota la relazione. V = numero dei vertici. F = numero delle facce. S = numero degli spigoli. perché? 1 Eulero e i poliedri è nota la relazione V + F - S = 2 V = numero dei vertici F = numero delle facce S = numero degli spigoli perché? per quali poliedri? conseguenze? 2 Perché V + F - S = 2? Vari modi

Dettagli

Geometria solida 2. Veronica Gavagna

Geometria solida 2. Veronica Gavagna Geometria solida 2 Veronica Gavagna Lo sviluppo del parallelepipedo B Superficie laterale Area laterale e area totale Dato il parallelepipedo Area laterale A l = (a + b + a + b) c = P c b Area totale A

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è. DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro

Dettagli

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b)

Poliedri regolari. - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: Riferimenti bibliografici: (a) e (c) non (b) Riferimenti bibliografici: Poliedri regolari - Forme Maria Dedò Ed. Zanichelli - Le condizioni (a), (b) e (c) della definizione data non sono sovrabbondanti: (a) e (c) non (b) Definizione: Un poliedro

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la

Dettagli

Caratteristica di Eulero-Poincaré, curvatura di Gauss e tassellazione di superfici architettoniche.

Caratteristica di Eulero-Poincaré, curvatura di Gauss e tassellazione di superfici architettoniche. Caratteristica di Eulero-Poincaré, curvatura di Gauss e tassellazione di superfici architettoniche. Alberto Saracco # Molto spesso, nella progettazione di edifici, si decide di tassellare una superficie

Dettagli

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da

Dettagli

U. A. 1 GLI INSIEMI CONOSCENZE

U. A. 1 GLI INSIEMI CONOSCENZE U. A. 1 GLI INSIEMI Acquisire il significato dei termini,dei simboli e caratteristiche dell'insieme delle parti, dell'insieme differenza e complementare della partizione di un insieme e del prodotto cartesiano.

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................

Dettagli

Area geometrica: lo spazio e le figure

Area geometrica: lo spazio e le figure Area geometrica: lo spazio e le figure Traguardi di competenza: Conosce i principali elementi geometrici, li confronta e li analizza; Individua le strategie appropriate per risolvere problemi; Possiede

Dettagli

CONCETTI DI GEOMETRIA

CONCETTI DI GEOMETRIA LA GEOMETRIA EUCLIDEA SI BASA SU TRE CONCETTI INTUITIVI: IL PUNTO, LA RETTA, IL PIANO IL PUNTO E' UN ENTE GEOMETRICO PRIVO DI DIMENSIONI. LA RETTA E' UN INSIEME DI PUNTI ALLINEATI. IL PIANO E' UN INSIEME

Dettagli

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi

Dettagli

LA CARATTERISTICA DI EULERO

LA CARATTERISTICA DI EULERO LA CARATTERISTICA DI EULERO Triangolazioni Definizione. Una triangolazione di una superficie compatta S è data da una famiglia finita di suoi sottospazi chiusi {T 1,..., T n } che ricoprano S e da una

Dettagli

La matematica e la scienza nelle bolle

La matematica e la scienza nelle bolle MATEMATICA TRASPARENTE COME BOLLE DI SAPONE Un percorso didattico-sperimentale per le scuole secondarie di primo grado Relatore I. Tamanini Laureanda Silvia Dirupo La matematica e la scienza nelle bolle

Dettagli

PROGRAMMAZIONE DI MATEMATICA 2016/2017

PROGRAMMAZIONE DI MATEMATICA 2016/2017 PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA

COS È UN PRISMA. Due POLIGONI congruenti e paralleli, come basi. È UN POLIEDRO DELIMITATO DA PRISMI E PIRAMIDI COS È UN PRISMA È UN POLIEDRO DELIMITATO DA Due POLIGONI congruenti e paralleli, come basi. Tanti PARALLELOGRAMMI quanti sono i lati del poligono di base (come facce laterali). PRISMA

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

4.1 I triedri Def triedro vertice spigoli facce triedro

4.1 I triedri Def triedro vertice spigoli facce triedro 1 FIGURE NELLO SPAZIO Rette, piani, semispazi, di cui abbiamo visto le prime proprietà, delimitano le figure solide che si sviluppano nello spazio. Introduciamo gradualmente le figure solide e le loro

Dettagli

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel

Dettagli

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso

Dettagli

Appendice A. Temi d esame Topologia. 1. Anno accademico 2011/12.

Appendice A. Temi d esame Topologia. 1. Anno accademico 2011/12. Appendice A Temi d esame Topologia 1. Anno accademico 2011/12. 1.1. prima prova parziale. (a) Dare la definizione di omotopia e di nullomotopia per funzioni continue. (b) Dimostrare che due funzioni continue

Dettagli

A B C D E F G H I L M N O P Q R S T U V Z

A B C D E F G H I L M N O P Q R S T U V Z IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura)

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura) GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.

Dettagli

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.

Dettagli

Le cupole geodetiche

Le cupole geodetiche Le cupole geodetiche Una cupola geodetica é una struttura semisferica composta da aste che si intersecano in triangoli. Dal punto di vista matematico possiamo definire cupola geodetica un tipo di triangolazione

Dettagli

5 nona-decima sett. 3 maggio h; 7-12 maggio h

5 nona-decima sett. 3 maggio h; 7-12 maggio h ISTITUZIONI DI MATEMATICA per SFP, a.a.2011/12 secondo semestre, geometria 1 quinta settimana 2-5 aprile 2012, 4h Sfogliamo un libro di testo di una quarta primaria: intuizione o imprecisione? Prova di

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale.

COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. SCUOLA SECONDARIA DI 1 GRADO TOVINI CURRICOLO DI SCIENZE MATEMATICHE PER LA CLASSE PRIMA COMPETENZE U.D.A. ABILITA CONTENUTI _ Saper operare con il sistema di numerazione decimale. _Il concetto di insieme.

Dettagli

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE:

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: IL CUBO IL PARALLELEPIPEDO LA PIRAMIDE HANNO LA SUPERFICIE COSTITUITA DA POLIGONI (QUADRATO, RETTANGOLO, TRIANGOLO) E PRENDONO

Dettagli

Grafi e gruppo fondamentale di un grafo

Grafi e gruppo fondamentale di un grafo Grafi e gruppo fondamentale di un grafo Note per il corso di Geometria IV (relative alla parte dei 6 crediti) Milano, 2010-2011, M.Dedò Come trovare un grafo omotopicamente equivalente all'oggetto 3d raffigurato

Dettagli

Programmazione didattica annuale classi terze Disciplina Matematica

Programmazione didattica annuale classi terze Disciplina Matematica Primo quadrimestre L'alunno si muove con sicurezza nel calcolo algebrico, numerico e letterale NUMERI Utilizzare numeri relativi per descrivere reali Eseguire calcoli in ambito algebrico Eseguire confronti

Dettagli

Introduzione. Al termine della lezione sarai in grado di:

Introduzione. Al termine della lezione sarai in grado di: Anno 4 Prismi 1 Introduzione In questa lezione parleremo di un particolare poliedro detto prisma. Ne daremo una definizione generale e poi soffermeremo la nostra attenzione su alcuni prismi particolari.

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato

Dettagli

La formula di Eulero per i poliedri, un approccio laboratoriale

La formula di Eulero per i poliedri, un approccio laboratoriale 10 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE Firenze, 10 maggio 2015 La formula di Eulero per i poliedri, un approccio laboratoriale Ivan Casaglia Liceo Scientifico Guido Castelnuovo Firenze La formula

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra

Dettagli

Che cos'è la congettura di Poincaré (adesso teorema di Perelman)?

Che cos'è la congettura di Poincaré (adesso teorema di Perelman)? Che cos'è la congettura di Poincaré (adesso teorema di Perelman)? Conferenza di Facoltà, Luca Migliorini (Dipartimento di Matematica Università di Bologna) Tra il 2002 e il 2003 appaiono negli archivi

Dettagli

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante: ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Presenta: I Poligoni e loro proprietà

Presenta: I Poligoni e loro proprietà Presenta: I Poligoni e loro proprietà Scuola secondaria di I grado: classe prima Ricordiamo: ü Le figure geometriche fondamentali: rette, semirette, segmenti, angoli. ü Il concetto di lunghezza e di ampiezza

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

Torino, 10 Aprile 2015

Torino, 10 Aprile 2015 Torino, 10 Aprile 2015 Che cos è la matematica? SCIENZA costruzione di pensiero plurisistemica aperta modellizzazione relazioni e strutture ricorrenti Che cos è la matematica? La matematica offre gli strumenti

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA

Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA 2 CERCHIO SIMMETRIA GEOMETRIA SOLIDA Scuola Secondaria di 1 Grado Via MAFFUCCI-PAVONI Via Maffucci 60 Milano PROGETTO STRANIERI GEOMETRIA CERCHIO SIMMETRIA GEOMETRIA SOLIDA A cura di Maurizio Cesca PROGETTO STRANIERI SMS Maffucci-Pavoni -

Dettagli

December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov

December 16, solidi_generalità e prisma_sito scuola.notebook. da studiare solo sul file. La geometria solida. nov da studiare solo sul file La geometria solida nov 20 8.33 1 I SOLIDI SI SUDDIVIDONO IN DUE GRANDI CATEGORIE POLIEDRI SOLIDI ROTONDI nov 20 8.40 2 POLIEDRI Cos'è un poligono? E' una parte di spazio delimitata

Dettagli

COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali)

COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) Utilizzare con sicurezza le tecniche e le procedure nel calcolo aritmetico e algebrico, scritto e mentale, anche con

Dettagli

Bono Marco Spirali triangolari e quadrate 1. Spirali triangolari e quadrate

Bono Marco Spirali triangolari e quadrate 1. Spirali triangolari e quadrate Bono Marco Spirali triangolari e quadrate 1 Spirali triangolari e quadrate Spirali triangolari Proviamo a costruire delle spirali triangolari: per iniziare partiamo da un solo punto, come nella figura

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^

CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^ CURRICOLO DELLA SCUOLA SECONDARIA DI PRIMO GRADO DISCIPLINA: MATEMATICA CLASSE 1^ Nucleo fondante 1: IL NUMERO Argomento 1: Sistemi di numerazione Sa rappresentare graficamente numeri, ordinarli e confrontarli.

Dettagli

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica? Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza

Dettagli

piastrelle piastrelle piastrelle

piastrelle piastrelle piastrelle Perché le celle delle api hanno una struttura esagonale regolare? Università delle Liberetà 2008 09 appunti di marinella bassi 1 2 Il tessuto di molti vegetali e il pigmento della retina nei nostri occhi

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

COMPETENZA GEOMETRICA. Descrittori Classe I - Scuola Primaria.

COMPETENZA GEOMETRICA. Descrittori Classe I - Scuola Primaria. COMPETENZA GEOMETRICA Macroindicatori di conoscenze/abilità Esplorazione, descrizione e rappresentazione dello spazio Descrittori dei traguardi per lo sviluppo della competenza geometrica Uscita scuola

Dettagli

CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado

CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO SCUOLA secondaria di secondaria di primo grado classe 1^ TRAGUARDI per lo sviluppo L alunno si muove con sicurezza nel calcolo con i numeri Naturali

Dettagli

5. Spiegare perché la somma di due lati di un triangolo sferico è maggiore del terzo lato.

5. Spiegare perché la somma di due lati di un triangolo sferico è maggiore del terzo lato. ESERCIZI E PROBLEMI 1. Spiegare perché sulla sfera non ci sono rette parallele e mostrare che per due punti passa una ed una sola retta. Basta ricordare che retta significa circonferenza massima su S,

Dettagli

Programma di matematica classe I sez. E a.s

Programma di matematica classe I sez. E a.s Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune. Le figure solide Nozioni generali Un piano nello spazio può essere individuato da: 1. tre punti A, B e C non allineati. 2. una retta r e un punto A non appartenente ad essa. 3. due rette r e s incidenti.

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello

GEOMETRIA SOLIDA PIRAMIDE. Prof.ssa M. Rosa Casparriello GEOMETRIA SOLIDA PIRAMIDE Prof.ssa M. Rosa Casparriello Scuola media di Cervinara 2007/2008 DEFINIZIONE La piramide è un poliedro limitato da un poligono qualsiasi e da tanti triangoli quanti sono i lati

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la

Dettagli

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell

Dettagli

DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA

DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo I numeri naturali e il

Dettagli

LA GEOMETRIA ELLITTICA

LA GEOMETRIA ELLITTICA LA GEOMETIA ELLITTICA QUALCHE NOZIONE SULLA GEOMETIA DI IEMANN Consideriamo un modello della geometria di iemann, detto modello sulla sfera. Sia k una sfera arbitraria sullo spazio euclideo. Conveniamo

Dettagli

I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata.

I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. I POLIGONI COS È UN POLIGONO? DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. Un poligono è fatto di: - SEGMENTI detti LATI - ESTREMI DEI

Dettagli

Misura dei volumi dei solidi

Misura dei volumi dei solidi Geometria euclidea dello spazio Presentazione n. 8 Misura dei volumi dei solidi Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Richiamo di geometria piana: misura delle aree Per misurare

Dettagli

Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento a contesti reali.

Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento a contesti reali. SCUOLA SECONDARIA DI 1 GRADO PIANI DI STUDIO MATEMATICA ANNO SCOLASTICO 2010/2011 Competenze Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico, scritto e mentale, anche con riferimento

Dettagli

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE. Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti

Dettagli

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica - CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo

Dettagli

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3. 1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di

Dettagli

Rigidità di una similitudine

Rigidità di una similitudine Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 21 aprile 2009 DL Scienze della Formazione rimaria Istituzioni di matematiche 2 pagina 1 DL Scienze della Formazione rimaria Istituzioni di

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

Simmetrie nei poliedri

Simmetrie nei poliedri Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro

Dettagli

Uno spazio per lo spazio.

Uno spazio per lo spazio. Uno spazio per lo spazio. Il gruppo di matematica del Laboratorio Franco Conti ha lavorato quest anno nella direzione di ripensare l insegnamento della geometria dello spazio, unendo la riflessione teorica

Dettagli

CURRICOLO VERTICALIZZATO DI MATEMATICA

CURRICOLO VERTICALIZZATO DI MATEMATICA CURRICOLO VERTICALIZZATO DI MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA 1.GLI INSIEMI 1.1: Classificare oggetti e figure secondo un criterio dato. 1.2: Usare la negazione non. 1.3: Individuare sottoinsiemi.

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 3 Le Isometrie trasformazioni geometriche che lasciano invariate la forma e le dimensioni delle figure I movimenti Traslazioni Rotazioni Ribaltamenti Principali

Dettagli

istituto superiore g. terragni olgiate comasco

istituto superiore g. terragni olgiate comasco Disciplina 1 MATEMATICA Classe I A Indirizzo Liceo Scientifico Anno scolastico 2015-2016 Docente Cecilia Moschioni TESTI IN ADOZIONE Bergamini, Trifone, Barozzi, Matematica multimediale.blu vol.1, Zanichelli

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016

Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016 Geometria I- Diario delle lezioni L. Stoppino, Università dell Insubria, a.a. 2015/2016 Martedì 29 settembre (2 ore). Introduzione del corso. Definizione di spazio topologico. Primi esempi: 1) topologia

Dettagli

APPUNTI DI GEOMETRIA SOLIDA

APPUNTI DI GEOMETRIA SOLIDA APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti

Dettagli

SCUOLA PRIMARIA MATEMATICA (Classe 1ª)

SCUOLA PRIMARIA MATEMATICA (Classe 1ª) SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,

Dettagli

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo?

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Idea elementare: 1. fissare un quadratino come unità di misura 2. contare quante volte questo può essere riportato nella figura

Dettagli

Preparazione al compito di geometria (Semiretta, Retta, Angoli)

Preparazione al compito di geometria (Semiretta, Retta, Angoli) Preparazione al compito di geometria (Semiretta, Retta, Angoli) Semiretta Per definire una semiretta, prendiamo una retta ed un punto P su di essa: Tale punto dividerà la retta in due parti; ciascuna di

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi ESERCIZI DI GEOMETRIA 3 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi Esercizio 1. Sia (X, d) uno spazio

Dettagli