401 PREDICATI RICORSIVI PRIMITIVI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "401 PREDICATI RICORSIVI PRIMITIVI"

Transcript

1 401 PREDICATI RICORSIVI PRIMITIVI Corso di Informatica Teorica - modulo 2 Prof. Settimo Termini 1

2 Breve richiamo Un predicato su un insieme S è una funzione totale P su S tale che a S si ha: P(a) = VERO oppure P(a) = FALSO essendo VERO e FALSO una coppia di oggetti distinti chiamati valori di verità. Per comodità identifichiamo i valori di verità con i due numeri 1 e 0: VERO = 1 FALSO = 0 Un predicato è anche chiamato funzione a valori booleani in virtù del fatto che i due valori di verità formano una semplice algebra di Boole. 2

3 Breve richiamo I predicati su un insieme S sono di solito specificati da espressioni che divengono enunciati, o veri e falsi, quando le variabili nell'espressione sono rimpiazzati da simboli che designano elementi finali di S. E ESEMPIO x < 5 specifica il predicato P (x) = 1 se x =1, 2, 3, 4 0 altrimenti 3

4 Breve richiamo Dati due predicati P e Q su S esistono anche i predicati: P che è vero quando P è falso e viceversa. P & Q che è vero quando entrambi P e Q sono veri, falso in tutti gli altri casi. P Q che è vero quando almeno uno dei due predicati P e Q è vero e falso quando sono entrambi falsi. 4

5 Breve richiamo Possiamo definire delle operazioni sui valori di verità: P Q PQ P_Q P P

6 Connessione tra insiemi e predicati Dato un predicato P su S, esiste un corrispondente sottoinsieme R di S che è l'insieme di tutti gli elementi a di S per cui è P(a) = 1. R = {a 2 S P (a)} Viceversa dato un sottoinsieme R di S, l'espressione un predicato su S cioè il predicato P seguente: x 2 R permette di definire P (x) = 1 se x 2 R 0 se x 62 R 6

7 Quantificatori limitati e non Consideriamo predicati m-ari su N. Sia P(t, x1,..., xn) un tale predicato e consideriamo il predicato seguente: ( ) P (0,x 1,...,x n ) _ _ P (y, x 1,...,x n ) Il predicato (*) è vero nel caso in cui esiste almeno un valore t y per cui P(t, x1,..., xn) è vero. Scriviamo allora (*) come: (9t) appley P (t, x 1,...,x n ) Dove (9t) appley si chiama quantificatore esistenziale limitato. 7

8 Quantificatori limitati e non Analogamente (8t) appley P (t, x 1,...,x n ) () P (0,x 1,...,x n )& & P (y, x 1,...,x n ) Dove (8t) appley si chiama quantificatore universale limitato. Togliendo il limite y si ottengono ovviamente i ben noti quantificatori: (universale) (esistenziale) 8

9 Predicati ricorsivi primitivi (Ricordiamo quello che abbiamo appena detto e cioè che i predicati sono semplicemente funzioni totali che assumono solo i valori 0 e 1 identificati rispettivamente con Falso e Vero) Sia adesso C una classe PRC (chiusa in modo ricorsivo primitivo). P PROPOSIZIONE Se P e Q sono predicati che appartengono a C allora lo stesso vale per P, P Q, P & Q. P era stato definito come vero proprio quando P è falso e viceversa. Nella nostra lista di predicati ricorsivi primitivi esiste la 1 se x =0 (0) = 1 (x) = 0 se x 6= 0 definita da (t + 1) = 0 quindi P = α(p) C. 9

10 Continuiamo la nostra dimostrazione: PREDICATI RICORSIVI PRIMITIVI Abbiamo poi che P&Q = P Q e quindi ovviamente P&Q C. Infine la legge di De Morgan P Q= ( P & Q) assieme ai due risultati precedenti ci permette di concludere che P Q C. Ovviamente si ha che: Corollario: Se P e Q sono - in particolare - predicati ricorsivi primitivi allora lo sono anche P, P Q, P &Q. 10

11 Proposizione: Sia C una classe PRC. Le funzioni g, h ed il predicato P appartengono a C e sia: g(x1,...,x f(x 1,...,x n )= n ) se P (x 1,...,x n ) h(x 1,...,x n ) altrimenti allora f C. 11

12 Predicati ricorsivi primitivi Dimostrazione: ovvia. Segue dal fatto di potere scrivere f(x 1,...,x n )=g(x 1,...,x n ) P (x 1,...,x n )+h(x 1,...,x n ) (P (x 1,...,x n )). Notare la somiglianza tra la f e l enunciato if... then... else di alcuni linguaggi di programmazione. 12

13 Predicati ricorsivi primitivi Proposizione: Sia C una classe PRC. Se f(t, x 1,..., xn) appartiene a C allora vi appartiene anche la funzione: g(y, x 1,...,x n )= yx t=0 f(t, x 1,...,x n ) 13

14 Predicati ricorsivi primitivi Dimostrazione: Scriviamo g per vari valori di y (poniamo x al posto di x 1,..., xn) g(0,x)= g(1,x)= g(2,x)=. g(t +1,x)= in generale avremo che: f(0,x) f(0,x)+f(1,x) = g(0,x)+f(1,x) f(0,x)+f(1,x) {z } +f(2,x) = g(1,x)+f(1,x) g(t, x)+f(t +1,x) 14

15 Predicati ricorsivi primitivi Possiamo quindi scrivere le equazioni di ricorsione: g(0,x)=f(0,x) g(t +1,x)=g(t, x)+f(t +1,x) che ci dimostrano l appartenenza di g a C sotto l ipotesi che f C e grazie alla ricorsività primitiva di +. In modo analogo si può dimostrare la Proposizione: Sia C una classe PRC. Se f(t,x1,...,xn) C allora vi appartiene anche yy h(y, x 1,...,x n )= f(t, x 1,...,x n ) t=0 15

16 Predicati ricorsivi primitivi Dimostrazione: Basta esprimere h mediante le equazioni di ricorsione h(0,x1,...,x n )=f(0,x 1,...,x n ) h(t +1,x 1,...,x n )=h(t, x 1,...,x n ) f(0,x 1,...,x n ) e ricordare che il prodotto è ricorsivo primitivo. Come prima si ha infatti che: h(0,x)= f(0,x) h(1,x)= h(2,x)= e, in generale, h(t +1,x)= f(0,x) f(1,x) (= h(0,x) f(1,x) f(0,x) f(1,x) {z } f(2,x) = h(1,x) f(1,x) 16 h(t, x) f(t +1,x)

17 Predicati ricorsivi primitivi Proposizione: Se il predicato P(t, x 1,..., xn) appartiene ad una qualche classe PRC C, allora vi appartengono anche i predicati (8t) appley P (t, x 1,...,x n )e(9t) appley P (t, x 1,...,x n ) Dimostrazione: Consideriamo i due casi separatamente (8t) appley Ricordiamo come si esprime il quantificatore limitato (x 1,...,x n! x) (8t) appley P (t, x 1,...,x n ) () P (0,x)& P (1,x)& & P (y, x) sappiamo che si può scrivere come: yy che è P (t, x) t=0 P (0,x) P (1,x)... P (y, x) 17

18 Predicati ricorsivi primitivi Abbiamo che: " y # Y (8t) appley P (t, x) èvera () P (t, x) D altro canto, dalla proposizione precedentemente dimostrata sappiamo che yy P (t, x) èunelementodic se lo è P (t, x) t=0 ( t) y la dimostrazione di questo caso procede in maniera analoga. t=0 =1 C.V.D. 18

19 Predicati ricorsivi primitivi Abbiamo che: (9t) appley P (t, x 1,...,x n ) () P (0,x) _ P (1,x) _ _ P (y, x) () " y X Il primo termine a sinistra ricchiede l esistenza di almeno un valore di t y per il quale P(t,x) sia vera e questo corrisponde al fatto che la somma a destra sia 0. Ricordiamo ancora la proposizione precedente che ci assicurava l appartenenza a C di una Σ i cui addendi appartenevano alla classe e possiamo concludere che (9t) appley P (t, x) 2 C t=0 P (t, x) # 6= 0 19

20 Che uso possiamo fare di queste proposizioni? Possiamo usarle per dimostrare qualche proprietà che ci sembra interessante o che ci potrà servire in seguito (o entrambe le cose). Ad esempio per dimostrare che sono ricorsivi primitivi i predicati che seguono: - essere divisore di - essere numero primo 20

21 Che uso facciamo di queste proposizioni? Ad esempio li usiamo per dimostrare la ricorsività primitiva di: y x : y è un divisore di x Possiamo esprimere tale predicato come: e quindi concludere che y x è ricorsivo primitivo (sulla base della proposizione precedente) y x, (9t) applex (y t = x) Primo(x): x è primo se è maggiore di 1 e ammette come divisori solo 1 e se stesso Primo(x), x>1&(8t) apple x {t =1_ t = x_ (t x)} L espressione precedente ci permette di concludere che x è primo è un predicato ricorsivo primitivo. 21

22 Possiamo usare le proposizione in questione per fare altro? Se P (t.x 1,...,x n )appartieneadunaclassec PRC data, allora appartiene a C anche la funzione g(y, x 1,...,x n )= y X u=0 uy t=0 (P (t, x 1,...,x n )) Basta applicare due volte la proposizione precedente (una volta per la somma ed una per il prodotto) e ricordare che è r i c o r s i v a p r i m i t i v a. Chiediamoci cosa fa g. Ammettiamo che esista un valore di t apple y per cui il pred- 22

23 Ammettiamo che esista un valore di t apple y per cui il predicato P(t,x) siaveroesiat 0 il più piccolo di tali valori se ne esiste più di uno. Cioè ammettiamo che sia: P (t, x) =0pert<t 0 e P (t 0,x)=1 23

24 Poiché applicato ad un predicato inverte i valori di verità avremo che: uy 8 < 1seu<t 0 t=0 (P (t, x)) = : 0seu t 0 equindidiconseguenza g(y, x) = X 1=t 0 u<t 0 La funzione g(y, x) dàilpiùpiccolovaloreditperilquale P (t, x) èvero. 8 24

25 Usiamo ora la funzione g per definire la nuova funzione: min tappley P (t, x) = 8 < : g(y, x) se(8t) appley P (t, x) 0altrimenti min tappley, che si chiama minimalizzazione limitata, ci fornisce il più piccolo valore di t apple y per cui il suo predicato associato è vero, se tale valore esiste, altrimenti assume il valore 0. 25

26 Proposizione 3 Se P (t, x) appartiene ad una classe PRC C allora vi appartiene anche l operazione di minimalizzazione limitata min tappley P (t, x). Dimostrazione La definizione * ci suggerisce di usare la proposizione precedentemente dimostrata che abbiamo detto essere simile a if... then... else oltre alle proposizioni immediatamente precedenti che ci assicurano l appartenenza a C di g(y, x) e (8t) appley P (t, x). 26

27 (8t) appley P (t, x). PREDICATI RICORSIVI PRIMITIVI C Discutiamo adesso brevemente l equazione di minimalizzazione senza il limite: min y P (x 1,...,x n,y) indica il minimo valore di y per cui il predicato P è vero se un tale valore esiste. Se non c è nessun valore di y per cui P (x 1,...,x n,y) è vera allora min y P (x 1,...,x n,y) non è definita. 27

28 Osservazioni L applicazione dell operazione di minimalizzazione non limitata può generare una funzione che non è totale come mostra il semplice esempio della sottrazione x y =min z [y + z = x] che è indefinita per x<y. Si può dimostrare che esistono predicati ricorsivi primitivi P (x, y) talichemin y P (x, y) èunafunzionetotale che non è r i c o r s i v a p r i m i t i v a. 28

29 (DOMANDA: Possiamo pensare di sfruttare utilmente il risultato (negativo) precedente?) Aggiungiamo l operatore di minimalizzazione non limitata aquelliammessidallateoriadellefunzioniricorsiveprimitive. Sappiamo già: che si va fuori dalla classe delle ricorsive primitive che tale operatore è calcolabile in S. 29

30 (DOMANDA: Possiamo pensare di sfruttare utilmente il risultato (negativo) precedente?) Aggiungiamo l operatore di minimalizzazione non limitata aquelliammessidallateoriadellefunzioniricorsiveprimitive. Sappiamo già: che si va fuori dalla classe delle ricorsive primitive che tale operatore è calcolabile in S. Dimostreremo che: Tale classe (funzioni mu-ricorsive) coincide con quelle delle funzioni calcolabili in S, delle funzioni Turing-calcolabili, etc. 30

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Precorsi di matematica

Precorsi di matematica Precorsi di matematica Francesco Dinuzzo 12 settembre 2005 1 Insiemi Il concetto di base nella matematica moderna è l insieme. Un insieme è una collezione di elementi. Gli elementi di un insieme vengono

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare LEZIONE 30 30.1. Insiemi aperti e chiusi in R n. Nel corso di Analisi sono state introdotte alcune nozioni di topologia di R, come la nozione di aperto, di chiuso, di punto d accumulazione. Lo scopo di

Dettagli

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali:

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: Elementi di Algebra e Logica 2008. 8. Logica. 1. Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: (a) p ( q r); (b) p (q r); (c) (p q) ( p r); (d) (p q) ( p r); (e) (p

Dettagli

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R X Settimana 1 Elementi basilari della teoria degli anelli (I parte) Un anello (R, +, ) è un insieme non vuoto R dotato di due operazioni (binarie), denotate per semplicità con i simboli + e + : R R R,

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

LIMITI. 1. Definizione di limite.

LIMITI. 1. Definizione di limite. LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi

Dettagli

Richiami di logica matematica

Richiami di logica matematica Richiami di logica matematica Gli oggetti elementari dei discorsi matematici sono le proposizioni logiche = enunciati di cui si possa stabilire inequivocabilmente se sono veri o falsi. Sono proposizioni

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Linguaggi di programmazione - Principi e paradigmi 2/ed Maurizio Gabbrielli, Simone Martini Copyright The McGraw-Hill Companies srl

Linguaggi di programmazione - Principi e paradigmi 2/ed Maurizio Gabbrielli, Simone Martini Copyright The McGraw-Hill Companies srl Approfondimento 2.1 Non è questo il testo dove trattare esaurientemente queste tecniche semantiche. Ci accontenteremo di dare un semplice esempio delle tecniche basate sui sistemi di transizione per dare

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

Lezione 7. Relazione di coniugio. Equazione delle classi. { x} C( x) { } { }

Lezione 7. Relazione di coniugio. Equazione delle classi. { x} C( x) { } { } Lezione 7 Prerequisiti: Lezioni 2, 5. Centro di un gruppo. Struttura ciclica di una permutazione. Riferimenti ai testi: [H] Sezione 2.; [PC] Sezione 5. Relazione di coniugio. Equazione delle classi. Definizione

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 7 Semantica della Logica del Primo Ordine Interpretazioni Formalizzazione Un esempio informale di semantica Semantica dei termini Semantica delle formule Esempi A.

Dettagli

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine 1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine In questo tipo di giochi l arena è costituita da due grafi orientati G = (V, E), G = (V, E ). Lo scopo del I giocatore è di mostrare, in un numero

Dettagli

LOGICA MATEMATICA PER INFORMATICA

LOGICA MATEMATICA PER INFORMATICA LOGICA MATEMATICA PER INFORMATICA A.A. 12/13, DISPENSA N. 6 Sommario. Il Teorema di Compattezza e alcune sue applicazioni: assiomatizzabilità e non-assiomatizzabilità di proprietà di strutture, e modelli

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

G. Pareschi FUNZIONI BOOLEANE. 1. Funzioni booleane

G. Pareschi FUNZIONI BOOLEANE. 1. Funzioni booleane G. Pareschi FUNZIONI BOOLEANE 1. Funzioni booleane In questa sezione ci occuperemo principalmente delle funzioni booleane: data un algebra di Boole B finita o infinita), ed un numero naturale n, si considerano

Dettagli

Osservazioni sulle funzioni composte

Osservazioni sulle funzioni composte Osservazioni sulle funzioni composte ) 30 dicembre 2009 Scopo di questo articolo è di trattare alcuni problemi legati alla derivabilità delle funzioni composte nel caso di funzioni di R n in R m Non si

Dettagli

Matematica per le scienze sociali Elementi di base. Francesco Lagona

Matematica per le scienze sociali Elementi di base. Francesco Lagona Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

1 Principio di Induzione

1 Principio di Induzione 1 Principio di Induzione Per numeri naturali, nel linguaggio comune, si intendono i numeri interi non negativi 0, 1,, 3, Da un punto di vista insiemistico costruttivo, a partire dall esistenza dell insieme

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

L insieme dei numeri Relativi (Z)

L insieme dei numeri Relativi (Z) L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.

Dettagli

4.11 Massimi e minimi relativi per funzioni di più variabili

4.11 Massimi e minimi relativi per funzioni di più variabili 5. Determinare, al variare del parametro a R, la natura delle seguenti forme quadratiche: (i) Φ(x, y, z) = x 2 + 2axy + y 2 + 2axz + z 2, (ii) Φ(x, y, z, t) = 2x 2 + ay 2 z 2 t 2 + 2xz + 4yt + 2azt. 4.11

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

Il teorema di Lagrange e la formula di Taylor

Il teorema di Lagrange e la formula di Taylor Il teorema di Lagrange e la formula di Taylor Il teorema del valor medio di Lagrange, valido per funzioni reali di una variabile reale, si estende alle funzioni reali di più variabili. Come si vedrà, questo

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Algebra di Boole Algebra di Boole I circuiti logici sono componenti hardware che manipolano informazione binaria. I circuiti di base sono detti PORTE LOGICHE (logical gate). Allo

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti. INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Propedeutico di matematica Centro Multimediale Montiferru. Lezione 1. Gli insiemi

Propedeutico di matematica Centro Multimediale Montiferru. Lezione 1. Gli insiemi Lezione 1 Gli insiemi Definizione: Un insieme è una collezione di oggetti aventi certe caratteristiche in comune. Gli oggetti si definiscono elementi dell insieme. Esempi: Insieme delle lettere dell alfabeto,

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole e Circuiti Logici Prof. Christian Esposito Corso di Laurea in Ingegneria Meccanica e Gestionale (Classe I) A.A. 2016/17 Algebra di Boole e Circuiti Logici L Algebra

Dettagli

ANCORA SULLE FUNZIONI RICORSIVE PRIMITIVE. Corso di Informatica Teorica - modulo 2 Prof. Settimo Termini

ANCORA SULLE FUNZIONI RICORSIVE PRIMITIVE. Corso di Informatica Teorica - modulo 2 Prof. Settimo Termini ANCORA SULLE FUNZIONI RICORSIVE PRIMITIVE Corso di Informatica Teorica - modulo 2 Prof. Settimo Termini 1 Commenti sulla funzione produttività Prima di tornare alle funzioni ricorsive primitive, ricordiamo

Dettagli

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4

ESERCIZI PROPOSTI. Capitolo 5 MCD(15,5) = 15 5 =3. un unico sottogruppo di ordine d, cioè x 20/d = C d. , x 20/10 = x 2 = C 10. , x 20/4 = x 5 = C 4 ESERCIZI PROPOSTI Capitolo 5 511 Determinare il periodo dell elemento x 320 del gruppo ciclico C 15 = x x 15 =1 Indicare tutti i generatori del sottogruppo x 320 Soluzione Dividiamo 320 per 15 Si ha 320

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Informatica e Bioinformatica: AND, OR, NOT

Informatica e Bioinformatica: AND, OR, NOT 31 marzo 2014 Algebra di Boole L algebra di Boole opera su due valori di verità, VERO e FALSO, mutuamente esclusivi. Nell algebra di Boole è possibile definire funzioni (che chiameremo operazioni logiche)

Dettagli

Informatica Teorica. Sezione Cremona + Como. Appello del 20 Luglio 2004

Informatica Teorica. Sezione Cremona + Como. Appello del 20 Luglio 2004 Informatica Teorica Sezione Cremona + Como Appello del 20 Luglio 2004 Coloro che recuperano la I prova risolvano gli esercizi e 2 tra quelli indicati qui sotto entro un ora. Coloro che recuperano la II

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

associate ai corrispondenti valori assunti dall uscita.

associate ai corrispondenti valori assunti dall uscita. 1. Definizione di variabile logica. Una Variabile Logica è una variabile che può assumere solo due valori: 1 True (vero, identificato con 1) False (falso, identificato con 0) Le variabili logiche si prestano

Dettagli

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita.

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Intenderemo per PROPOSIZIONE (o ENUNCIATO) una qualunque

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 6 Logica del Primo Ordine Motivazioni Sintassi Interpretazioni Formalizzazione A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a. 2015/16 pag.

Dettagli

Codice Gray. (versione Marzo 2007)

Codice Gray. (versione Marzo 2007) Codice Gray (versione Marzo 27) Data una formula booleana con n variabili, per costruire una tavola di verità per questa formula è necessario generare tutte le combinazioni di valori per le n variabili.

Dettagli

DEFINIZIONE DI INSIEME

DEFINIZIONE DI INSIEME ELEMENTI DI TEORIA DEGLI INSIEMI PROF.SSA ROSSELLA PISCOPO Indice 1 DEFINIZIONE DI INSIEME ------------------------------------------------------------------------------------------------ 3 2 METODI DI

Dettagli

ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1

ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1 ESERCIZI DI ANALISI MATEMATICA 1 FOGLIO 1 Logica e connettivi logici Esercizio 0.1. Si costruiscano le tabelle di verità delle seguenti espressioni booleane; cioè, al variare dei valori di verit delle

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Il teorema di Schwarz

Il teorema di Schwarz Il teorema di Schwarz 1. Quante sono le derivate parziali seconde, terze,...? Il procedimento di derivazione parziali applicato ad una funzione f(x, y) di due variabili raddoppia il numero di derivate

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Circuiti digitali. Operazioni Logiche: Algebra di Boole. Esempio di circuito. Porte Logiche. Fondamenti di Informatica A Ingegneria Gestionale

Circuiti digitali. Operazioni Logiche: Algebra di Boole. Esempio di circuito. Porte Logiche. Fondamenti di Informatica A Ingegneria Gestionale Operazioni Logiche: lgebra di oole Fondamenti di Informatica Ingegneria Gestionale Università degli Studi di rescia Docente: Prof. lfonso Gerevini Circuiti digitali Il calcolatore può essere visto come

Dettagli

1 Soluzione degli esercizi del capitolo 4

1 Soluzione degli esercizi del capitolo 4 "Introduzione alla matematica discreta /ed" - M. G. Bianchi, A. Gillio degli esercizi del capitolo 4 Esercizio 4. (pag. 47) Sia X =,,3,4} e sia R la relazione su X così definita: R = (,),(,),(,),(,),(,4),(3,3),(4,)}.

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Richiami di Algebra di Commutazione

Richiami di Algebra di Commutazione LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 6-7 Richiami di Algebra di Commutazione In questa

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO.

CALCOLO LETTERALE I MONOMI. Il primo tipo di oggetto che incontriamo nel calcolo letterale è il MONOMIO. CALCOLO LETTERALE Il calcolo letterale è importante perchè ci consente di realizzare un meccanismo di astrazione fondamentale per l'apprendimento in generale. Scrivere, ad esempio, che l'area di un rettangolo

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

1 Il Teorema della funzione implicita o del Dini

1 Il Teorema della funzione implicita o del Dini 1 Il Teorema della funzione implicita o del Dini Ricordiamo che dato un punto x R n, un aperto A R n che contiene x si dice intorno (aperto) di x. Teorema 1.1. (I Teorema del Dini) Sia f : A (aperto) R

Dettagli

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15 Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile 2012- pag. 15 Casi Possibili B= La lancetta indica il Blu V= La lancetta indica il Verde

Dettagli

IL LINGUAGGIO S. Corso di Informatica Teorica Prof. Settimo Termini

IL LINGUAGGIO S. Corso di Informatica Teorica Prof. Settimo Termini Corso di Informatica Teorica Prof. Settimo Termini 1 Il linguaggio di programmazione S di Davis/Weyuker Descrizione informale I simboli X1 X2... sono chiamati variabili d ingresso I simboli Z1 Z2... sono

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Università degli Studi di Udine. 1 Automi e Linguaggi. Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni

Università degli Studi di Udine. 1 Automi e Linguaggi. Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni Università degli Studi di Udine Prova Scritta di Fondamenti dell Informatica II Alcune Soluzioni 1 Automi e Linguaggi 1. Sia dato p N, p > 0 dimostri che il linguaggio è regolare. L p = { a 0 a 1... a

Dettagli

1.2 MONOMI E OPERAZIONI CON I MONOMI

1.2 MONOMI E OPERAZIONI CON I MONOMI Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in

Dettagli

Laboratorio di Programmazione Laurea in Ingegneria Civile e Ambientale

Laboratorio di Programmazione Laurea in Ingegneria Civile e Ambientale Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Laboratorio di Programmazione Laurea in Ingegneria Civile e Ambientale Algebra di Boole Stefano Cagnoni Algebra di Boole L algebra

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Operatori di relazione

Operatori di relazione Condizioni Negli algoritmi compaiono passi decisionali che contengono una proposizione (o predicato) dal cui valore di verità dipende la sequenza dinamica Chiamiamo condizioni tali proposizioni Nei casi

Dettagli

Algebra di Commutazione

Algebra di Commutazione Algebra di Commutazione Maurizio Palesi Maurizio Palesi 1 Algebra Booleana - Introduzione Per descrivere i dispositivi digitali è necessario avere: Un modello che permette di rappresentare insiemi di numeri

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli