X Vincita (in euro) Tabella 1: Vincite

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "X Vincita (in euro) Tabella 1: Vincite"

Transcript

1 Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 9 Giugno 1 CdS in STAD, SIGAD - docente: G. Sanfilippo Motivare dettagliatamente le risposte su fogli allegati e scrivere le risposte negli appositi spazi. Tempo a disposizione: due ore e trenta minuti. Non è consentito l utilizzo di libri o appunti. Ogni esercizio svolto correttamente vale 6 punti. Per avere il punteggio massimo occorre risolvere correttamente 5 quesiti. 1. Dati 4 eventi A, B, C, D con A B C e C D =, P (A) = P (A c B) = P (B c C) = p e P (D) =.1 calcolare l insieme I dei valori coerenti di p. Considerato inoltre il numero aleatorio X = A B + C D, calcolare il massimo M della previsione di X. Infine posto p =.1 calcolare la funzione di ripartizione F (x) di X. I = [ ] M = F (x) =. Un giocatore intende partecipare al seguente gioco. Si estraggono (senza restituzione) numeri da un urna contenente 9 numeri distinti. Il giocatore gioca 1 numeri pagando 1 euro. Indicando con X il numero dei numeri estratti fra quelli giocati, calcolare la distribuzione di probabilità di X. Le vincite si hanno solo nei casi illustrati nella Tabella 1. X Vincita (in euro) Tabella 1: Vincite Indicando con V la vincita aleatoria, calcolare il codominio C V dei possibili valori di V. Inoltre, per ogni valore v h C V, calcolare la probabilità p h dell evento (V = v h ). Infine, stabilire se il gioco è equo. X C V = { } p h = { } Gioco equo? Si No 3. Da un urna, contenente 1 pallina bianca e 3 nere, si effettuano 3 estrazioni senza restituzione. Definiti gli eventi E i = l i-ma pallina estratta è bianca, i = 1,, 3, si ponga X = E 1 + E, Y = E + E 3. Calcolare il valore atteso di X e la covarianza di X, Y. Inoltre, stabilire, motivando la risposta, se X, Y sono stocasticamente indipendenti. (nota: indicare P (X = x, Y = y) con p xy ). E(X) = Cov(X, Y ) = Indipendenza? Si, No 4. Siano dati 1 numeri aleatori X 1, X,..., X 1 indipendenti e con distribuzione uniforme in [ 1, 1 ]. Posto S = X 1 + X X 1, calcolarne la funzione caratteristica ψ S (t), il valore atteso e la varianza. Infine calcolare, mediante un opportuna approssimazione, il valore s tale che P ( S s ) =.95. ψ S (t) = E(S) = var(s) = s = 1

2 5. Un sistema Σ è costituito da due dispositivi in parallelo D 1 e D, che entrano in funzione contemporaneamente. Siano X e Y i tempi aleatori (in giorni) di durata dei due dispositivi con densità congiunta pari a f(x, y) = 6e 3x y per x >, y > e con f(x, y) = altrove. Calcolare la funzione di sopravvivenza S X (x) del tempo X. Inoltre, per ogni z >, calcolare la funzione di rischio h Z (z) del tempo aleatorio Z di durata del sistema Σ. Infine, calcolare la probabilità α che il dispositivo D 1 si guasti prima del dispositivo D. { S X (x) = h Z (z) = α =

3 Compito del 9 Giugno 1 Soluzione. 1. Dati 4 eventi A, B, C, D con A B C e C D =, P (A) = P (A c B) = P (B c C) = p e P (D) =.1 calcolare l insieme I dei valori coerenti di p. Considerato inoltre il numero aleatorio X = A B + C D, calcolare il massimo M della previsione di X. Infine posto p =.1 calcolare la funzione di ripartizione F (x) di X. I = [ ] M = F (x) = Ω C D A B C 4. C 3 C. C 1.. C 5 Si hanno i seguenti costituenti Figura 1: Costituenti. C 1 = A = ABCD c, C = A c B = A c BCD c, C 3 = B c C = A c B c CD c, C 4 = D = A c B c C c D, C 5 = C c D c = A c B c C c D c. L assegnazione P (A) = P (A c B) = P (B c C) = p, P (D) =.1 è coerente se e solo se il seguente sistema, nelle incognite x 1, x,..., x 5, è risolubile. (S) x 1 = p x = p x 3 = p x 4 =.1 x 1 + x + x 3 + x 4 + x 5 = 1 x i, i = 1,,..., 5 x 1 = p x = p x 3 = p x 4 =.4 x 5 =.9 3p x i, i = 1,,..., 5 Osserviamo che il sistema (S) è risolubile se e solo se.9 3p e p. Pertanto l intervallo dei valori coerenti di p è dato da I = [,.3]. Poichè E(X) = E( A B + C D ) = p p + 3p.1 = p.1, per p =.3 si ottiene il massimo valore di E(X), ovvero M = max p I E(X) =.5. Infine, si ha C 1 = A = ABCD c, X = 1, C = A c B = A c BCD c, X =, C 3 = B c C = A c B c CD c, X = 1, C 4 = D = A c B c C c D, X = 1, C 5 = C c D c = A c B c C c D c X =, 3

4 quindi X { 1,, 1}. Posto p =.1, si ha P (X = 1) = P (C 4 ) =.1, P (X = ) = P (C C 5 ) = p +.9 3p =.9 p =.9. =.7, P (X = 1) = P (C 1 C 3 ) = p =.. Pertanto, x < 1,.1, 1 x <, F (x) =.8, x < 1, 1, x 1.. Un giocatore intende partecipare al seguente gioco. Si estraggono (senza restituzione) numeri da un urna contenente 9 numeri distinti. Il giocatore gioca 1 numeri pagando 1 euro. Indicando con X il numero dei numeri estratti fra quelli giocati, calcolare la distribuzione di probabilità di X. Le vincite si hanno solo nei casi illustrati nella Tabella 1. X Vincita (in euro) Tabella : Vincite Indicando con V la vincita aleatoria, calcolare il codominio C V dei possibili valori di V. Inoltre, per ogni valore v h C V, calcolare la probabilità p h dell evento (V = v h ). Infine, stabilire se il gioco è equo. X C V = { } p h = { } Gioco equo? Si No Il numero aleatorio X che conta i numeri giocati vincenti, ha una distribuzione H(9,, 1 9 ). Pertanto ( 1 )( 8 ) h h P (X = h) = ), h =,...,. Sia V la vincita aleatoria, si ha ( 9 con V = X = + 5 X = X = 6, V {,, 5, 1}, ) ( 9 ) 15) ( 9 ) 14) ( 9 ) P (V = ) = P (X = ) = (1 )( 8 P (V = 5) = P (X = 5) = (1 5 )( 8 P (V = 1) = P (X = 6) = (1 6 )( 8 P (V = ) ,..693,.38,.6, Poichè la previsione di V è data da E(V ) = , si ha E(G) = E(V 1) = E(V ) Pertanto il gioco non è equo. 4

5 3. Da un urna, contenente 1 pallina bianca e 3 nere, si effettuano 3 estrazioni senza restituzione. Definiti gli eventi E i = l i-ma pallina estratta è bianca, i = 1,, 3, si ponga X = E 1 + E, Y = E + E 3. Calcolare il valore atteso di X e la covarianza di X, Y. Inoltre, stabilire, motivando la risposta, se X, Y sono stocasticamente indipendenti. (nota: indicare P (X = x, Y = y) con p xy ). Si ha E(X) = Cov(X, Y ) = Indipendenza? Si, No X {, 1}, Y {, 1}, (X, Y ) {(, ), (1, ), (, 1), (1, 1)}, XY {, 1}, con P (X = ) = P (E1 cec ) = = 1 = P (X = 1), e con P (Y = ) = P (EE c 3) c = P (E 1 EE c 3) c + P (E1E c E c 3) c = = 1 = P (Y = 1) ; p = P (E c 1E c E c 3) = 3 4 = 1 4, p 1 = P (E 1 E c E c 3) = = 1 4, p 1 = P (E c 1E c E 3 ) = 3 4 = 1 4, p 11 = P (E c 1E E c 3) = = 1 4 ; P (XY = ) = p + p 1 + p 1 = 3 4, P (XY = 1) = p 11 = 1 4. Pertanto E(X) = = 1 3 = E(Y ) ; E(XY ) = = 1 4 ; quindi: Cov(X, Y ) = E(XY ) E(X)E(Y ) = =. 4. Siano dati 1 numeri aleatori X 1, X,..., X 1 indipendenti e con distribuzione uniforme in [ 1, 1 ]. Posto S = X 1 + X X 1, calcolarne la funzione caratteristica ψ S (t), il valore atteso e la varianza. Infine calcolare, mediante un opportuna approssimazione, il valore s tale che P ( S s ) =.95. ψ S (t) = E(S) = var(s) = s = La funzione caratteristica di X i, per i = 1,..., 1, è data da quindi ψ i (t) = ψ i (t) = { 1 1 e itx dx, e it 1 e it 1 it, t, 1, t =. Poichè X 1, X,..., X 1 sono stocasticamente indipendenti, si ha [ ] 1 ψ S (t) = [ψ i (t)] 1 e it 1 e it 1 = it, t, 1, t =. Osserviamo che, per i = 1,..., 1, si ottiene Poniamo µ = E(X i ) = e σ = var(x i ) = 1 1. Si ha E(X i ) =, var(x i ) = 1 1. E(S) = E(X 1 ) + E(X ) E(X 1 ) = 1µ = 5

6 e var(s) = var(x 1 ) + var(x ) var(x 1 ) = 1σ = 1 1. Per il Teorema Centrale del Limite si ha che la funzione di ripartizione del numero aleatorio S 1 standardizzato, ovvero di S 1µ 1σ = S 1 1 numero aleatorio Z con distribuzione normale standard. Pertanto, può essere approssimata mediante la funzione di ripartizione di un P ( S s ) = P ( s S s ) = P ( s 1 1 S 1 1 P ( s 1 1 Z s 1 1 ) Poichè il valore z > tale che P ( z Z z ) =.95 è z 1.96 si ha 1 1 s s s 1 1 ) 5. Un sistema Σ è costituito da due dispositivi in parallelo D 1 e D, che entrano in funzione contemporaneamente. Siano X e Y i tempi aleatori (in giorni) di durata dei due dispositivi con densità congiunta pari a f(x, y) = 6e 3x y per x >, y > e con f(x, y) = altrove. Calcolare la funzione di sopravvivenza S X (x) del tempo X. Inoltre, per ogni z >, calcolare la funzione di rischio h Z (z) del tempo aleatorio Z di durata del sistema Σ. Infine, calcolare la probabilità α che il dispositivo D 1 si guasti prima del dispositivo D. { S X (x) = h Z (z) = α = Si può facilmente verificare che i numeri aleatori X, Y sono stocasticamente indipendenti con distribuzione esponenziale rispettivamente di parametri λ 1 = 3, λ =. Infatti, calcoliamo la densità f X (x) di X. Per x si ha mentre per x > si ha f X (x) = f X (x) = f(x, y)dy = Calcoliamo la densità f Y (y) di Y. Per y si ha mentre per y > si ha f Y (y) = f Y (y) = f(x, y)dx = f(x, y)dy = dy =, [ ] + 6e 3x y dy = 6e 3x e y = 3e 3x. f(x, y)dx = dx =, [ ] + 6e 3x y dx = 6e y e 3x = e y. 3 Osservando che f X (x)f Y (y) = f(x, y) per ogni (x, y) R si ha che i numeri aleatori X, Y sono stocasticamente indipendenti. Calcoliamo la funzione di sopravvivenza S X (x) = P (X > x) = 1 F X (x) di X. Si ha { 1, x S X (x) = e 3x, x >. 6

7 Per quanto riguarda Y si ha S Y (x) = { 1, y e y, y >. Osserviamo che Z = max{x, Y } è il tempo aleatorio di durata del sistema S. Ricordando che X, Y sono stocasticamente indipendenti, per z >, la funzione di sopravvivenza di Z è data da S Z (z) = P (Z > z) = P (max{x, Y } > z) = P (X > z Y > z) = = P (X > z) + P (Y > z) P (X > z)p (Y > z) = e 3z + e z e 5z, e la funzione densità di Z data da f Z (z) = S (z) = 3e 3z + e z 5e 5z. Quindi, per z >, si ha h Z (z) = f Z(z) f Z (z) = 3e 3z + e z 5e 5z e 3z + e z e 5z. Infine, la probabilità α che il dispositivo D 1 si guasti prima di D è data da α = P (X < Y ) = x 6e 3x y dxdy = [ + 6e 3x = 3e 5x dx = 3 [ e 5x 5 ] + ] + e y x = 3 5 = E(X ) E(X 1 )+E(X ). dy = 7

CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6.

CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6. Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 4 Giugno 5 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5, Motivare dettagliatamente le risposte su fogli allegati e

Dettagli

CALCOLO DELLE PROBABILITA - 14 Gennaio 2015 CdL in STAD, SIGAD

CALCOLO DELLE PROBABILITA - 14 Gennaio 2015 CdL in STAD, SIGAD Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 4 Gennaio 5 CdL in STAD, SIGAD Motivare dettagliatamente le risposte su fogli

Dettagli

CALCOLO DELLE PROBABILITA - 17 Febbraio 2014 CdL in STAD, SIGAD,

CALCOLO DELLE PROBABILITA - 17 Febbraio 2014 CdL in STAD, SIGAD, Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 7 Febbraio 4 CdL in STAD, SIGAD, Motivare dettagliatamente le risposte su fogli

Dettagli

0 z < z < 2. 0 z < z 3

0 z < z < 2. 0 z < z 3 CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio

Dettagli

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO CALCOLO DELLE PROBABILITÀ - gennaio 00 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati Nuovo Ordinamento esercizi -4. Vecchio Ordinamento esercizi -6..

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Nome e cognome: By Giuseppe Sanfilippo

Nome e cognome: By Giuseppe Sanfilippo Nome e cognome: Matr: CALCOLO DELLE PROBABILITA cds in Economia e Finanza 1 Gennaio 005 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati Tempo a disposizione:

Dettagli

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati

CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati CALCOLO DELLE PROBABILITÀ - 9 giugno 1998 1. Dati gli eventi A,B,C, ognuno dei quali implica il successivo, e tali che P (A) è metà della probabilità di B, che a sua volta ha probabilità metà di quella

Dettagli

Calcolo delle Probabilità Esercizi

Calcolo delle Probabilità Esercizi Calcolo delle Probabilità Esercizi A.A 00-006 Costituenti. Siano dati eventi A, B, C tali che A B = Φ, A B C, determinare i costituenti. C C C C C C C [ AB C, A BC, A B C, A B C ]. Siano dati eventi A,

Dettagli

< x F Y (y) = 3. < x 2. 0 altrove

< x F Y (y) = 3. < x 2. 0 altrove CALCOLO DELLE PROBABILITÀ - 11 gennaio 001 Scrivere (o inserire in un cerchietto quelle corrette) le risposte negli appositi spazi 1 o Modulo: nn.1 4 Corso intero: nn.1 6 1. Siano dati gli eventi E 1,

Dettagli

b = 1 2σ 3. La lunghezza di una barra è un numero aleatorio X con densità della forma 0, x 0, 0 < x 1 a = 1 F (x) = 2 2x 1 x2

b = 1 2σ 3. La lunghezza di una barra è un numero aleatorio X con densità della forma 0, x 0, 0 < x 1 a = 1 F (x) = 2 2x 1 x2 CALCOLO DELLE PROBABILITÀ E STATISTICA - 0 gennaio 2002 Informatica (N.O.) (Canali 4) esercizi -4 Vecchio Ordinamento esercizi -6. Da un lotto contenente 4 pezzi buoni e 2 difettosi si estraggono senza

Dettagli

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/3/ Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio. E la notte di San Lorenzo, Alessandra decide di andare a vedere le stelle cadenti. Osserverà

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017 Corso di Laurea in Ingegneria Informatica e Automatica (M-Z Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 6/02/2017 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gioco del

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 8/04/2016

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 8/04/2016 Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 8/4/26 NOME: COGNOME: MATRICOLA: Esercizio Si supponga di avere

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità.

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità. Quella che segue e la versione compatta delle slides usate a lezioni. NON sono appunti. Come testo di riferimento si può leggere Elementi di calcolo delle probabilità e statistica Rita Giuliano. Ed ETS

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere

Dettagli

CAPITOLO 9. Vettori Aleatori

CAPITOLO 9. Vettori Aleatori CAPITOLO 9 Vettori Aleatori 9 9 Vettori Aleatori 3 9 Vettori Aleatori In molti esperimenti aleatori, indicando con Ω l insieme dei possibili risultati, al generico risultato dell esperimento, ω Ω, sono

Dettagli

TEST n La funzione di ripartizione di una variabile aleatoria:

TEST n La funzione di ripartizione di una variabile aleatoria: TEST n. 1 1. Un esperimento consiste nell estrarre successivamente, con reimmissione nel mazzo, due carte da un mazzo di 52 carte. Individuare la probabilità di estrarre due assi. A 0.0059 B 0.0044 C 0.0045

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2010/11

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2010/11 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 00/ Prova scritta del /0/0 Esercizio Due variabili aleatorie indipendenti, X e Y, verificano la relazione X Y. ) Si provi che F Y (x) F X (x) per ogni numero

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Estrazioni senza restituzione da un urna di composizione incognita. P(E i)=

Estrazioni senza restituzione da un urna di composizione incognita. P(E i)= Estrazioni senza restituzione da un urna di composizione incognita. Consideriamo n estrazioni senza restituzione da un urna contenente N palline, di cui r sono bianche, con r incognito. Introdotta la partizione

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

Probabilità e Vincite (Perdite) medie al Lotto

Probabilità e Vincite (Perdite) medie al Lotto Probabilità e Vincite (Perdite medie al Lotto Giuseppe Sanfilippo Lotto Le giocate Ambo, Terna, Quaterna e Cinquina, sono da intendersi secche. Si ha Num. di palline presenti nell urna N = 90 Num. di estrazioni

Dettagli

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea triennale in Matematica I prova scritta sessione estiva a.a. 2008/09. Due roulette regolari vengono azionate più volte; sia T il numero di volte che occorre azionare la prima roulette

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10 Anno accademico 2009/10 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Prova di giovedi febbraio 2005 (tempo a disposizione: 3 ore). consegna compiti e inizio orale Lunedì

Dettagli

Compiti tematici capp. 5,6

Compiti tematici capp. 5,6 Compiti tematici capp. 5,6 a cura di Giovanni M. Marchetti 2016 ver. 0.6 Indice Esercizi dai compiti a casa (HW..................................... 8 1. Se X e Y sono due variabili casuali independenti,

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

Prova di recupero di Probabilità e Statistica - A * 21/04/2006

Prova di recupero di Probabilità e Statistica - A * 21/04/2006 Prova di recupero di Probabilità e Statistica - A * /04/006 (NB: saranno prese in considerazione solo le risposte adeguatamente motivate) tempo di lavoro: Due ore. Per conseguire la patente di guida, un

Dettagli

Calcolo delle Probabilità A.A. 09/10 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 09/10 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 09/10 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente G. Sanfilippo http://www.unipa.it/~sanfilippo sanfilippo@unipa.it 20 maggio

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

Calcolo delle Probabilità Esercizi

Calcolo delle Probabilità Esercizi Calcolo delle Probabilità Esercizi Eventi e loro rappresentazione. Un urna contiene quattro palline bianche e sei nere. Da essa vengono estratte senza restituzione tre palline. Rappresentare su un diagramma

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 P.Baldi appello, 7 giugno 200 Corso di Laurea in Matematica Esercizio Siano X, Y v.a. indipendenti di legge Ŵ(2, λ). Calcolare densità e la media

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Il valore atteso di una v.a. (discreta)

Il valore atteso di una v.a. (discreta) di una v.a. (discreta) Introduciamo un nuovo concetto. DEFINIZIONE DI VALORE ATTESO DI UNA V.A. DISCRETA Sia X : Ω R una v.a. discreta avente come immagine in R l insieme V. di X è il numero reale E(X)

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

LE VARIABILI CASUALI A 1, A 2.,..., A k., p 2.,..., p k. generati da una specifica prova sono necessari ed incompatibili:

LE VARIABILI CASUALI A 1, A 2.,..., A k., p 2.,..., p k. generati da una specifica prova sono necessari ed incompatibili: LE VARIABILI CASUALI Introduzione Data prova, ad essa risultano associati i k eventi A, A,..., A k con le relative probabilità p, p,..., p k. I k eventi A i generati da una specifica prova sono necessari

Dettagli

Esercizi su leggi condizionali e aspettazione condizionale

Esercizi su leggi condizionali e aspettazione condizionale Esercizi su leggi condizionali e aspettazione condizionale. Siano X, Y, Z v.a. a valori in uno spazio misurabile (E, E) e tali che le coppie (X, Y ) e (Z, Y ) abbiano la stessa legge (in particolare anche

Dettagli

Variabili aleatorie discrete

Variabili aleatorie discrete Capitolo 3 Variabili aleatorie discrete Esercizio 60 In una procedura di controllo di produzione, n processori prodotti da un processo industriale vengono sottoposti a controllo. Si assuma che ogni pezzo,

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Università di Venezia Esame di Statistica A-Di Prof. M. Romanazzi 22 Gennaio 2016 Cognome e Nome..................................... N. Matricola.......... Valutazione Il punteggio massimo teorico di

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

Esercizi su variabili discrete: binomiali e ipergeometriche

Esercizi su variabili discrete: binomiali e ipergeometriche CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su variabili discrete: binomiali e ipergeometriche Es1 Due squadre di rugby si sfidano giocando fra loro varie partite La squadra che vince 4 partite

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Processi stocastici A.A Corso di laurea Magistrale in Statistica Univ. degli Studi di Palermo

Processi stocastici A.A Corso di laurea Magistrale in Statistica Univ. degli Studi di Palermo Processi stocastici A.A. 09 0 Corso di laurea Magistrale in Statistica Univ. degli Studi di Palermo G. Sanfilippo 20 maggio 200 Registro delle lezioni. Lezione del 3 Marzo 200, 8-, ore complessive 3 Richiami

Dettagli

1 se si verifica E 0 se non si verifica E. S se si verifica E 0 altrimenti.

1 se si verifica E 0 se non si verifica E. S se si verifica E 0 altrimenti. Probabilità Soggettiva Definizione 3 Dato un evento E, la probabilità P (E) =p dell evento E, secondo un dato individuo in un certo stato di informazione, è la misura numerica (coerente) del suo grado

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/2/215 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di

Dettagli

(5 sin x + 4 cos x)dx [9]

(5 sin x + 4 cos x)dx [9] FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, p.soro@tin.it Integrali definiti Risolvere

Dettagli

Esame di PROBABILITÀ e STATISTICA 1-23 giugno 2004

Esame di PROBABILITÀ e STATISTICA 1-23 giugno 2004 Facoltà di Ingegneria - a.a. 003/004 Corsi di Laurea in Ingegneria Civile - Ingegneria dei Trasporti Esame di PROBABILITÀ e STATISTICA - 3 giugno 004 Compito A. Nella partita di stasera tra Germania e

Dettagli

Facoltà di ECONOMIA Università di Pavia 20 Aprile 2004 Prova scritta di Analisi dei dati MODALITÀ A

Facoltà di ECONOMIA Università di Pavia 20 Aprile 2004 Prova scritta di Analisi dei dati MODALITÀ A MODALITÀ A Riportare sul foglio nome, cognome, numero di matricola e modalità del testo d esame. Problema 1 (8 PUNTI) Su un collettivo di 10 clienti iscritti al programma frequent flyer di una nota compagnia

Dettagli

Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A)

Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A) Prova scritta di STATISTICA CDL Biotecnologie (Programma di Massimo Cristallo - A) 1. Un associazione di consumatori, allo scopo di esaminare la qualità di tre diverse marche di batterie per automobili,

Dettagli

Esercizi di Probabilità

Esercizi di Probabilità Esercizi di Probabilità Annalisa Cerquetti - Sandra Fortini Vai all indice Istituto di Metodi Quantitativi, Viale Isonzo, 25, 2033 Milano, Italy. E-mail: annalisa.cerquetti@unibocconi.it,sandra.fortini@unibocconi.it

Dettagli

PRIMA PROVA INTERMEDIA DI STATISTICA CLEA, CLEFIN (COD. 5047/4038/371/377) 3 Novembre 2004 COMPITO B1

PRIMA PROVA INTERMEDIA DI STATISTICA CLEA, CLEFIN (COD. 5047/4038/371/377) 3 Novembre 2004 COMPITO B1 PRIMA PROVA INTERMEDIA DI STATISTICA CLEA, CLEFIN (COD. 5047/4038/371/377) 3 Novembre 2004 Cognome Numero di matricola Nome COMPITO B1 Ai fini della valutazione si terrà conto solo ed esclusivamente di

Dettagli

Statistica Matematica Prova scritta del 06/07/05 1. Risposte Domande x se 0 x 2, f(x) = 0 altrove;

Statistica Matematica Prova scritta del 06/07/05 1. Risposte Domande x se 0 x 2, f(x) = 0 altrove; Statistica Matematica Prova scritta del 06/07/05 1 COGNOME: NOME: TEST Scrivere il numero della risposta sopra alla corrispondente domanda. Risposte Domande 1 2 3 4 5 6 7 8 9 10 1 Sia data una variabile

Dettagli

Corsi di Laurea in Matematica Probabilità I Anno Accademico 2012-2013 5 giugno 2013

Corsi di Laurea in Matematica Probabilità I Anno Accademico 2012-2013 5 giugno 2013 Corsi di Laurea in Matematica Probabilità I Anno Accademico 2012-201 5 giugno 201 L uso di calcolatrici o testi non è consentito. Motivare chiaramente i procedimenti e i risultati proposti. Rispondere

Dettagli

1) Applicare la nozione classica di probabilità a semplici esperimenti

1) Applicare la nozione classica di probabilità a semplici esperimenti 1) Applicare la nozione classica di probabilità a semplici esperimenti aleatori. 1.A - Trova la probabilità che almeno due fra 11 persone abbiano lo stessa data di compleanno. R.] 0.14 1.B - In uno scaffale

Dettagli

Distribuzione di Poisson

Distribuzione di Poisson Distribuzione di Poisson Si dice che un numero aelatorio X ha una distribuzione di Poisson 9 di parametro 2 R +,esiindica X P( ), se valgono le seguenti condizioni, con ) X 2 N 0 = {0,, 2, 3,...,n,...};

Dettagli

1 Esercizi tutorato 1/4

1 Esercizi tutorato 1/4 Esercizi tutorato 1/ 1 1 Esercizi tutorato 1/ Esercizio 11 Siano X e Y due va discrete indipendenti di distribuzione geometrica con parametro p [0, 1] (i) Si calcoli la legge di X + Y, è una legge nota?

Dettagli

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 Indice Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 1 Spazi di probabilità discreti: teoria... 7 1.1 Modelli probabilistici discreti..... 7 1.1.1 Considerazioni

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità

7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità 7.6 Distribuzione Esponenziale. 111 7.6. Distribuzione Esponenziale. Un n.a. continuo X con densità di probabilità { λe λx se x, (76) f(x) = se x

Dettagli

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di

Dettagli

Probabilità Soggettiva

Probabilità Soggettiva Probabilità Soggettiva Definizione 3 Dato un evento E, la probabilità P (E) =p dell evento E, secondo un dato individuo in un certo stato di informazione, è la misura numerica (coerente) del suo grado

Dettagli

Introduzione generale. Cenni storici. 1 Problema di de Mèrè e soluzione. martedì 27 febbraio 2007

Introduzione generale. Cenni storici. 1 Problema di de Mèrè e soluzione. martedì 27 febbraio 2007 Corso di Calcolo delle probabilità - SIGAD -A.A. 2007/2008 Registro provvisorio delle Lezioni tenute da: Giuseppe Sanfilippo Settimana Giorno Lezione Lez N. Argomento Effettuata =SI Introduzione generale.

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 20/10/201 NOME: COGNOME: MATRICOLA: Esercizio 1 Se supponiamo

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

ESERCIZI PROBABILITA I

ESERCIZI PROBABILITA I ESERCIZI PROBABILITA I ESERCIZIO 1 Il rendimento annuo di un titolo viene descritto mediante una distribuzione normale. I e III quartile del rendimento sono uguali a, rispettivamente, -0.1 e 0.3. Si calcoli

Dettagli

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1 1) Studiare la seguente serie di funzioni en ( 1) n n x n 2) Studiare la seguente serie di funzioni ( 1) n n + 1 2e n xn 3) Studiare la seguente serie di funzioni 3n [ln x]n 1 2n 4) Studiare la seguente

Dettagli

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna.

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna. Università di Siena a.a. 28/9 Docente D. Papini COMPITO n. 1 a) Un dado non truccato viene lanciato due volte. Quant è la probabilità dell evento: al primo lancio esce un numero minore o uguale a 2 ed

Dettagli

Esercitazione 4 del corso di Statistica (parte 2)

Esercitazione 4 del corso di Statistica (parte 2) Esercitazione 4 del corso di Statistica (parte ) Dott.ssa Paola Costantini Febbraio Esercizio n. Il tempo di percorrenza del treno che collega la stazione di Roma Termini con l aeroporto di Fiumicino è

Dettagli

Tutorato 1 (20/12/2012) - Soluzioni

Tutorato 1 (20/12/2012) - Soluzioni Tutorato 1 (20/12/2012) - Soluzioni Esercizio 1 (v.c. fantasia) Si trovi il valore del parametro θ per cui la tabella seguente definisce la funzione di probabilità di una v.c. unidimensionale X. X 0 1

Dettagli

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita ES.2.3 1 Distribuzione normale La funzione N(x; µ, σ 2 = 1 e 1 2( x µ σ 2 2πσ 2 si chiama densità di probabilità normale (o semplicemente curva normale con parametri µ e σ 2. La funzione è simmetrica rispetto

Dettagli

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana

Esercitazioni di Statistica Matematica A Lezione 2. Variabili con distribuzione gaussiana Esercitazioni di Statistica Matematica A Lezione 2 Variabili con distribuzione gaussiana.) Una bilancia difettosa ha un errore sistematico di 0.g ed un errore casuale che si suppone avere la distribuzione

Dettagli

Esercizi di probabilità

Esercizi di probabilità 26 gennaio 2013 Esercizi di probabilità Nota: le domande contrassegnate da ( ) non sono al programma 2012/13. 1 Combinatoria 1. Contare gli anagrammi di MATMAT nei quali non compaiono accanto due lettere

Dettagli

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda

Dettagli

a) 36/100 b) 1/3 c)

a) 36/100 b) 1/3 c) Da un urna contenente 10 palline, di cui 6 bianche e 4 nere, si estraggono due palline. Determinare la probabilità del seguente evento E=«le due palline sono bianche» nel caso di estrazioni a) con rimbussolamento

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza Calcolo delle P robabilitá Esercizi svolti e quesiti per il CdS in Economia e Finanza Giuseppe Sanfilippo Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Università degli Studi di Palermo

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre Gennaio 2001

Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre Gennaio 2001 Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre 2000-28 Gennaio 2001 1 Nona settimana 76. Lun. 4 Dic. Generalita. Spazi

Dettagli

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012

Dettagli

Traccia della soluzione degli esercizi del Capitolo 3

Traccia della soluzione degli esercizi del Capitolo 3 Traccia della soluzione degli esercizi del Capitolo 3 Esercizio 68 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π, cioè f X ( = π ( π, π (. Posto Y = cos(x, trovare la distribuzione di

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli