Regressione logistica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Regressione logistica"

Transcript

1 Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer Metodi di classificazione Tecniche principali Alcuni esempi Data set Default I dati La regressione logistica Esempio Il modello logistico Odds Logit Regressione logistica o lineare? Confronto grafico Stima dei coefficienti Interpretazione dei risultati Predittori qualitativi Regressione logistica con più predittori Esempio Confounding Spiegazione grafica Regressione logistica con più classi di previsione Riferimenti bibliografici Metodi di classificazione I metodi usati per analizzare situazioni in cui Y classificazione. è una variabile qualitativa sono noti come metodi di Prevedere una variabile risposta qualitativa significa assegnare l osservazione ad una categoria o una classe. D altra parte, i metodi utilizzati per la classificazione prima di tutto predicono la probabilità che l unità appartenga ad una certa classe e poi effettuano la classificazione. In questo senso sono anche dei metodi di regressione. In molti casi può essere in effetti più interessante stimare la probabilità di appartenenza ad una certa classe che effettuare una mera classificazione. Ad esempio, per una compagnia assicuratrice, può essere più importante conoscere la probabilità che una richiesta di risarcimento sia fraudolenta piuttosto che una semplice classificazione in fraudolenta/non fraudolenta. Tecniche principali file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 1/10

2 I metodi di classificazione più tradizionali sono La regressione logistica L analisi discriminante (lineare e quadratica) La classificazione KNN Altri metodi, computer intensive, sono I modelli additivi generalizzati Gli alberi di classificazione, foreste casuali e boosting Support vector machines Alcuni esempi Una società di analisi vuole stimare la probabilità di fallimento di un impresa sulla base di indicatori di bilancio e di tendenza del mercato Un servizio di online banking deve essere in grado di determinare se un operazione svolto sul sito è fraudolenta, sulla base dell indirizzo IP dell utente, cronologia delle transazioni passate, e così via Un general store vuole classificare i consumatori e stimare le probabilità di acquisto di determinate categorie di prodotti in base ad alcune caratteristiche demografiche (età, titolo di studio, sesso, etc.) Data set Default Un data set simulato (10000 casi) disponibile nella libreria ISLR in cui una società creditizia vuole stimare la probabilità di default (incapacità di fare fronte ai pagamenti ) in base ad alcune caratteristiche del debitore Y default: variabile binaria (default o no) X 1 X 2 student: variabile binaria (studente o no) balance: l importo medio di debito residuo sulla carta di credito dopo i versamenti mensili I dati X 3 income: il reddito dell unità library(islr) Warning: package 'ISLR' was built under R version data(default) str(default) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 2/10

3 'data.frame': obs. of 4 variables: $ default: Factor w/ 2 levels "No","Yes": $ student: Factor w/ 2 levels "No","Yes": $ balance: num $ income : num head(default) default student balance income 1 No No No Yes No No No No No No No Yes file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 3/10

4 Defaut=Yes (arancio). Default=No (blu) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 4/10

5 La regressione logistica La regressione logistica, anzichè modellare direttamente Y, propone un modello per la probabilità che Y appartenga ad una particolare categoria. Nel caso dei dati Default, abbiamo Y ={ 1 0 se Default altrimenti Supponiamo in prima istanza di avere un solo predittore, X. La regressione logistica propone un modello per stimare p(x) = P(Y = 1 X) file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 5/10

6 Le stime prodotte dal modello sono usate per analisi e classificazione Esempio Nel caso dei dati Default, utilizzando, ad esempio, balance come predittore, interessa stimare Per ogni valore dato di balance, si può fare una previsione per default. Ad esempio, si potrebbe prevedere default = Yes per ogni individuo per il quale. Alternativamente, se la società creditizia vuole essere prudente allora si può scegliere di utilizzare una soglia più bassa, come ad esempio. Il modello logistico Poiché l obbiettivo è quello di modellare una probabilità, sempre compresa in logistico propone di utilizzare la funzione logistica con un po di manipolazione si ottiene il modello La quantità è chiamata odds, e può assumere qualsiasi valore in. Odds Un odds vicino a indica una probabilità molto bassa di default Ad esempio, tra gli individui con odds in media ogni andrà in default poiché implica un odds pari a Gli odds sono tradizionalmente utilizzati al posto delle probabilità nelle scommesse. Dato un odds è possibile ricavare la probabilità da Logit Il logaritmo naturale dell odds ottiene p(balance) = P(default = Y es balance) p(balance) > 0.1 p(x) = e β 0 + β 1 X 1 + e β 0 + β 1 X p(x) 1 p(x) p(balance) > 0.5 file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 6/10 = e β 0 + β 1 X [0, 1] p(x)/[1 p(x)] [0, ) 0 = 1/4 1 5 p(x) = p(x) = = 1/4 odds 1 + odds p(x) log( ) = β + X 1 P(X) 0 β 1

7 che prende il nome di logit o log odds ed è lineare in X Nella regressione logistica dunque il coefficiente β 1 è legato alla variazione del logit e non alla variazione della probabilità cui è legato non linearmente Spesso si analizza il coefficiente e β 1 che indica la variazione dell odds in corrispondenza di una variazione di X poiché p(x) 1 p(x) Regressione logistica o lineare? Una regressione lineare propone il modello La regressione logistica propone il modello = e + X = ( β 0 β 1 e β 0 e β 1 ) X p(x) = + X β 0 β 1 p(x) = e β 0 + β 1 X 1 + e β 0 + β 1 X Pur essendo di fatto utilizzabile in questo contesto il modello di regressione lineare può produrre stime di probabilità negative o superiori a 1 Se il numero di categorie di Y è superiore a 2 il modello lineare diventa inappropriato. Confronto grafico Stima dei coefficienti Il metodo dei minimi quadrati non è adatto ai modelli di regressione logistica. Si usa invece il metodo della massima verosimiglianza Per i dati Default si ottiene file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 7/10

8 ## Warning: package 'xtable' was built under R version EstimateStd. Errorz valuepr(> z ) (Intercept) balance Interpretazione dei risultati Vediamo che β^1 probabilità di default. ; ciò indica che un aumento in balance è associato a un aumento della Per essere precisi, un aumento di una unità di balance è associato ad un aumento del log odds di default di unità = In alternativa e β^1 e variazione di balance = = Ad esempio se balance=1500 $ allora l odds è pari a p(1500) 1 p(1500) indica la variazione dell odds in corrispondenza di una = = e (1500) Con relativa probabilità di default pari a Una variazione di balance pari a 200 implica una variazione dell odds pari a Si verifichi infatti che La statistica contro H a β 1 z = /SE( ) : 0 β^1 β^1 ed il relativo p value sono usati per la verifica dell ipotesi H 0 : β 1 = 0 Predittori qualitativi odds p(1500) = = = (1 + odds) p(1700) 1 p(1700) = = Il caso dei predittori qualitativi è trattato esattamente come nella regressione lineare, ossia attraverso l uso di variabili dummy. Ad esempio, se per i dati Default proviamo a stimare p(student), EstimateStd. Errorz valuepr(> z ) (Intercept) studentyes I risultati indicano che uno studente ha, in media, probabilità di default più elevata rispetto ad un nonstudente file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 8/10

9 Regressione logistica con più predittori Per P^ (default = Y es student = Y es) = = e X = ( X 1,, X p ) e e P^ (default = Y es student = No) = = e il modello di regressione logistica multipla è p(x) = e β 0 + β + 1 X 1 β p X p 1 + e β 0 + β + 1 X 1 β p X p ed il logit p(x) logit(p(x)) = log = p(x) β 0 β 1 X 1 β p X p Esempio Per il data set Default, utilizzando tutti i predittori otteniamo EstimateStd. Errorz valuepr(> z ) (Intercept) balance I(income/1000) studentyes I p value associati a balance e student sono molto piccoli, indicando che ciascuna di queste variabili è associata alla probabilità di default. Al contrario di quanto visto prima, il coefficiente per la variabile student è negativo, indicando che gli studenti hanno meno probabilità di default dei non studenti. Confounding Il coefficiente negativo per student nella regressione logistica multipla indica che per un dato valore di balance e income, uno studente ha minor probabilità di default di un non studente. Il problema è dovuto al fenomeno, già discusso, della distorsione da variabili omesse, (o confounding) ed al fatto che le variabili student e balance sono correlate. Gli studenti hanno maggior probabilità di avere balance più elevato che è associato a tassi di default più elevati. Così, anche se un singolo studente, per un dato balance e income, tenderà ad avere una minor probabilità di default rispetto ad un non studente, il fatto che gli studenti nel complesso tendano ad avere un balance più elevato significa che, nel complesso, gli studenti tendono al default ad un tasso superiore a quello dei non studenti. Questa distinzione è importante per una società di carte di credito che sta cercando di stabilire a quali persone dovrebbero offrire credito. file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 9/10

10 Uno studente è più rischioso di un non studente in assenza di indicazioni relative a balance. La situazione si rovescia a parità di balance Spiegazione grafica Studenti: arancio. Non studenti: blu Sinistra: il tasso di default per student è uguale o inferiore a quello dei non studenti per ogni dato valore di balance. Le linee tratteggiate, corrispondenti alle probabilità di default medie (calcolate du tutti i valori di balance e income) suggeriscono il contrario. Destra: Spiegazione: student e balance sono correlate. Gli studenti tendono ad avere livelli elevati di debito, che è a sua volta associato ad una maggiore probabilità di default. Regressione logistica con più classi di previsione La regressione logistica può essere estesa al caso in cui la variabile Y abbia più di due categorie. Tuttavia in questi casi l analisi discriminante è molto più agevole da usare e pertanto più diffusa nell utilizzo pratico. Riferimenti bibliografici An Introduction to Statistical Learning, with applications in R. (Springer, 2013) Alcune delle figure in questa presentazione sono tratte dal testo con il permesso degli autori: G. James, D. Witten, T. Hastie e R. Tibshirani file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html 10/10

Regressione logistica. Strumenti quantitativi per la gestione

Regressione logistica. Strumenti quantitativi per la gestione Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html#(1) 1/25 Metodi di classificazione I metodi usati per analizzare

Dettagli

Regressione lineare multipla Strumenti quantitativi per la gestione

Regressione lineare multipla Strumenti quantitativi per la gestione Regressione lineare multipla Strumenti quantitativi per la gestione Emanuele Taufer Regressione lineare multipla (RLM) Esempio: RLM con due predittori Stima dei coefficienti e previsione Advertising data

Dettagli

Statistical learning Strumenti quantitativi per la gestione

Statistical learning Strumenti quantitativi per la gestione Statistical learning Strumenti quantitativi per la gestione Emanuele Taufer Vendite Simbologia Reddito Statistical learning A cosa ci serve f? 1 Previsione 2 Inferenza Previsione Errore riducibile e errore

Dettagli

Regressione Logistica: un Modello per Variabili Risposta Categoriali

Regressione Logistica: un Modello per Variabili Risposta Categoriali : un Modello per Variabili Risposta Categoriali Nicola Tedesco (Statistica Sociale) Regressione Logistica: un Modello per Variabili Risposta Categoriali 1 / 54 Introduzione Premessa I modelli di regressione

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Modelli con predittori qualitativi e modelli con interazioni

Modelli con predittori qualitativi e modelli con interazioni Modelli con predittori qualitativi e modelli con interazioni Strumenti quantitativi per la gestione Emanuele Taufer Utilizzare variabili indipendenti qualitative (VIQ) Codifica binaria 0,1 Esempio: salari

Dettagli

Multicollinearità Strumenti quantitativi per la gestione

Multicollinearità Strumenti quantitativi per la gestione Strumenti quantitativi per la gestione Emanuele Taufer Quando non tutto va come dovrebbe I dati Scatter plot Correlazioni RLS e RLM Individuare la MC Variance Inflation Factor Cosa fare in caso di MC Alcune

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

evolution and innovation in SME s rating

evolution and innovation in SME s rating evolution and innovation in SME s rating IL RISCHIO OPERATIVO GMA 4 5 LA STRUTTURA PROGETTUALE IL RISCHIO OPERATIVO GMA Il rischio operativo GMA prevede l elaborazione degli ultimi tre bilanci aziendali

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

Analisi discriminante in R Strumenti quantitativi per la gestione

Analisi discriminante in R Strumenti quantitativi per la gestione Analisi discriminante in R Strumenti quantitativi per la gestione Emanuele Taufer Default data LDA con R Output Plot Previsione Tabella di classificazione Cambiare il criterio di classificazione Costruire

Dettagli

Analisi Discriminante Strumenti quantitativi per la gestione

Analisi Discriminante Strumenti quantitativi per la gestione Analisi Discriminante Strumenti quantitativi per la gestione Emanuele Taufer Un esempio introduttivo Approccio con Bayes Perchè un altro metodo di classificazione? Classificazione con Bayes Analisi discriminante

Dettagli

Presentazione. Risorse Web. Metodi Statistici 1

Presentazione. Risorse Web. Metodi Statistici 1 I-XVI Romane_ 27-10-2004 14:25 Pagina VII Prefazione Risorse Web XI XIII XVII Metodi Statistici 1 Capitolo 1 Tecniche Statistiche 3 1.1 Probabilità, Variabili Casuali e Statistica 3 1.1.1 Introduzione

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

lezione 18 AA 2015-2016 Paolo Brunori

lezione 18 AA 2015-2016 Paolo Brunori AA 2015-2016 Paolo Brunori Previsioni - spesso come economisti siamo interessati a prevedere quale sarà il valore di una certa variabile nel futuro - quando osserviamo una variabile nel tempo possiamo

Dettagli

Validazione dei modelli Strumenti quantitativi per la gestione

Validazione dei modelli Strumenti quantitativi per la gestione Validazione dei modelli Strumenti quantitativi per la gestione Emanuele Taufer Validazione dei modelli Il data set Auto I dati Il problema analizzato Validation set approach Diagramma a dispersione Test

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Limited Dependent Variable Models

Limited Dependent Variable Models Limited Dependent Variable Models Logit Tobit Probit Modelli Logit e Probit Latent variable models for binary choice Models for descrete dependent variable Traducendo Spesso vogliamo studiare (le determinanti

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Econometria. lezione 17. variabili dipendenti binarie. Econometria. lezione 17. AA 2014-2015 Paolo Brunori

Econometria. lezione 17. variabili dipendenti binarie. Econometria. lezione 17. AA 2014-2015 Paolo Brunori AA 2014-2015 Paolo Brunori domande di mutui rigettate - nei dati raccolti a Boston negli anni 90 il tasso di rifiuto è 28% per i neri e 9% per i bianchi - si può parlare di discriminazione? - è possibili

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

Concetti introduttivi

Concetti introduttivi Indice 1 Concetti introduttivi 3 1.1 Studi sperimentali e studi osservazionali..................... 3 1.2 Concetti iniziali: indipendenza fra eventi..................... 6 1.3 Indipendenza fra variabili

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Modelli per variabili dipendenti qualitative

Modelli per variabili dipendenti qualitative SEMINARIO GRUPPO TEMATICO METODI e TECNICHE La valutazione degli incentivi industriali: aspetti metodologici Università di Brescia, 17 gennaio 2012 Modelli per variabili dipendenti qualitative Paola Zuccolotto

Dettagli

Crescita della produttività e delle economie

Crescita della produttività e delle economie Lezione 21 1 Crescita della produttività e delle economie Il più spettacolare effetto della sviluppo economico è stata la crescita della produttività, ossia la quantità di prodotto per unità di lavoro.

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

TEMPO E RISCHIO. Il valore del denaro è funzione del tempo in cui è disponibile

TEMPO E RISCHIO. Il valore del denaro è funzione del tempo in cui è disponibile Esercitazione TEMPO E RISCHIO Il valore del denaro è funzione del tempo in cui è disponibile Un capitale - spostato nel futuro si trasforma in montante (capitale iniziale più interessi), - spostato nel

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Modelli con predittori qualitativi e modelli con interazioni. Strumenti quantitativi per la gestione

Modelli con predittori qualitativi e modelli con interazioni. Strumenti quantitativi per la gestione Modelli con predittori qualitativi e modelli con interazioni Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/3d_viq.html#(1) 1/26 Utilizzare

Dettagli

Parimenti una gestione delle scorte in maniera non oculata può portare a serie ripercussioni sul rendimento sia dei mezzi propri che di terzi.

Parimenti una gestione delle scorte in maniera non oculata può portare a serie ripercussioni sul rendimento sia dei mezzi propri che di terzi. Metodo per la stima del ROE e del ROI in un azienda operante nel settore tessile abbigliamento in funzione delle propria struttura di incasso e pagamento e della gestione delle rimanenze di magazzino.

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate Introduzione alle relazioni multivariate Associazione e causalità Associazione e causalità Nell analisi dei dati notevole importanza è rivestita dalle relazioni causali tra variabili Date due variabili

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) La Regressione Multipla La Regressione Multipla La regressione multipla

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

Ulteriori metodi per la stima di una singola equazione

Ulteriori metodi per la stima di una singola equazione 1 Materiali didattici: ANALISI E PREVISIONI NEI MERCATI FINANZIARI a.a. 2014-2015 DISPENSA N.3bis (APPENDICE alla dispensa n.3) Ulteriori metodi per la stima di una singola equazione (Prof. Giovanni Verga)

Dettagli

LE DETERMINANTI DELLA REDDITIVITÀ DELLE SOCIETA OPERANTI NEL COMPARTO TESSILE ABBIGLIAMENTO IN ITALIA

LE DETERMINANTI DELLA REDDITIVITÀ DELLE SOCIETA OPERANTI NEL COMPARTO TESSILE ABBIGLIAMENTO IN ITALIA LE DETERMINANTI DELLA REDDITIVITÀ DELLE SOCIETA OPERANTI NEL COMPARTO TESSILE ABBIGLIAMENTO IN ITALIA Il metodo CVRP per l analisi delle maggiori società tessili italiane Stefano Cordero di Montezemolo

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli

Analisi di scenario File Nr. 10

Analisi di scenario File Nr. 10 1 Analisi di scenario File Nr. 10 Giorgio Calcagnini Università di Urbino Dip. Economia, Società, Politica giorgio.calcagnini@uniurb.it http://www.econ.uniurb.it/calcagnini/ http://www.econ.uniurb.it/calcagnini/forecasting.html

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Le operazioni di assicurazione

Le operazioni di assicurazione Le operazioni di assicurazione Giovanni Zambruno e Asmerilda Hitaj Bicocca, 2014 Outline 1 Lezione 1: Le operazioni di assicurazione Condizione di indifferenza Condizione di equità 2 Premio equo, premio

Dettagli

General Linear Model. Esercizio

General Linear Model. Esercizio Esercizio General Linear Model Una delle molteplici applicazioni del General Linear Model è la Trend Surface Analysis. Questa tecnica cerca di individuare, in un modello di superficie, quale tendenza segue

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Metodologia Classica di Progettazione delle Basi di Dati

Metodologia Classica di Progettazione delle Basi di Dati Metodologia Classica di Progettazione delle Basi di Dati Metodologia DB 1 Due Situazioni Estreme Realtà Descritta da un documento testuale che rappresenta un insieme di requisiti del software La maggiore

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Regressione Lineare con un Singolo Regressore

Regressione Lineare con un Singolo Regressore Regressione Lineare con un Singolo Regressore Quali sono gli effetti dell introduzione di pene severe per gli automobilisti ubriachi? Quali sono gli effetti della riduzione della dimensione delle classi

Dettagli

ASIMMETRIE INFORMATIVE. (Cap. 34 di Hey) Eppure si tratta di elementi piuttosto diffusi nella realtà di tutti i giorni:

ASIMMETRIE INFORMATIVE. (Cap. 34 di Hey) Eppure si tratta di elementi piuttosto diffusi nella realtà di tutti i giorni: ASIMMETRIE INFORMATIVE (Cap. 34 di Hey) Tener conto delle asimmetrie informative consente di evidenziare alcuni importanti elementi che la teoria standard - assumendo informazione completa e simmetrica

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

SARA Sistema di Analisi e Rating delle Aziende italiane

SARA Sistema di Analisi e Rating delle Aziende italiane SARA Sistema di Analisi e Rating delle Aziende italiane Obbiettivi e metodologia...2 Le attività preparatorie...2 Calcolo degli indici di bilancio e degli indicatori di posizionamento...2 Costruzione dei

Dettagli

Obiettivi, Valori e Risultati

Obiettivi, Valori e Risultati Corso di Analisi Strategiche Obiettivi, Valori e Risultati Prof. V.Maggioni Facoltà di Economia S.U.N. L obiettivo primario dell impresa è la massimizzazione del profitto nel lungo termine. Il valore si

Dettagli

Relazioni tra variabili

Relazioni tra variabili Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

Livello dei prezzi e tasso di cambio nel lungo periodo

Livello dei prezzi e tasso di cambio nel lungo periodo Livello dei prezzi e tasso di cambio nel lungo periodo La legge del prezzo unico La parità del potere d acquisto (PPP) Un modello sui tassi di cambio di lungo periodo basato sulla PPP Problemi relativi

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

LA SEGMENTAZIONE DEL MERCATO

LA SEGMENTAZIONE DEL MERCATO LA SEGMENTAZIONE DEL MERCATO Perché segmentare? I mercati sono numerosi, dispersi geograficamente ed eterogenei nelle loro esigenze d'acquisto. Un'impresa che decide di operare in un certo mercato non

Dettagli

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

ESERCIZI DI RIEPILOGO 2. 7 jj(addi ESERCIZI DI RIEPILOGO 2 ESERCIZIO 1 Da un comune mazzo di 52 carte francesi (13 carte per ognuno dei quattro semi: picche, cuori, fiori e quadri) viene estratta casualmente una carta. Definiti gli eventi:

Dettagli

Introduzione all Inferenza Statistica

Introduzione all Inferenza Statistica Introduzione all Inferenza Statistica Fabrizio Cipollini Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) G. Parenti Università di Firenze Firenze, 3 Febbraio 2015 Introduzione Casi di studio

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

Regressione lineare semplice

Regressione lineare semplice Regressione lineare semplice Strumenti quantitativi per la gestione Emanuele Taufer Regressione lineare (RL) La regressione lineare per i dati Advertising Analisi d interesse Regressione lineare semplice

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Risparmio, investimenti e sistema finanziario

Risparmio, investimenti e sistema finanziario Risparmio, investimenti e sistema finanziario Una relazione fondamentale per la crescita economica è quella tra risparmio e investimenti. In un economia di mercato occorre individuare meccanismi capaci

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

004722 - Economia pubblica - II anno

004722 - Economia pubblica - II anno Corso di laurea di primo livello in Economia aziendale CLEA nuovo ordinamento 004722 - Economia pubblica - II anno 8 crediti, 60 ore insegnamento a.a. 2011-12 Stefano Toso e Alberto Zanardi Lezione 7 Carenze

Dettagli

Stili di studio degli universitari italiani tra carta e digitale

Stili di studio degli universitari italiani tra carta e digitale Stili di studio degli universitari italiani tra carta e digitale Piero Attanasio Associazione Italiana Editori piero.attanasio@aie.it Con la collaborazione di Marina Micheli - Università Bicocca di Milano

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET LA COSTRUZIONE DI UN BUDGET Prof. Francesco Albergo Docente di PIANIFICAZIONE E CONTROLLO Corso di Laurea in Economia Aziendale Curriculum in Gestione Aziendale Organizzata UNIVERSITA degli Studi di Bari

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

PROGRAMMA. Borse di studio riservate a elementi con orientamento nelle discipline economico-aziendali lett. A dell art.

PROGRAMMA. Borse di studio riservate a elementi con orientamento nelle discipline economico-aziendali lett. A dell art. PROGRAMMA Borse di studio riservate a elementi con orientamento nelle discipline economico-aziendali lett. A dell art. 1 del bando EVENTUALE TEST PRESELETTIVO su tutte le materie previste per la prova

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Corso di Risk Management UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso di Prof. Filippo Stefanini A.A. Corso 60012 Corso di Laurea Specialistica in Ingegneria Edile pag 1 Coefficiente di correlazione Coefficiente di correlazione = il

Dettagli

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette

Dettagli

Metodi di previsione

Metodi di previsione Metodi di previsione Giovanni Righini Università degli Studi di Milano Corso di Logistica I metodi di previsione I metodi di previsione sono usati per ricavare informazioni a sostegno dei processi decisionali

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12

Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12 Indice 1 Introduzione ai modelli lineari 2 2 Dataset 3 3 Il Modello 8 4 In pratica 12 41 Peso e percorrenza 12 1 Capitolo 1 Introduzione ai modelli lineari Quando si analizzano dei dati, spesso si vuole

Dettagli

1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4. 3. Aspetti Prestazionali... 4

1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4. 3. Aspetti Prestazionali... 4 Pagina 2 1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4 Esempi... 4 3. Aspetti Prestazionali... 4 Obiettivi... 4 Esempi... 4 4. Gestione del Credito

Dettagli

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale Piacenza, 0 marzo 204 La preparazione della tesi di Laurea Magistrale ma questa statistica a che cosa serve? non vedo l ora di cominciare a lavorare per la tesi. e dimenticarmi la statistica!! il mio relatore

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Esercitazioni in Maple

Esercitazioni in Maple Esercitazioni in Maple 6 giugno 2007 Capitolo 1 Prima esercitazione 1.1 Anelli di polinomi Per cominciare bisogna dichiarare un anello di polinomi. Possiamo lavorare con un qualsiasi anello di tipo dove

Dettagli

Capitolo IV. I mercati finanziari

Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 2 I MERCATI FINANZIARI OBIETTIVO: SPIEGARE COME SI DETERMINANO I TASSI DI INTERESSE E COME LA BANCA CENTRALE PUO INFLUENZARLI LA DOMANDA DI MONETA DETERMINAZIONE DEL TASSO

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1

Capital budgeting. Luca Deidda. Uniss, CRENoS, DiSEA. Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Capital budgeting Luca Deidda Uniss, CRENoS, DiSEA Luca Deidda (Uniss, CRENoS, DiSEA) Lecture 19 1 / 1 Introduzione Scaletta Introduzione Incertezza e costo del capitale Costo del capitale di rischio (equity

Dettagli

Analisi discriminante e regressione logistica: applicazione al sondaggio sul tema delle aggregazioni comunali per il Comune di Novazzano

Analisi discriminante e regressione logistica: applicazione al sondaggio sul tema delle aggregazioni comunali per il Comune di Novazzano Analisi discriminante e regressione logistica: applicazione al sondaggio sul tema delle aggregazioni comunali per il Comune di Novazzano Flaminio Cadlini e Roberto Stoppa www.tiresia.ch Giugno 26 Indice

Dettagli

Misurare il rischio finanziario con l Extreme Value Theory

Misurare il rischio finanziario con l Extreme Value Theory Misurare il rischio finanziario con l Extreme Value Theory M. Bee Dipartimento di Economia, Università di Trento MatFinTN 2012, Trento, 24 gennaio 2012 Outline Introduzione Extreme Value Theory EVT e rischio

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Le regole di Basilea II per il credito immobiliare

Le regole di Basilea II per il credito immobiliare Le regole di Basilea II per il credito immobiliare Convegno ABI Credito alle Famiglie 2008 Mario Marangoni Banca d Italia Roma, 10 giugno 2008 1 Le regole di Basilea II per il credito immobiliare L impatto

Dettagli

Esercitazione relativa al cap. 10 INVESTIMENTI

Esercitazione relativa al cap. 10 INVESTIMENTI Esercitazione relativa al cap. 10 INVESTIMENTI GLI INVESTIMENTI FINANZIARI SONO ACQUISTI DI ATTIVITA FINANZIARIE EFFETTUATE NELL ASPETTATIVA DI RICEVERNE UN RENDIMENTO. I PIU IMPORTANTI SONO: - I DEPOSITI

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica:

22.03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: .03.07 In alcuni casi è possibile applicare sia l analisi log lineare che la regressione logistica. Analisi log lineare e regressione logistica: differenze Nella regressione logistica le variabili vengono

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Il concetto di correlazione

Il concetto di correlazione SESTA UNITA Il concetto di correlazione Fino a questo momento ci siamo interessati alle varie statistiche che ci consentono di descrivere la distribuzione dei punteggi di una data variabile e di collegare

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli