FORMULARIO DI MATEMATICA
|
|
|
- Edoardo Nardi
- 10 anni fa
- Visualizzazioni
Transcript
1 TEST UIVERSITARI FACILI - uitest.isswe.et FORMULARIO DI MATEMATICA Sommrio ALGEBRA... DISEQUAZIOI... 5 GEOMETRIA... 6 GEOMETRIA AALITICA... 7 FUZIOI ESPOEZIALI LOGARITMI... 9 TRIGOOMETRIA... CALCOLO COMBIATORIO... PROBABILITA... PERCETUALI... PROGRESSIOI... LOGICA... 3 STATISTICA... 3
2 TEST UIVERSITARI FACILI - uitest.isswe.et ALGEBRA ISIEMI UMERICI POTEZE PRODOTTI OTEVOLI POTEZA DEL BIOMIO! = SCOMPOSIZIOI
3 TEST UIVERSITARI FACILI - uitest.isswe.et EQUAZIOI DI GRADO = idetermit = impossiile DISEQUAZIO I DI GRADO SISTEMI LIEARI VALORE ASSOLUTO se se OPERAZIOI CO I RADICALI m m m m m RAZIOALIZ ZAZIOI 3
4 TEST UIVERSITARI FACILI - uitest.isswe.et RADICALI DOPPI EQUAZIOI DI GRADO COMPLETE ++= 4 4 EQUAZIOI DI GRADO ICOMPLETE Spuri Pur se / < Relzioe tr oeiieti e rdii e somposizio e ++= Equzioi iomie + = pri o soluz dispri Equzioi triomie + + = t = t + t + = Risolvi ed ppli metodi delle equzioi iomie 4
5 TEST UIVERSITARI FACILI - uitest.isswe.et DISEQUAZIOI DISEQUAZIOI DI GRADO DISEQUAZIOI DI GRADO > E FRATTE Studire i sei dei ttori Le soluzioi soo li itervlli o i sei rihiesti A B.. Sempre >! Studire se è P Per le rtte solo l umertore SISTEMI DI DISEQUAZIOI Grio: U sistem di disequzioi otiee disequzioi d risolvere siolrmete: L soluzioe del sistem è l itersezioe delle soluzioi delle siole disequzioi: S = S S UIOE DI DISEQUAZIOI AX < > U B < > Soluzioe S = S U S Grio: EQUAZIOI E DISEQUAZIOI IRRAZIOALI CO RADICE QUADRATA C.E.: A EQUAZIOI E DISEQUAZIOI CO MODULO A A A A A 5
6 TEST UIVERSITARI FACILI - uitest.isswe.et GEOMETRIA PUTI OTEVOLI DI U TRIAGOLO itersezioe di.. POLIGOO DI LATI CIRCOFEREZA Altezze Bisettrii Medie Assi Bisettrii oli esteri SOMMA DEGLI AGOLI ITERI= 8 AGOLO DI U POLIGOO REGOLARE LATI E AGOLI UGUALI = 8 L sse di u ord pss per il etro. Rio e rett tete soo perpediolri. L olo ll iroerez he isiste su u ord è l metà dell olo l etro orrispodete U triolo isritto i u semiiroerez è rettolo. U qudriltero è: ISCRIVIBILE se li oli opposti soo supplemetri, CIRCOSCRIVIBILE se h uuli le somme dei lti opposti. COVERSIOI MISURE AGOLI AREE DI FIGURE PIAE TEOREMI SUI TRIAGOLI RETTAGOLI AH = AB AC/BC TEOREMA DI PITAGORA: AB + AC = BC I TEOREMA DI EUCLIDE: AB = BH BC AC = CH BC II TEOREMA DI EUCLIDE: AH = BH HC APPLICAZIOI DEL TEOREMA DI PITAGORA QUADRATO d l TRIAGOLO EQUILATERO l h 3 SOLIDI Teorem di Eulero Fe + Vertii Spioli = 6
7 TEST UIVERSITARI FACILI - uitest.isswe.et GEOMETRIA AALITICA DISTAZA e PUTO MEDIO TRA PUTI A ; y B ; y AB y M y y ; y A' B' A' ' B'' y y Equzioe dell RETTA Form impliit Form espliit y m q Coe. olre m Iterett q Coeiiete Aolre m y y Prllelismo e Perpediolrità m m' m' m Rett psste per puti A ; y B ; y Fsi y y y y DISTAZA PUTO - RETTA A ; y d A; r o y o CIRCOFEREZA r C ; CIRCOFEREZA E RETTA 7
8 TEST UIVERSITARI FACILI - uitest.isswe.et PARABOLA o sse // sse y : F ; 4 V ; d : y 4 4 PARABOLA o sse // sse : y V ; 4 F ; 4 d : 4 Ellisse o i uohi sull sse Ellisse o i uohi sull sse y Iperole o i uohi sull sse Iperole o i uohi sull sse y Altre equzioi dell iperole 8
9 DEFIIZIOE DI FUZIOE FUZIOI IVERTIBILI FUZIOI COMPOSTE TEST UIVERSITARI FACILI - uitest.isswe.et FUZIOI ESPOEZIALI LOGARITMI Sio A e B due sottoisiemi o vuoti di R. Si him uzioe di A i B u qulsisi lee he orrispodere d oi elemeto A uo ed u solo elemeto yb. Per idire he è u uzioe di A i B si srive : : A B ; : A yb; oppure y = L elemeto si him vriile idipedete o rometo dell uzioe. L elemeto Y si him vriile dipedete o immie i orrispodez di dell uzioe. L isieme A dei vlori per i quli esiste il orrispodete vlore dell y si die mpo di esistez o isieme di deiizioe o domiio dell uzioe. L isieme A di tutti li elemeti ssoiti i vlori di A si him odomiio dell uzioe. U uzioe si die iettiv sul odomiio B se oi elemeto di B è ssoito u sol volt d u elemeto di A. U uzioe iettiv è he ivertiile : ioè se : A y B è iettiv e ssoimo d oi vlore y del odomiio l elemeto del domiio otteimo u uov uzioe dett uzioe ivers : - : y B A. Sio dte due uzioi : A y B e : y C z D. Se B e C ho elemeti omui si I = B C itersezioe di B e C. Dto he d oi elemeto ssoito d u elemeto y = I si può ssoire l elemeto y = ssoito d si orm l uzioe ompost z = = y = : AD. Il domiio dell uzioe ompost può he o oiidere o l isieme A m essere u sottoisieme. CLASSIFICAZI OE CALCOLO DEL DOMIIO U uzioe si die CRESCETE i u itervllo se: < U uzioe si die DECRESCETE i u itervllo se: < FUZIOI MOOTOE FUZIOI PARI, U uzioe y = si die pri se: - = A U uzioe y = si die dispri se: - = - A 9
10 TEST UIVERSITARI FACILI - uitest.isswe.et DISPARI PERIODICHE U uzioe y = si die periodi di periodo T, o T >, se, per qulsisi umero k itero, si h: = + kt Fuzioe espoezile Fuzioe loritmi PROPRIETA DI ESPOEZIALI E LOGARITMI Equzioi espoezili Disequzioi espoezili Equzioi loritmihe Disequzioi loritmihe lo e impossiil e impossiil R lo lo lo lo lo lo lo lo
11 TEST UIVERSITARI FACILI - uitest.isswe.et TRIGOOMETRIA AGOLI = 36-esim prte olo iro : 8 : r r 8 r 8 CIRCOFEREZA GOIOMETRICA RELAZIOI FODAMETALI ARCHI ASSOCIATI AGOLI ELEMETARI FORMULE GOIOMETRICHE EQUAZIOI GOIOMETRICHE Teorem dei Trioli rettoli e dell ord Trioli quluque = se = os = se = os = t = ot = t = ot AREA DEL TRIAGOLO A = TEOREMA DEI SEI se = se se = se AB = r se se r se TEOREMA DEL COSEO O DI CAROT = + os = + os = + os
12 ttorile TEST UIVERSITARI FACILI - uitest.isswe.et CALCOLO COMBIATORIO! = - DISPOSIZIOI SEMPLICI COTA L ORDIE SEZA RIPETIZIOI: D,k = - -k+ PERMUTAZIOI SEMPLICI COTA L ORDIE SEZA RIPETIZIOI: P = D, =! COMBIAZIOI SEMPLICI C O COTA L ORDIE SEZA RIPETIZIOI:,k = DISPOSIZIOI o RIPETEZIOE COTA L ORDIE CO RIPETIZIOI: COMBIAZIOI o RIPETEZIOE O COTA L ORDIE CO RIPETIZIOI: C,k = Dr,k = k PROBABILITA Proilità di u eveto E pe = Proilità dell eveto otrrio E pe = pe Proilità dell uioe di eveti pe E = pe + pe pe E Proilità dell uioe di eveti iomptiili pe E = pe + pe Proilità ompost di eveti idipedeti pe E = pe pe Proilità odiziole pe/f = Proilità ompost di eveti dipedeti Prov ripetut volte Si p l proilità he E si veriihi u volt. L proilità he E si verihi k volte su è pe F = pe/f pf PERCETUALI VARIAZIOE PERCETUALE CALCOLO DEL VALORE FIALE PROGRESSIOI Termie -esimo di u proressioe ritmeti di rioe d e termie iizile. = + - d Somm dei primi termii di u proressioe ritmeti S = Termie -esimo di u proressioe eometri di rioe r e termie iizile. = r
13 TEST UIVERSITARI FACILI - uitest.isswe.et LOGICA COETTIVI LOGICI Modus Poes Modus Tolles REGOLE DI DEDUZIOE Lei di De Mor STATISTICA Frequez reltiv = F / T Frequez / Totle dti Idii di posizioe etrle Idii di dispersioe 3
14 TEST UIVERSITARI FACILI - uitest.isswe.et TEST UIVERSITARI FACILI RISORSE / CORSI / SIMULAZIOI / ALLEAMETI 4
FORMULARIO DI MATEMATICA
FORMULARIO DI MATEMATICA Sommrio ALGEBRA... DISEQUAZIOI... 5 GEOMETRIA... 6 GEOMETRIA AALITICA... 7 FUZIOI ESPOEZIALI LOGARITMI... 9 TRIGOOMETRIA... CALCOLO COMBIATORIO... PROBABILITA... PERCETUALI...
52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%
RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base
I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa
I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per
Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio
Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe
5 ln n + ln. 4 ln n + ln. 6 ln n + ln
DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio
Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.
Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo
SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1
SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:
Soluzione La media aritmetica dei due numeri positivi a e b è data da M
Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è
ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005
ESAME DI STATO DI LICEO SCIENTIFICO 005 CORSO DI ORDINAMENTO Sessioe ordiaria Tema di MATEMATICA - 3 giugo 005 Svolgimeto a cura del prof. Luigi Tomasi ([email protected]) RISPOSTE AI QUESITI DEL
EQUAZIONI ESPONENZIALI -- LOGARITMI
Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =
Probabilità e Statistica I
Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:[email protected] http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006
ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato
ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA
GOMENTI INTODUTTIVI I COSI DI MTEMTIC DELL FCOLT DI INGEGNEI SEDE DI MODEN Espoimo i modo molto suito le deiizioi e le proprietà he verro riteute ote e utilizzte ei Corsi di Mtemti he seguiro Per u trttzioe
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato
Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni
Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.
LA DERIVATA DI UNA FUNZIONE
LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:
Programmazione per competenze del corso Matematica, Secondo biennio
Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al
, l'insieme dei numeri interi relativi: 0, 1, 1, 2, 2, infinito. m dove m e n sono elementi di. Le frazioni hanno tre
Uiversità Boccoi. Ao accademico 00 00 Corso di Matematica Geerale Prof. Fabrizio Iozzi email: [email protected] Lezioi / Gli isiemi umerici Gli isiemi umerici co i quali lavoreremo soo:, l'isieme
EQUAZIONI ALLE RICORRENZE
Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo
APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)
ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).
Sistemi e Tecnologie della Comunicazione
Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche
Terzo appello del. primo modulo. di ANALISI 18.07.2006
Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri
Foglio di esercizi N. 1 - Soluzioni
Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >
Anno 5 Successioni numeriche
Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai
L INTEGRALE DEFINITO b f (x) d x a 1
L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio
Sintassi dello studio di funzione
Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:
ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:
N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π
3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3
MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti
Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani
Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3
Capitolo 8 Le funzioni e le successioni
Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo
Liceo Classico di Trebisacce Classe IV B - MATEMATICA. Prof. Mimmo Corrado. Numeri naturali [ ] ( ) ( ) Numeri razionali
Mtemtic www.mimmocorrdo.it Liceo Clssico di Treiscce Clsse IV B - MATEMATICA Esercizi per le vcze estive 0 Prof. Mimmo Corrdo Numeri turli Clcol il vlore delle segueti espressioi. 0 ( ) [ ] ( ) [ ] 0 [
SUCCESSIONI NUMERICHE
SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si
Successioni ricorsive di numeri
Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..
Successioni. Grafico di una successione
Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario
- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:
- - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive
Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale
Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la
ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.
ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità
Precorso di Matematica, aa , (IV)
Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe
ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo
Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs
Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero Lezioe 9- - Problema del trasporto Prof. Cerulli Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, ) A o violi
Calcolo Combinatorio (vers. 1/10/2014)
Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio
Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:
Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo
I appello - 29 Giugno 2007
Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (
Limiti di successioni
Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe
Liceo G.B. Vico Corsico
Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma
FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE
FUNZIONI SUCCESSIONI PRINCIPIO DI INDUZIONE. Le Fuzioi L'operazioe di prodotto cartesiao relazioe biaria La relazioe biaria fuzioe Fuzioi iiettive, suriettive, biuivoche Fuzioi ivertibili. Le Successioi
Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA
Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale
, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...
. serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)
SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.
Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.
PARTE QUARTA Teoria algebrica dei numeri
Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)
ANALISI MATEMATICA 1
ANALISI MATEMATICA [Apputi per u Igegere] A CURA DI ALESSANDRO PAGHI Riepilogo su: - Vlore Assoluto, Poteze, Logritmi; - Rziolizzzioe; - Grdezze Trigoometriche; - Limiti Notevoli e Forme Idetermite; -
CONCETTI BASE DI STATISTICA
CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto
Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)
Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte
1. L'INSIEME DEI NUMERI REALI
. L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli
8. Successioni di numeri reali
8. Successioi di umeri reali 8. Progressioi umeriche Prerequisiti I umeri aturali e le operazioi su di essi Cocetto di applicazioe Cocetto di isieme ifiito Isiemi umerabili Obiettivi Compredere il cocetto
MAPPE DI MATEMATICA PER LA PRIMA LICEO
MAPPE DI MATEMATICA PER LA PRIMA LICEO Gli insiemi numerici (pagina ) Le operazioni (pagina ) I criteri di divisibilità (pagina ) Le frazioni e le loro operazioni (pagina 5) Percentuali e proporzioni (pagina
Verifica di Matematica n. 2
A.S. 0- Clsse I Verific di Mtemtic. ) Dto il trigolo equiltero ABC, si prolughi il lto AB di u segmeto BD cogruete l lto del trigolo. Si cogiug C co D e si dimostri che il trigolo ACD è rettgolo. ) Si
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015
ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,
MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).
MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica
Appunti sulla MATEMATICA FINANZIARIA
INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi
( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0
CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()
NECESSITÀ DEI LOGARITMI
NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi
Successioni e serie. Ermanno Travaglino
Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,
ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004
ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e
Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6
Classe: 1 a A AFM...2 Classe: 1 a B AFM...3 Classe: 2 a A AFM...4 Classe: 3 a A AFM...5 Classe: 4 a A IGEA...6 Classe: 1 a A AFM GLI INSIEMI NUMERICI E LE OPERAZIONI Ripasso del calcolo numerico: espressioni
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f
CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO
CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.
ISTITUTO ISTRUZIONE SUPERIORE
ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B
ATTIVITÀ DEL SINGOLO DOCENTE
PIANO DI LAVORO DOCENTE Carmela Calò MATERIA Matematica DESTINATARI 4Cl ANNO SCOLASTICO 2013-14 COMPETENZE CONCORDATE CON CONSIGLIO DI CLASSE Si veda la programmazione comune del CdC COMPETENZE CONCORDATE
Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015
Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI
RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla
PROGRAMMA di MATEMATICA
Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali
Statistica 1 A.A. 2015/2016
Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative
1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6
SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie
