Metodi d integrazione di Montecarlo
|
|
|
- Giuseppa Colli
- 10 anni fa
- Visualizzazioni
Transcript
1 Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe, cioè di riproduzioe dell reltà. L simulzioe è u isieme di metodi e di criteri prticolri per mezzo dei quli si può costruire e studire u modello che poss rppresetre uo o più spetti di u feomeo oto. L uso del computer è di otevole iuto ll ricerc scietific e risult utile i lcui cmpi dell simulzioe. L simulzioe si può distigue i: simulzioe logic simulzioe umeric L simulzioe logic cosiste ell costruzioe rtificile di modelli di u dto sistem che verro studiti i relzioe u determito crttere d esempio: 1. costruzioe di modelli di erei d sottoporre prticolri esperimeti di reodimic 2. costruzioe di modelli utomoilistici d sottoporre crsh test 3. costruzioe di modelli cocreti di fricti sottoposti prticolri test di scosse telluriche ecc Si prl di simulzioe umeric qudo il modello preso i esme viee rppresetto d elemeti umerici e d operzioi sugli stessi. Questo tipo di simulzioe risult molto utile i quto cosete di relizzre modelli rtificili m cocreti, che soo cioè immgie dell reltà m che possoo essere riprodotti ifiite volte. Tr i procedimeti di simulzioe più fmosi ricordimo: l metodi di Motecrlo, il Pert, il C.P.M. Trtteremo per or solmete i metodi di Motecrlo. Si trtt di procedimeti co i quli si costruiscoo modelli proilistici di processi mtemtici sui qulisi eseguoo esperimeti di cmpiometo. metodi di Motecrlo si ppoggio su sequeze di umeri pseudo-csuli A tle scopo si possoo utilizzre pposite tvole di umeri csuli, oppure vvlersi di u qulsisi procedimeto che produc umeri letori. Come prim ppliczioe geerlmete si cit il clcolo del umero π fodto sull esperimeto ideto dl turlist G.L.Buffo (1773) che prevede di trccire su u foglio u fscio di rette prllele equidistti, dove è l distz tr due di esse, e di lcire su di esso u go di lughezz l ; co tle esperimeto Buffo h potuto stimre il umero π determido l proilità che l go cdedo sul foglio icotri u rett. Altri esempi di ppliczioi soo el cmpo dell lisi umeric e i prticolre oi ci occuperemo dell pprossimzioe del vlore di u itegrle defiito. Dispes di lortorio.s. 2006/07 doceti Cerisol Nicolett, De poli More
2 All presetzioe dei metodi d itegrzioe premettimo il seguete importte teorem, che permette di ricvre l fuzioe di desità di u v.c. Y trsformt medite u fuzioe mooto dell v.c. X dell qule soo ote cmpo di vrizioe e fuzioe di desità: Teorem Si X u v.c. cotiu defiit i [;] e co fuzioe di desità coosciut f(x) e si g(x) u fuzioe di trsformzioe mooto ttrverso l qule si costruisce l v.c. trsformt Y g(x). L fuzioe di desità dell v.c. trsformt Y è dt dll formul: f ( Y ) f ( X ) Dimostrzioe Assumimo che g(x) si u fuzioe mooto crescete i [;], duque il cmpo di vrizioe dell v.c. Y è: [g();g()] e può essere rppresetto grficmete i u sistem di ssi crtesii i cui i sciss si poe il cmpo di vrizioe di X ed i ordit, ivece, il cmpo di vrizioe di Y: Y g() y g(x) g() x X Poiché l fuzioe è mooto, esiste l su fuzioe ivers, che idichimo co g -1 (x), e che permette, cooscedo il vlore di Y, di ritorre l corrispodete vlore di X. Allor, clcolre l proilità dell eveto Y y equivle clcolre l proilità dell eveto X x, dove x è l determizioe dell v.c. X che h immgie ttrverso l fuzioe g(x) el vlore y, cioè xg -1 ( e duque vle l seguete cte di uguglize: (1) P(Y F(Y P(X x) P(< X x) P(< X g -1 () F(X g -1 () F(X) sitesi: (2) F(Y F(X g -1 () F(X) Dove, ovvimete, F(Y, F(X x) ho sigificto rispettivmete di fuzioe di riprtizioe dell v.c. Y e dell v.c. X. Derivimo rispetto y l ugugliz (2): Dispes di lortorio.s. 2006/07 doceti Cerisol Nicolett, De poli More
3 1 df ( Y X g ( ) X ) quest derivt l ultimo ddedo di destr: df ( X ) è ullo perché F(X) è u costte umeric, metre il termie di siistr df ( Y è l fuzioe di desità dell v.c. Y. Rime duque d derivre l qutità F(X g -1 (), che è u fuzioe compost e come si s l derivt di fuzioi composte è ugule l prodotto delle derivte: Y f ( Y 1 X x) dg ( * X x) * f ( X x) * Se g(x) è mooto decrescete, llor il cmpo di vrizioe dell v.c. Y è ivertito rispetto quello di X ed è: [g();g()] come mostr il seguete grfico Y g() y g(x) g() X x e duque: (3) P(Y F(Y P(X x) P(x< X ) P(g -1 (< X ) F(X ) F(X g -1 () Co pssggi loghi quelli precedeti si ottiee l ugugliz: Y f ( Y 1 X x) dg ( * X x) * f ( X x) * e poiché l fuzioe g(x) è mooto decrescete, llor l derivt prim di X rispetto y srà egtiv e duque tutto il prodotto risulterà positivo. geerle llor : Dispes di lortorio.s. 2006/07 doceti Cerisol Nicolett, De poli More
4 f ( Y f ( X x) * e co questo il teorem è dimostrto. L METODO DEL VALOR MEDO Se f ( x) o può essere clcolto co metodi diretti, llor, rifcedosi l teorem del vlor medio, si h: c [,] f(c) f ( x) d cui si ottiee f ( x) (-) f(c) dove 1 f(c) viee detto vlor medio di f(x) i [,]. U dell crtteristiche che deve vere u geertore di umeri pseudocsuli per essere cosiderto uoo è che restituisc vlori uiformemete distriuiti. Si llor X u vriile csule uiforme i [,] co desità di proilità f(x) 1 x 0 ltrove Se Yg(X) è u fuzioe cotiu, mooto e derivile llor l su fuzioe di desità di proilità è: f ( Y ) f ( X ) e il vlor medio (o sperz mtemtic) di Y o di g(x) risult essere: M(Y) M( g(x) ) g ( X ) f ( X ) g( X ) 1 1 g( X ) 1 oltre, poiché l medi cmpiori è uo stimtore corretto dell medi dell popolzioe, cosiderto u cmpioe di umeri pseudocsuli x 1, x 2,..., x uiformemete distriuiti i [;], si h M( g(x) ) i1 g( xi) e quidi (-) i1 g( xi) (1) e lim ( ) * + i 1 g( xi). l vlore dell itegrle è e pprossimto dll re di u rettgolo che h come se l itervllo d itegrzioe e come ltezz il vlore medio empirico di u successioe di vlori di ordit di puti sull curv g(x) clcolti prtire d u sequez di umeri pseudocsuli uiformemete distriuiti i [;]. Dispes di lortorio.s. 2006/07 doceti Cerisol Nicolett, De poli More
5 PROCEDMENTO RSOLUTVO Si dt l fuzioe g(x) di cui si oto g ( x) per poter effetture u cofroto tr il vlore effettivi dell itegrle e il vlore pprossimto; si geerio cmpioi csuli vi vi sempre più umerosi di umeri uiformemete distriuiti i [;] e, si vluti l (1) per ciscu cmpioe, verificdo poi che tle vlore tede ll umetre dell umerosità del cmpioe. Se L METODO DEL RETTANGOLO O N / OUT g ( x) o può essere clcolto co metodo diretti, llor, detto M il mssimo dell fuzioe f(x) ell itervllo [,], è possiile pprossimre medite il seguete metodo: Y y M g(x) X Si X u v.c. uiforme ell itervllo [,] e Y u v.c. uiforme ell itervllo [0,M], co Mmx[g(x)] i [;]. Si geero coppie ordite (xi,yi) che rppreseto le coordite di puti pprteeti l rettgolo dell figur. Degli puti, k vro ordit miore od ugule g(xi); il umero di questi puti (k) rpportto l umero totle di puti geerti () è l proilità frequetist dell eveto N il puto coordite pseudocsuli (xi,yi) cde ell porzioe di pio sottes dll curv g(x). ftti d ogi puto si può ssocire u prov dicotomic che h come esiti possiili l eveto N ed il suo complemetre e l prov, i virtù dell proprietà d idipedez dei geertori di umeri pseudocsuli, viee ripetut sempre elle medesime codizioi iizili per volte. k P f(n) L proilità teoric dell eveto A è dt ivece dl rpporto delle due ree rispettivmete: umertore l re sottes dll curv g(x) e deomitore l re del rettgolo ABCD circoscritto d, cioè: P(N) ( ) M e quidi Dispes di lortorio.s. 2006/07 doceti Cerisol Nicolett, De poli More
6 P f(n) D cui si ricv u pprossimzioe di : k ( ) M P(N) ( ) M * risult evidete che tle pprossimzioe miglior ll umetre di. CONFRONTO CON METOD MATEMATC due metodi di Motecrlo pplicti possoo essere cofrotti co i metodi mtemtici dei rettgoli, dei trpezi e delle prole. Fissti: y f(x) l fuzioe d itegrre; [,] l itervllo di itegrzioe; il umero di puti geerti (ei metodi di Motecrlo) il umero di prti i cui dividere [,] (ei metodi mtemtici) si dovrà cofrotre co i vlori pprossimti otteuti co i 5 metodi. k Dispes di lortorio.s. 2006/07 doceti Cerisol Nicolett, De poli More
L INTEGRALE DEFINITO b f (x) d x a 1
L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio
3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3
MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti
, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...
. serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)
Successioni e serie. Ermanno Travaglino
Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,
1. L'INSIEME DEI NUMERI REALI
. L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli
- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:
- - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive
Progressioni geometriche
Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che
CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA
CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)
Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:
Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo
1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =
Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte
Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani
Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3
EQUAZIONI ESPONENZIALI -- LOGARITMI
Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =
dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di
Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle
CONCETTI BASE DI STATISTICA
CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto
SUCCESSIONI E SERIE NUMERICHE
SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua
si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x
Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in
5 ln n + ln. 4 ln n + ln. 6 ln n + ln
DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio
Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica
Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione
Successioni. Grafico di una successione
Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario
SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1
SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:
UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario
UNIVERSITA DEGLI STUDI DI FERRARA Scuol Di Specilizzzioe Per L isegmeto Secodrio CLASSE DI SPECIALIZZAZIONE A049-A059 Tem: Progressioi Aritmetiche e Geometriche. Successioi. Limite di u Successioe. Fuzioi
Calcolo delle Radici Veriano Veracini [email protected]
Verio Vercii Clcolo delle rdici Clcolo delle Rdici Verio Vercii [email protected] Premess Lo scopo di queste pgie è quello di descrivere lcui metodi prtici per il clcolo delle rdici, compresi lcui metodi
Soluzione La media aritmetica dei due numeri positivi a e b è data da M
Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è
I appello - 29 Giugno 2007
Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (
SUCCESSIONI NUMERICHE
SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si
3. Funzioni iniettive, suriettive e biiettive (Ref p.14)
. Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y
La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000
Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell
Anno 5 Successioni numeriche
Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai
L operazione di Convoluzione,
Revisioe mg 015 L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe Cludio Mgo wwwcm-physmthet CM_Portble MATH Notebook Series L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe
LA DERIVATA DI UNA FUNZIONE
LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:
Progressioni aritmetiche e geometriche
Progressioi ritmetiche e geometriche 7. Progressioi ritmetiche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe ritmetic se l differez fr qulsisi termie dell successioe
Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.
Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione
Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone
Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema
ANALISI MATEMATICA 1
ANALISI MATEMATICA [Apputi per u Igegere] A CURA DI ALESSANDRO PAGHI Riepilogo su: - Vlore Assoluto, Poteze, Logritmi; - Rziolizzzioe; - Grdezze Trigoometriche; - Limiti Notevoli e Forme Idetermite; -
Terzo appello del. primo modulo. di ANALISI 18.07.2006
Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri
ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.
ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità
Foglio di esercizi N. 1 - Soluzioni
Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >
1 Limiti di successioni
Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite
I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)
I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA
V Tutorato 6 Novembre 2014
1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe
PROGETTO SIRIO PRECORSO di MATEMATICA Teoria
Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3
ESERCIZI SULLE SERIE
ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti
CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi
CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI fior 5 esercizi sviluppti + molti limiti otevoli dimostrti di Leordo Clcoi Arevizioi: N = Numertore, D = Deomitore, sg = sego di L clssificzioe che segue è
Appunti sulla MATEMATICA FINANZIARIA
INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi
P ROGRAMMA DEL CORSO DI MAT EMAT ICA Calcolo di erenziale in una variabile. Funzioni: dominio, immagine, funzioni composte ed inverse.
P ROGRAMMA DEL CORSO DI MAT EMAT ICA Clcolo i erezile i u vribile. Fuzioi: omiio, immgie, fuzioi composte e iverse. Esempi: Curve e super ci. Simmetrie, perioicità, gr ci. Fuzioi elemetri: Poteze, espoezile
INTEGRALI INDEFINITI
INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +
IL CALCOLO COMBINATORIO
IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito
Il lemma di ricoprimento di Vitali
Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per
I segnali nelle telecomunicazioni
I segli elle telecouiczioi Geerlità I segli ossoo essere rresetti el doiio del teo edite u grfico crtesio vete i scisse il teo e i ordite i vlori isttei dell'iezz del segle cosiderto. Tle grfico, detto
Il problema delle aree. Metodo di esaustione.
INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.
Successioni numeriche
08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl
Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile
Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di
OPERAZIONI CON LE FRAZIONI ALGEBRICHE
OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre
lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)
Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)
2 Sistemi di equazioni lineari.
Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe
DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE
DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,
52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%
RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base
DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...
SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle
Serie numeriche: esercizi svolti
Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:
