RELAZIONI TRA ROTAZIONI E MOMENTI DI ESTREMITA PER LE ASTE A SEZIONE COSTANTE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RELAZIONI TRA ROTAZIONI E MOMENTI DI ESTREMITA PER LE ASTE A SEZIONE COSTANTE"

Transcript

1 FACOLTÀ DI STUDI INGEGNERIA E ARCHITETTURA A. A Corso d Laura agstra n Archtttura TECNICA DELLE COSTRUZIONI (9 CFU) DOCENTE: ING. GIUSEPPE ACALUSO RELAZIONI TRA ROTAZIONI E OENTI DI ESTREITA PER LE ASTE A SEZIONE COSTANTE

2 RELAZIONI TRA ROTAZIONI E OENTI DI ESTREITA PER LE ASTE A SEZIONE COSTANTE Ipotzzando d strarr un asta da un gnrco tao (Fg. 1) rotazon ag strm (dfnt ) sono n gnra funzon d momnt d strmtà ( d ), d carch n campata comunqu dstrbut (q(x)) d cdmnto ratvo a du strm (, ). Fg.1. Trav soggtta ad una condzon d carco gnrca. Oprando pr sovrapposzon dg fftt è possb pnsar rotazon d strmtà com somma d sngo contrbut dat da cascuna d azon prcdntmnt dfnt. E qund possb scrvr: ( 1 ) ( 2 ) ) (, ( q) = = + (1) ( 1 ) ( 2 ) ) (, ( q) = = + (2) Cascuno d contrbut prcdnt può ssr cacoato. A ta fn s assumrà ch ast abbano szon costant ungo ass da trav ch a dformabtà tagant sa trascurab. ( 1 ) Cacoo d ( 1 ) Ta rotazon possono ssr smpcmnt cacoat appcando anaoga d ohr vautando dagramma d momnt prodotto da d assoggttando a trav ausara a carco fttzo d ntnstà par a qua d dagramma d curvatur cambato d sgno (Fg. 2). Fg.2. Rotazon dg strm pr fftto d (a); Dagramma d momnt prodott da (b); Trav ausara carcata con dagramma d curvatur cambato d sgno (c). Da qubro aa rotazon attorno a strmo no schma ausaro s ottn:

3 2 T = 0 (3) 3 da cu ssndo tago na trav ausar par aa rotazon n sstma ra s ha: ( 1 ) = T = (4) Da qubro aa rotazon attorno a strmo no stsso schma s ottn: T + = 0 (5) 3 da cu ( 1 ) = T (6) S not nfn com a rotazon n pr fftto d momnto sa, n vaor assouto, doppa rsptto a qua d strmo. ( 2 ) Cacoo d ( 2 ) Ao stsso modo può procdrs pr a vautazon d rotazon prodott da momnto (Fg. 3). Fg.3. Rotazon dg strm pr fftto d. (a); Dagramma d momnt prodott da (b); Trav ausara carcata con dagramma d curvatur cambato d sgno (c). Da qubro aa rotazon attorno a strmo no schma ausaro s ottn T = 0 (7) 3 da cu ( 2 ) = T = (8) Da qubro aa rotazon attorno a strmo no stsso schma s ottn 2 T + = 0 (9) 3

4 da cu Cacoo d ( 2 ) = T (10) Pr fftto d cdmnt d strmtà a trav ruota rgdamnt. Fg.4. Rotazon dg strm pr fftto d cdmnt. S ossrva facmnt ch trattandos d una rotazon rgda grandzz crcat assumono o stsso vaor, ch n pots d pcco spostamnt è cacoab com: Cacoo d = = = (11) L rotazon dovut a carch n campata possono vautars mdant anaoga d ohr (Fg. 5). Fg.5. Rotazon dg strm pr fftto d carch n campata (a); Dagramma d momnt prodott da carch n campata (b); Trav ausara carcata con dagramma d curvatur cambato d sgno (c). Daa scrttura d quazon d qubro aa rotazon a po da trav ausara s ottngono tag fttz quvant a rotazon crcat com: * 1 0 = T = ( x)( x) dx (12) EI 0 * 1 0 = T = ( x ) x dx (13) EI La dtrmnazon d qust contrbut comporta ntgrazon da gg d momnto può rsutar poco agvo. Ta procdura può vtars com mgo spcfcato n sguto. 0

5 Aa uc d quanto dtrmnato Eqq. (1) (2) s possono scrvr com: = + + = ( 2 + ) + + ( 2 + ) + (14) (15) Pr pratctà trmn non sono spctat n Eqq. (14) (15). otpcando a (14) pr a (15) pr sommando mmbro a mmbro, stss quazon possono scrvrs sprmndo momnt d strmtà n funzon d atr grandzz com: = EI ( 0 ( 2 ) ( 2 ) 3 2 ) 2 ) N prcdnt compaono nuovamnt trmn EI ( 0 ( 2 ) ( 2 ) 3 (16) (17). S ossrv tuttava ch pnsando damnt d boccar strmtà da trav aa trasazon d aa rotazon sprsson (16) (17) assumono a forma sgunt: 2 EI ( 2 ) = µ 2 EI ( 2 = ) = µ C s accorg ch Eqq. (18) (19) ngobano contrbut d rotazon dovut a carch n campata ch stss, pr com sono stat ottnut, rapprsntano momnt ch s dstano a strmtà da trav pr fftto d ta carch pnsando damnt d boccar g strm aa trasazon d aa rotazon. Ta quanttà prndono nom d momnt d ncastro prftto s ndcano con smboo µ pr dstngur da momnt ra. I momnt d ncastro prftto consntono d vtar cacoo d rotazon (18) (19) rcorrndo ad uno schma d trav doppamnt ncastrata d pù smpc rsouzon. L Eqq. (16) (17) possono qund rscrvrs n funzon d ta quanttà com: = 2 3 (20)

6 2 3 Rsuta convnnt sprmr anch Eqq. (14) (15) n funzon d momnt d ncastro prftto. otpcando Eq. (18) pr du sommando mmbro a mmbro rptndo vcndvomnt oprazon s ottn: = ( 2 + ) ( 2 µ ) + (22) ( 2 + ) + ( 2 µ ) + (23) L Eqq. (20-23) gano momnt d strmtà a rotazon atr grandzz vcvrsa rotazon. Ta sprsson costtuscono dg strumnt d partcoar auso oprando attravrso mtod d forz d dformazon purché s cacono quanttà µ µ ch possono rprrs fra casstch rportat da manua o comunqu agvomnt cacoat. N caso n cu non sano prsnt carch n campata, stss sprsson trovano una appcazon ancora pù agvo com mostrato d sgunt appcazon. (21) APPLICAZIONE 1 Consdrando o schma rapprsntato n Fg. A.1. s cacono rotazon ag strm pr fftto d momnto. Fg. A.1. Rotazon d strmtà pr fftto d momnto. Utzzando drttamnt Eqq. (22-23) sprsson s ottn A = ( 2 + ) ( 2 µ ) + B ( 2 + ) + ( 2 µ ) + (25) Poché sono assnt momnto ( =0), carch n campata (µ =0 µ =0) cdmnt ( =0), s ottn; A = ( 2 ) = (24) (26)

7 B ) (27) APPLICAZIONE 2 Consdrando o schma rapprsntato n Fg. A.2. s cacono momnt d strmtà pr fftto d cdmnto mposto. Fg. A.1. omnt d strmtà pr fftto d cdmnto mporto. Utzzando drttamnt Eqq. (20-21) sprsson s ottn = ( 2 3 ) ( 2 3 ) Essndo nu rotazon ag strm A B ( =0, =0) carch n campata (µ =0 µ =0) s ottn; (28) (29) = ( 3 ) 2 (30) ( 3 ) = 2 (31)

Scattering in Meccanica Quantistica

Scattering in Meccanica Quantistica Scattrng n Mccanca Quantstca Sommaro Trattazon ndpndnt da tmpo do scattrng Svuppo n ond parza Torma ottco Rgoa d oro scattrng Esmpo: potnza d Yukawa Scattrng astco d anastco Fabrzo Banch Formu Ut x x =

Dettagli

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto LE SOLUZIONI. Una soluzon (d un crto soluto n un crto solvnt dl pso d kg è concntrata al 0%. Calcolar la quanttà d solvnt (n kg ch s dv aggungr alla soluzon pr ottnr una nuova soluzon, concntrata al 0%.

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da ESISTE UA OTEOLE DIFFEEA TA LE SOLUIOI DEI POLIEI E QUELLE DELLE OLECOLE PICCOLE DOUTA ALLA DIFFEEA DI DIESIOI TA LE OLECOLE POLIEICHE E QUELLE DEL SOLETE. Pr qusto motvo trattrmo l soluzon polmrch attravrso

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

Interferenza e diffrazione con gli esponenziali complessi. Nota

Interferenza e diffrazione con gli esponenziali complessi. Nota Intrfrnza dffrazon con gl sponnzal complss ota on s fanno commnt sul sgnfcato d rsultat ottnut, n su qullo dll pots d volta n volta assunt: lo scopo solo qullo d mostrar com funzon n pratca l formalsmo

Dettagli

L soluzon Data la funzon ln( ) f ( ) 3 a trova l domno d f b scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c dtrmna l vntual ntrszon con gl ass d studa l

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%.

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%. SOLUZIONI. Il costo d un farmaco da banco pr un dtrmnato prncpo attvo è così suddvso: l 7,% pr la confzon, l 7,% pr la produzon d l rstant % pr l IVA. Dlla quota rlatva alla produzon, l 3% è dovuto all

Dettagli

Materiali ed Approcci Innovativi per il Progetto in Zona Sismica e la Mitigazione della Vulnerabilità delle Strutture

Materiali ed Approcci Innovativi per il Progetto in Zona Sismica e la Mitigazione della Vulnerabilità delle Strutture Matral d Approcc Innovatv pr l Progtto n Zona Ssmca la Mtgazon dlla Vulnrabltà dll Struttur Salrno, 12 13 fbbrao 2006 Una pù smplc procdura pr la valutazon dlla rsposta ssmca dll struttur attravrso anals

Dettagli

Chimica fisica superiore Modulo 1 La diffrazione Sergio Brutti

Chimica fisica superiore Modulo 1 La diffrazione Sergio Brutti Cmca sca supror Moduo La drazon Srgo Brutt Com ntrprtar un drattogramma? ua normazon possono ssr tratt da un drattogramma?. La poszon angoar n cu cadono rss d drazon. L ntnstà d rss d drazon. La poszon

Dettagli

Le soluzioni della prova scritta di Matematica del 7 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 7 Febbraio 2014 L soluzon dlla prova scrtta d Matmatca dl 7 Fbbrao. Sa data la unzon ln ln a. Trova l domno d. b. Scrv, splctamnt pr stso, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l vntual ntrszon

Dettagli

LEZIONE N 11 IL CEMENTO ARMATO PRECOMPRESSO

LEZIONE N 11 IL CEMENTO ARMATO PRECOMPRESSO Unvrstà dgl Stud d Roma Tr Facoltà d Inggnra Corso d Tcnca dll dll Costruon I Modulo / 007-0808 LEZIOE 11 IL CEMETO RMTO PRECOMPRESSO IL CO RISULTTE IL SISTEM EQUILETE LL PRECOMPRESSIOE Gnraltà Il sstma

Dettagli

Soluzioni. 1. Data la funzione. a) trova il dominio di f

Soluzioni. 1. Data la funzione. a) trova il dominio di f Soluzon Data la funzon a) trova l domno d f f ( ) + b) ndca qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c) dtrmna l vntual ntrszon con gl ass d) studa l comportamnto dlla funzon

Dettagli

A.A Elettronica - Soluzioni della prova scritta del 01/07/03

A.A Elettronica - Soluzioni della prova scritta del 01/07/03 A.A. -3 lttronca - Soluzon dlla prova scrtta dl /7/3 ) Assumamo nzalmnt ch l gnrator rogh una corrnt nulla applchamo l torma d Thvnn a mont dl dodo allora sosttundo l gnrator d corrnt con un crcuto aprto

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (3)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (3) Corso d Mtod Matmatc pr l Inggnra A.A. 206/207 Esrc svolt sull funon d varabl complssa 3 Marco Bramant Poltcnco d Mlano Novmbr 8, 206 Classfcaon dll sngolartà d una funon, calcolo d svlupp d Laurnt, calcolo

Dettagli

Facoltà di Ingegneria Corso di Problemi Strutturali dei Monumenti e dell edilizia Storica Esercizio svolto da Fabrizio Cortesini

Facoltà di Ingegneria Corso di Problemi Strutturali dei Monumenti e dell edilizia Storica Esercizio svolto da Fabrizio Cortesini Faoltà d Inggnra orso d Problm Struttural d Monumnt dll dlza Stora Esrzo svolto da Fabrzo ortsn Ex. Aro alolo dl pù polo moltplator d ollasso d un aro soggtto a forz vrtal ostant d a forz orzzontal rsnt

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L) L soluzon dlla prova scrtta d Matmatca pr l corso d laura n Chmca Tcnolo Farmacutch raruppamnto A-L. Data la unzon a. trova l domno d b. scrv, splctamnt pr stso, qual sono l ntrvall n cu rsulta postva

Dettagli

15. Giunzioni di materiali compositi

15. Giunzioni di materiali compositi 15. Gunzon d matra compost 15.1. Gnratà r a costruzon d macchn sstm mccanc compss è n gnr ncssaro unr var componnt mdant opportun gunzon. nndo conto ch gunzon costtuscono quas smpr 'mnto pù dbo d un sstma

Dettagli

Fisica Generale B. 4. Corrente Elettrica. Corrente Elettrica. Modello di Drude-Lorentz. Conduttori Elettrolitici e Conduttori Metallici

Fisica Generale B. 4. Corrente Elettrica. Corrente Elettrica. Modello di Drude-Lorentz. Conduttori Elettrolitici e Conduttori Metallici Fsca Gnra Corrnt ttrca bbamo vsto ch n condzon statch (qubro) campo ttrco a ntrno d un conduttor è smpr nuo: trmnt g ttron d conduzon s muovrbbro, accrat da campo, pr cu condzon non sarbbro pù statch.

Dettagli

Esame di Elettronica Corso di Laurea in Ingegneria delle Telecomunicazioni 13 febbraio 2008 Parte A

Esame di Elettronica Corso di Laurea in Ingegneria delle Telecomunicazioni 13 febbraio 2008 Parte A Esam d Elttronca Corso d Laura n Inggnra dll Tlcomuncazon 13 bbrao 2008 Part A 1. S consdr un amplcator d tnson con A v0 =1000, R n = 2 MΩ, R out = 100 Ω. S razon l amplcator n modo da ottnr una rsstnza

Dettagli

ELEMENTI DI ELABORAZIONE DEI SEGNALI PER TELELOCALIZZAZIONE

ELEMENTI DI ELABORAZIONE DEI SEGNALI PER TELELOCALIZZAZIONE ELEMENTI DI ELABOAZIONE DEI SEGNALI PE TELELOCALIZZAZIONE nota pr l corso d Elaborazon d Sgnal pr Tlcomuncazon a cura d F. Bndtto G. Gunta. Introduzon al problma dlla dcson I componnt d bas d un problma

Dettagli

4 -Trasformata di Fourier discreta 2D (DFT-2D)

4 -Trasformata di Fourier discreta 2D (DFT-2D) Prssa 4 -Trasorata d ourr dscrta D DT-D Sa u ag capoata rapprstata da ua taba x: - - - Dzo proprtà da DT-D - Oprazo su ag oro trasorat - orua d vrso da DT-D - Eguagaza d Parsva - - - - -- S cosdra a taba

Dettagli

Esame di Matematica e Abilità Informatiche - Settembre Le soluzioni

Esame di Matematica e Abilità Informatiche - Settembre Le soluzioni Esam d Matmatca Abltà Informatch - Sttmbr 03 L soluzon. Data la funzon f( ) a. trova l domno d f b. scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c. dtrmna

Dettagli

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04

Riccardo Sabatino 463/1 Progetto di un telaio in c.a. A.A. 2003/04 Rccardo Sabatno 463/1 Progetto d un telao n c.a. A.A. 003/04 3.3 Il metodo degl spostament per la rsoluzone del telao Il metodo degl spostament è basato sulla valutazone de moment flettent ce agscono sugl

Dettagli

7. Metodo delle deformazioni

7. Metodo delle deformazioni 7. Metodo dee deformazon I procedmento fn qu utzzato per a rsouzone de g eement perstatc è chamato metodo dee forze e s svuppa secondo seguent passagg: s dmnusce grado d vncoo de eemento strutturae, fno

Dettagli

Alessandro Ottola matr. 208003 lezione del 11/3/2010 ora 10:30-13:30. Parete omogenea sottoposta a differenze termiche e diffusione

Alessandro Ottola matr. 208003 lezione del 11/3/2010 ora 10:30-13:30. Parete omogenea sottoposta a differenze termiche e diffusione Alssandro Ottola matr. 0800 lzon dl //00 ora 0:0-:0 Indc Dagramma d Glasr... Part omogna sottoosta a dffrnz trmch dffuson... Dagramma d Glasr r art omogna... 4 Dagramma d Glasr r art multstrato... 5 Esrczo

Dettagli

MATEMATICA GENERALE (A-K) -Base 13/2/2004

MATEMATICA GENERALE (A-K) -Base 13/2/2004 MATEMATICA GENERALE (A-K) -Bas //004 PRIMA PARTE ) Individuar la rimitiva dlla funzion f(x) = x log x assant r il unto (4,) ) Calcolar, usando la d nizion, la drivata dlla funzion f(x) = x + nl unto x

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

Il Metodo degli Elementi Finiti

Il Metodo degli Elementi Finiti Il Mtodo dgl Elmnt Fnt Il Mtodo dgl Elmnt Fnt Dall dspns dl prof. Daro Amodo dall lzon dl prof. Govann Santucc L.Corts Progttazon Mccanca agl Elmnt Fnt (a.a. 20-202) Il Mtodo dgl Elmnt Fnt Introduzon In

Dettagli

Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica

Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica CdL Magstral n Inggnra Mccanca Corso d Progttazon Assstta da Computr Part I Corso d Progttazon Assstta da Computr (PAdC) CLM Ing. Mccanca Part I Introduzon alla tora dl mtodo agl Elmnt Fnt pr l anals struttural

Dettagli

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014 L soluzon dlla prova scrtta d Matmatca dl Aprl. Sa data la unzon 3 a. Trova l domno d b. Scrv, splctamnt pr stso non sono sucnt dsgnn, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l

Dettagli

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA Captolo TRV CONTINU. TRV CONTINU FORU PRIINRI RIGURDNTI TRV PPOGGIT Trave appoggata soggetta a: carco () moment, cedment Determnaon delle rotaon,. a) Carco - - d d - d ( ) d 77 Captolo TRV CONTINU b) oment,

Dettagli

G. Parmeggiani, 11/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 11 (prima parte) = ( x) 2i x

G. Parmeggiani, 11/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 11 (prima parte) = ( x) 2i x G. Parmggan, //29 Algbra Lnar, a.a. 28/29, Scuola d Scnz - Cors d laura: Studnt: Statstca pr l conoma l mprsa Statstca pr l tcnolog l scnz numro d MATRICOLA PARI Svolgmnto dgl Esrcz pr casa (prma part)

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2 + ELETTOMAGNETISMO APPLICATO ALL'INGEGNEIA ELETTICA ED ENEGETICA_B (ultima modifica 7/0/07) Enrgia Forz lttrostatich F Una carica positiva posta in un punto P a distanza da una carica positiva fissa ch

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica. Dip. di Ingegneria Civile e Industriale (DICI), 1 piano

Corso di Progettazione Assistita da Computer (PAdC) CLM Ing. Meccanica. Dip. di Ingegneria Civile e Industriale (DICI), 1 piano Corso d Progttazon Assstta da Computr Part I Corso d Progttazon Assstta da Computr (PAdC) CLM Ing. Mccanca CdL Magstral n Inggnra Mccanca Part I Introduzon alla tora dl mtodo agl Elmnt Fnt pr l anals struttural

Dettagli

Effetti di carico. Ai fini dei problemi di effetto di carico, i casi 3) e 4) sono equivalenti tra loro

Effetti di carico. Ai fini dei problemi di effetto di carico, i casi 3) e 4) sono equivalenti tra loro ppunt d Msur Elttrch Efftt d carco Introduzon... oltmtro ampromtro... Studo dgl fftt d carco pr una msura d tnson...2 Caso partcolar: msura d tnson con mpdnza ntrna dl crcuto rsstva 5 INTODUZIONE oglamo

Dettagli

Elemento Finito (FE) per travi 2D

Elemento Finito (FE) per travi 2D Eemento Fnto (FE) per trav D Govann Formca corso d Cacoo Automatco dee Strutture AA. 9/1 Premesse a modeo modeo fsco prncp d banco e dsspazone { Pest P nt = { q u S u = P nt φ modeo smuato (dscretzzazone)

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduon al METODO DEGLI ELEMENTI FINITI Ossrvaon su mtod varaonal approssmat classc L unon approssmant dvono: Soddsar rqust d contnutà Essr lnarmnt ndpndnt complt Soddsar l condon al contorno ssnal Dcoltà:

Dettagli

V E > 0, V C < 0 W B >> L B J C J E. Catodo 1 - n Anodo - p Catodo 2 - n. n p (x) p n20. p n1 (x) p n10. n p0. p n2 (x) x W B.

V E > 0, V C < 0 W B >> L B J C J E. Catodo 1 - n Anodo - p Catodo 2 - n. n p (x) p n20. p n1 (x) p n10. n p0. p n2 (x) x W B. O AO POA A GUZO (J) onsdramo qu d sguto l caso d un transstor d to nn nl qual l concntrazon d drogant nll tr rgon soddsfno l sgunt dsuguaglanz (la gustfcazon vrrà data ù avant): >> >>. Assumamo com vrs

Dettagli

------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------ CAPITOLO ELEMENTI DI TERMOFLUIDODINAMICA ------------------------------------------------------------------------------------------------

Dettagli

Esercizi di Elettrotecnica. prof. Antonio Maffucci Università degli Studi di Cassino. Circuiti in regime stazionario

Esercizi di Elettrotecnica. prof. Antonio Maffucci Università degli Studi di Cassino. Circuiti in regime stazionario srcz d lttrotcnca prof. ntono Maffucc Unrstà dgl Stud d assno rcut n rgm stazonaro rson. ottobr 7 . Maffucc srcz d lttrotcnca - rcut n rgm stazonaro rson. ottobr 7. Sr paralllo parttor. S.. alcolar la

Dettagli

teoria dell Orbitale Molecolare - Molecular Orbital (MO)

teoria dell Orbitale Molecolare - Molecular Orbital (MO) toa dll Obtal olcola - olcula Obtal (O) L ng l funzon d onda dgl stat stazona d un sstma quantstco sono dat dall soluzon dlla quazon d Schodng: P un sstma molcola, composto da nucl d ltton la Ψ è funzon

Dettagli

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a.

La forma generale di una disequazione di primo grado è la seguente: ax + b > 0 ( o ax + b < 0) con a e b numeri reali. b se a > 0 a. Disquazioni di I grado La forma gnral di una disquazion di primo grado è la sgunt: a + b > o a + b < con a b numri rali. La soluzion dlla disquazion si ottin dai sgunti passaggi: a + b > a > b > < b s

Dettagli

INDICI DI POSIZIONE O DI TENDENZA CENTRALE

INDICI DI POSIZIONE O DI TENDENZA CENTRALE IDICI DI POSIZIOE O DI TEDEZA CETRALE Gl ndc d poszon, o d tndnza cntral, sono numr ch sprmono la snts numrca d una dstrbuzon statstca (d ora n avant ndcata dal smbolo ) d una varabl X. I valor ossrvat

Dettagli

MATRICE DI TRASFERIMENTO

MATRICE DI TRASFERIMENTO MATRICE DI TRASFERIMETO In qusto captolo vn prsntato l mtodo d calcolo dtto mtodo dlla matrc d trasfrmnto. Esso rsulta molto utl pr dtrmnar n modo satto l comportamnto crtco d sstm ch possono ssr dscrtt

Dettagli

Calcolo delle Probabilità: esercitazione 10

Calcolo delle Probabilità: esercitazione 10 Calcolo dll Probablà: srcazon 0 Argono: Dsrbuzon noral (pag. 47 sgun dl lbro d so). Valor aso, varanza (pag. sgun). Dsrbuzon bvara dscr (pag. 44 sgun) covaranza (pag 45 sgun). NB: asscurars d conoscr l

Dettagli

ESPERIMENTO DELLA LENTE E DELLA CANDELA

ESPERIMENTO DELLA LENTE E DELLA CANDELA S.S.I.S. a.a. 003-004 RELAZIONE di Laboratorio di Didattica dlla Fisica (Esprimnto dlla lnt dlla candla) di MARIA LEPORE SARA MARSANO I anno, Classi 47-48-59 Pro.ssa Tuccio SSIS a.a. 003-004 Laboratorio

Dettagli

Trasformatore. Parte 2 Trasformatori trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-11-2012) Trasformatore trifase (1)

Trasformatore. Parte 2 Trasformatori trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-11-2012) Trasformatore trifase (1) Trasformator Part Trasformator trfas www.d.ng.unbo.t/prs/mastr/ddattca.htm (vrson dl 1-11-01) Trasformator trfas Pr trasfrr nrga lttrca tra du rt trfas s possono utlzzar tr trasformator monofas, ugual

Dettagli

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè:

Poiché l argomento del logaritmo naturale è una quantità sempre positiva, basta imporre che l argomento dell arcoseno sia compreso tra 1 ed 1, cioè: 78 ( ) Funzion 6: f( ) arcsnln + (funzion trascndnt) CAMPO DI ESISTENZA Poiché l argomnto dl logaritmo natural è una quantità smpr positiva, basta imporr ch l argomnto dll arcosno sia comprso tra d, cioè:

Dettagli

Processi di separazione

Processi di separazione 6. Procss d sparazon 6.. Carattrstch d procss d sparazon La sparazon d soluzon mscl n loro sngol componnt costtusc un oprazon d grand mportanza pr l ndustra chmca, ptrolchmca ptrolfra. Quas tutt procss

Dettagli

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola: UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esam di MATEMATICA (A) San Floriano, //9 Informazioni prsonali Si prga di indicar il proprio nom, cognom

Dettagli

Il problema della Trave Inflessa

Il problema della Trave Inflessa Il problma dlla Tra Inflssa q F EI m Problma dlla tra EI q L F m ϕ - c ϕ spostamnto trasrsal rotaon curatura flssonal y M EI c momnto flttnt T d q T M q -T taglo carco trasrsal M M T TdT MdM quaon d campo

Dettagli

Comandi di volo. Tra le caratteristiche che deve avere un aeromobile figurano la: stabilità manovrabilità e controllabilità

Comandi di volo. Tra le caratteristiche che deve avere un aeromobile figurano la: stabilità manovrabilità e controllabilità Scopo dl progtto ssgnato lo schma d comand rgd pr l tmon d proondtà dl vcolo B 339, con l pots ch l plota srct sulla barra d comando una orza d 9 [] dtrmnar: 1. l orz agnt su ogn asta;. l momnto d crnra

Dettagli

1 FORZE, VINCOLI E REAZIONI VINCOLARI

1 FORZE, VINCOLI E REAZIONI VINCOLARI INTRODUZIONE Premessa La Scenza dee ostruzon è a dscpna d base de ngegnera strutturae. Essa ha come scopo prncpae queo d fornre g strument per vautare a scurezza e a funzonatà dee strutture resstent dee

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Definizione della lossodromia Figura 6.1

Definizione della lossodromia Figura 6.1 MRIO UTGGIO CPITOO NIGZIONE OSSODROMI E ORTODROMIC.0 a navgazon utlzza dffrnt trmn pr dscrvr dvrs mtod matmatc pr dfnr la drzon la dstanza tra du dffrnt punt sulla suprfc dlla trra. S possono dfnr l sgunt

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

Definiamo Centro di Massa (CM) del sistema il punto individuato dalla coordinata: a) d

Definiamo Centro di Massa (CM) del sistema il punto individuato dalla coordinata: a) d Cntro d assa d un ssta Assuao un corpo coplsso qualsas costtuto da n punt lntar cascuno d assa lo charo ssta d punt atral. Partao da un ssta atto da du ass d. Consdrao co ass dl ssta d rrnto, la rtta passant

Dettagli

Enrico Borghi LA LEGGE FONDAMENTALE DELLA MECCANICA NEWTONIANA PER UN SISTEMA DI PARTICELLE

Enrico Borghi LA LEGGE FONDAMENTALE DELLA MECCANICA NEWTONIANA PER UN SISTEMA DI PARTICELLE Enrco Borgh LA LEGGE FONDAMENTALE DELLA MECCANICA NEWTONIANA PER UN SISTEMA DI PARTICELLE La mccanca nwtonana sstm costtut a pú partcll puntform può ssr svluppata partno alla lgg fonamntal rfrta a una

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics)

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics) CONOMIA INTRNAZIONAL Bnno CLM - Prof. B. Quntr IL TASSO DI CAMBIO Anno Accadmco 2012-2013, I Smstr (Tratto da: Fnstra-Taylor: Intrnatonal conomcs) S propon, d sguto, una brv rassgna d prncp fondamntal

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

f x è pari, simmetrica rispetto all asse y, come da

f x è pari, simmetrica rispetto all asse y, come da Esam di Stato 7 Problma Confrontiamo alcun proprità dlla funzion con l informazioni dducibili dal grafico: f f quindi figura f, compatibil con il grafico Imponiamo ch f a Notiamo ch f è pari, simmtrica

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Appendice 1. Approfondimento dei metodi statistici

Appendice 1. Approfondimento dei metodi statistici Appndc 1 Approfondmnto d mtod statstc APPROFONDIMENTO DEI METODI STATISTICI TASSO STANDARDIZZATO PER ETÀ DI MORTALITÀ (TSDM) E DI OSPEDALIZZAZIONE (TSDH). Il Tasso Standardzzato (TSD) è calcolato com

Dettagli

La carta di Smith. Origine

La carta di Smith. Origine a carta d Smth uca nctt a.a. 08-09 Orgn Fu ntrodotta da P. Smth d Bll abs nl 1939 Error rtnrla suprata da mtod numrc Molt strumnt d msura CAD prsntano dat n output su carta d Smth Molt problm sull ln d

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Sistemi trifase. Parte 1. (versione del ) Sistemi trifase

Sistemi trifase. Parte 1.   (versione del ) Sistemi trifase Sistmi trifas Part www.di.ing.unibo.it/prs/mastri/didattica.htm (vrsion dl 5--08) Sistmi trifas l trasporto la distribuzion di nrgia lttrica avvngono in prvalnza pr mzzo di lin trifas Un sistma trifas

Dettagli

Indice delle esercitazioni (Ing. Rossato)

Indice delle esercitazioni (Ing. Rossato) ndc dll srctazon (ng. ossato) Esrctazon numro Potnza 8 Marzo 999 Connzon Carattrstch Esrctazon numro Gnrator ral 5 Marzo 999 l dodo Parttor d tnson d corrnt Esrctazon numro Shft d gnrator Torma d Mllman

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 20 GIUGNO 207 Si risolvano cortsmnt i sgunti problmi, sapndo ch vrranno valutati:. la corrttzza dl risultato ottnuto dlla procdura utilizzata; 2. la compltzza

Dettagli

VALUTAZIONI DI ERRORE

VALUTAZIONI DI ERRORE CORSO DI PROGETTAZIONE ASSISTITA DELLE STRUTTURE MECCANICHE PARTE IIIA VALUTAZIONI DI ERRORE VALUTAZIONE DELL ERRORE Il mtodo EF fornsc soluzon approssmat. S l f.n d forma rspttano dtrmnat condzon, l mtodo

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Mtodolog nforatch pr la chca Dr. Srgo Brutt Mtodolog d anals d dat 4 -0,08-0,07-0,06-0,05-0,04-0,03-0,0-0,0 0,00 0,0 0,0 0,03 0,04 0,05 0,06 0,07 0,08 Valor sura Frqunza Rcaptolo gnral Consdrao un apa

Dettagli

ESERCIZI AGGIUNTIVI - MODELLO DA-OA

ESERCIZI AGGIUNTIVI - MODELLO DA-OA ESERCIZI AGGIUNTIVI - MODELLO DA-OA ESERCIZIO 1 Considrat un conomia dscritta dall sgunti quazioni: C = C I = I G = G TA = t TR = TR M = M = = + cd br * = 212 con C con I con G con TR con M = 8 = 4 = 6

Dettagli

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004 D Fondamnti di Inormatica Inggnria Mccanica, Elttrica, Gstional Proa scritta dl 13 April 2004 NOME MATRICOLA Esrcizio 1 Dscrir qal nzion di x n calcola l algoritmo sprsso dal diagramma di lsso a lato,

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

RISOLUZIONE DI UN TELAIO CON IL METODO MATRICIALE

RISOLUZIONE DI UN TELAIO CON IL METODO MATRICIALE Università degi Studi di Paermo Facotà di Ingegneria Dipartimento di Ingegneria Strutturae e Geotecnica a.a. 5-6 RISOLUZIOE DI U TELAIO CO IL METODO MATRICIALE Si ringrazia Ing. Faio Di Trapani per a coaorazione

Dettagli

Norma UNI EN ISO 13788

Norma UNI EN ISO 13788 UNI EN ISO 13788 (2003: PRESTAZIONE IGROTERMICA DEI COMPONENTI E DEGLI ELEMENTI PER EDILIZIA TEMPERATURA SUPERFICIALE INTERNA PER EVITARE L'UMIDITA' SUPERFICIALE CRITICA E CONDENSAZIONE INTERSTIZIALE METODO

Dettagli

Teoria e applicazioni delle linee di trasmissione_2

Teoria e applicazioni delle linee di trasmissione_2 6g_EAEE_NEE D TRASMSSONE_ (ultma modfca //7) Tora applcaon dll ln d trasmsson_ M. Usa 6g_EAEE_ NEE D TRASMSSONE_ 6g_EAEE_NEE D TRASMSSONE_ Tora applcaon dll ln d trasmsson_ Dall quaon armonch nl tmpo dll

Dettagli

11. CRITERI DI RESISTENZA

11. CRITERI DI RESISTENZA . CRITERI DI RESISTENZA La vrfca d rtnza ha o copo d tabr o tato tnona d'mnto truttura anazzato è ta da provocarn cdmnto nto com rottura o nrvamnto. I probma fondamnta è quo mttr n razon paramtr crtc d

Dettagli

Equilibri eterogenei

Equilibri eterogenei Equlbr eterogene L energa lbera è funzone della ressone, Temperatura e Composzone G = G (, T, n ) l dfferenzale completo è δg δg dg = d + δ δt δg δn T,, n j Rcordando che: s ha che dt + δg n T, n, n δ,

Dettagli

Matematica per l Economia (A-K) I Esonero 26 ottobre 2018 (prof. Bisceglia) Traccia A e C

Matematica per l Economia (A-K) I Esonero 26 ottobre 2018 (prof. Bisceglia) Traccia A e C Matmatica pr l Economia (A-K) I Esonro 6 ottobr 8 (pro Biscglia) Traccia A C Sia A b dopo avrn data la dinizion riportar l Insim dll Parti A Data la unzion P riportar la rtta o la unzion g ch dscrivr con

Dettagli

Appendice B Il modello a macroelementi

Appendice B Il modello a macroelementi Appendce B Il modello a macroelement Al fne d una descrzone semplfcata del comportamento delle paret nel propro pano, è stata svluppata una metodologa d anals semplfcata che suddvde la parete murara con

Dettagli

Il Metodo degli Elementi Finiti. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci

Il Metodo degli Elementi Finiti. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Dall dspns dl prof. Daro Aodo dall lzon dl prof. Govann Santucc In alcun struttur la dvson n porzon lntar, faclnt schatzzabl, dscnd datant dal dsgno dalla tcnologa utlzzata pr la costruzon. L carattrstch

Dettagli

Il Rgistro E-PRTR (Europan Pollutant Rlas and Transfr Rgistr) Attuazion dl Rgolamnto (CE) n. 166/06 LA DICHIARAZIONE PRTR Dlgs 46/2014 (rcpimnto IED), con l art. 30 introduc pr la prima volta l sanzioni

Dettagli