Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione"

Transcript

1 Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt =< <..< n =, comunque scelt tr e. S pone:,..,n h De. nmento Un prtzone P è dett essere un rnmento o pù ne dell prtzone P se: P P

2 Integrle Dento: Plurrettngol Assummo che l unzone s lmtt nell ntervllo [,]. Dt un determnt prtzone P d [,] consdermo per ogn ntervllno Δ : m = l estremo nerore ssunto dll unzone n Δ M = l estremo superore ssunto dll unzone n Δ Costrumo l rettngolo nscrtto: d se Δ ed ltezz m Ed ssocmo d esso l re che può nche essere negtv se lo è l unzone dt d: Δ m. L nseme de rettngol nscrtt costturà l plurrettngolo o sclode nscrtto. Costrumo l rettngolo crcoscrtto: d se Δ ed ltezz M Ed ssocmo d esso l re che può nche essere negtv se lo è l unzone dt d: Δ M. L nseme de rettngol nscrtt costturà l plurrettngolo o sclode crcoscrtto.

3 Integrle Dento: Somme Superor ed Ineror De. Somme Superor S P, M Costtuscono un pprossmzone per eccesso dell re De. Somme Ineror s P, m Costtuscono un pprossmzone per detto dell re Amo che: s P, S P, E evdente che con pù rnmo l prtzone dell nseme [,], con pù ruscremo d vere un vlutzone precs dell re. Precsmente, pssndo d un prtzone P d un prtzone pù ne P notmo che le somme neror umentno mentre quelle superor dmnuscono rspettndo sempre l relzone. Qund: se P P s P, s P, S P, S P, con s P, S P,

4 Integrle Dento: Somme Superor ed Ineror Aumentndo l numero d punt le somme neror umentno Aumentndo l numero d punt le somme superor dmnuscono 4

5 Integrle Dento d emnn: Costruzone Poché le somme neror sono sempre mnor od ugul lle somme superor, mo che: Sup P s In P S De. Funzone Integrle secondo emnn L unzone è ntegrle secondo emnn, o -ntegrle se e solo se: Sup P s In P S De. Integrle Dento d emnn Il numero rele precedentemente trovto rppresent l ntegrle dento dell unzone sull ntervllo [,] e s scrve: Not. L clsse delle somme neror e delle somme superor sono due clss d numer rel un mnore dell ltr dunque sono clss seprte. Esse possono vere un elemento seprtore l unco numero compreso tr le somme neror e quelle superor. Se tle numero esste l unzone è dett emnn-integrle o -Integrle su [,] 5 e tle numero è, per denzone, l ntegrle d emnn dell unzone dt su [,]. d

6 Integrle Dento d emnn: Osservzon d e sono dett estrem d ntegrzone è detto estremo nerore d ntegrzone è detto estremo superore d ntegrzone è dett unzone ntegrnd Not. L vrle d ntegrzone è un vrle mut. Per cu le seguent espresson ndcno sempre lo stesso numero: d Teorem Un unzone lmtt su [,] è -ntegrle se esste un prtzone P d [,] tle che: t dt SP,-sP, y dy Not. Il teorem precedente erm che le somme neror e superor, per unzon - ntegrl, sono due clss seprte m ndentmente rvvcnte o contgue. ε 6

7 Funzone non -Integrle Not. Non tutte le unzon sono -ntegrl. Dremo pù vnt delle condzon sucent nché un unzone s -Integrle. Occupmoc d un esempo d unzone che NON è -ntegrle: L Funzone d Drchlet M S P, se Q se \Q S consder l ntervllo [,]. Ess è un unzon lmtt. Per ess, consderto l tto che qulunque s l prtzone P, nell ntervllno Δ compono nnt numer rrzonl ed nnt rzonl, vremo: Sccome: m s P, In S P, Sup s P, L unzone non rsult -ntegrle. NB L unzone d Drchlet present un dscontnutà per ogn numero rzonle tr e. Notmo che tl dscontnutà sono nnte e sono numerl poché tl sono numer rzonl: 7

8 Integrle Dento: le somme d emnn Not. Consderndo unzon lmtte non possmo ermre che vlor m ed M sono vlor ssunt dll unzon nell ntervllno Δ. Se l unzone è contnu l teorem d Weerstrss sscur l tto che l unzone ssume n Δ tl vlor, che concdono con l mnmo ed l mssmo dell unzone stess n Δ. Al posto delle somme neror e superor è llor possle consderre le seguent somme d emnn: P, t con t Per esse vle l seguente teorem: De. P M Teorem é -ntegrl e lm P, P nto E vle d lm σp, P 8

9 Integrle Dento: Sgncto Geometrco. Se l unzone ntegrnd è postv su [,] < llor d ppresent l re dell regone d pno delmtt dll sse delle, dl grco dell unzone e dlle rette vertcl = ed =. E rsult: d Se l unzone ntegrnd è negtv su [,] < llor d ppresent l re dell regone d pno n senso lgerco n qunto negtv delmtt dll sse delle, dl grco dell unzone e dlle rette vertcl = ed =. E rsult: d 9

10 Integrle Dento: Sgncto Geometrco. Se l unzone ntegrnd non h segno sso su [,] < llor l ntegrle dento può essere postvo, negtvo o nullo. d d? sen d cos d

11 Integrle Dento: Sgncto Geometrco. d g d Può essere pensto come re dell regone d pno compres tr le due unzon e g. d g d.. g

12 Integrle Dento: Condzon Sucent per l -Integrltà. Teorem. Se l unzone è contnu su [,] llor è -Integrle. Dm. Per l teorem d Weerstrss mmette mssmo M e mnmo m n ogn ntervllno Δ. Esstono qund n Δ due punt t e t * tl che t =m e t * =M. Poché è contnu, dll denzone d lmte mo che: t t m M P s P S,, * t t t t se : * * Fccmo n modo che P <δ llor: * t t Per l teorem l unzone è -Integrle. Scelto:

13 Integrle Dento: Condzon Sucent per l -Integrltà. Teorem 4. Se l unzone è lmtt su [,] e possede un numero nto d dscontnutà llor è -Integrle. Es. Il teorem precedente permette d ermre che unzon come: sn per per Sono -ntegrl sull ntervllo [,]. Qunto scrtto erm l emnn ntegrltà dell unzone e qund l esstenz dell re, non l suo vlore, evdentemente. In reltà un unzone -ntegrle può presentre nche un numero nnto purché l pù numerle d dscontnutà, tuttv quest propretà non può essere generc m legt ll propretà d monoton dell unzone. Vle ntt l seguente teorem:

14 Integrle Dento: Condzon Sucent per l -Integrltà. Teorem 5. Se l unzone è monoton crescente o decrescente su [,] llor è -Integrle. Allor l seguente unzone: n per n per n loor present un nntà numerle d dscontnutà. sult però -ntegrle, per l precedente teorem, propro perché è monoton crescente 4

15 Integrle Dento: Condzone necessr e sucente per l -Integrltà. Inne l seguente teorem enunc un condzone necessr e sucente per essere -ntegrl, legndo l ntegrle d emnn l pù generle ntegrle d Leesgue tle teor vene ormulto ne cors vnzt d nls mtemtc. Teorem 6 d Vtl - Lesegue. S : un unzone lmtt e null l d uor d un nseme lmtto. Allor s equvlgono le condzon seguent: e ntegrle secondo emnn; l'nseme de punt d dscontnutà d é trscurle nullo per l msur d Leesgue. Se vlgono le condzon, llor e msurle e ntegrle nche secondo Leesgue e gl ntegrl secondo emnn e secondo Leesgue concdono. 5

16 Integrle Dento: Propretà Convenzone d d d d Propretà d lnertà Propretà d ddtvtà Propretà d omogenetà g d d g d d d 6

17 Integrle Dento: Propretà d d se d d Propretà d ddtvtà rspetto ll ntervllo d ntegrzone c d d d c Propretà d monoton se n [, ] d d 7

18 Integrle Dento: Teorem dell med ntegrle Teorem 6 dell Med Integrle o d Lgrnge. S consder l unzone contnu n [,]. Allor esste lmeno un punto c n [,] tle che: Dm. d c Sccome è contnu è -ntegrle. Per l teorem d Weerstrss se m ed M sono l mnmo ed l mssmo dell unzone n [,] mo m M vld per ogn n [,]. Dll propretà d monoton dell ntegrle segue:: md d Md m d M m d M d con m M Il teorem d Drou sscur che esste c n [,] tle che c= d c c.v.d. De. Med Integrle d 8

19 Integrle Dento: Funzone Integrle S consder l unzone, -ntegrle su [,]. Consdermo due punt d [,] : ed. Costrumo l seguente ntegrle dento: De. Funzone Integrle t dt Consdermo l unzone che d ogn numero n [,] ssoc l numero rele dento dll relzone precedente: tle unzone è l unzone Integrle d n [,]. S un unzone -ntegrle su [,] s densce unzone ntegrle F d su [,] con orgne n F t dt 9

20 Integrle Dento: Teorem d Torrcell-Brrow Teorem 7 d Torrcell - Brrow S un unzone contnu su [,]. Allor l unzone ntegrle F d su [,] con orgne è contnu e dervle n per ogn d [,] e vle F = Dm. S consder: h F F h F h t dt t dt t dt t dt h t dt c h con c, h Applcndo l teorem 6 dell med ntegrle. F' lm h F h lm h c h h lm h c Per l contnutà d c.v.d. L unzone ntegrle F rsult nelle potes del teorem contnutà d un prmtv d. In generle s può dmostrre che: Teorem 8 teorem Generlzzto d Torrcell-Brrow Se è -ntegrle llor F è contnu Se è contnu llor F è dervle Se è dervle llor F è dervle con dervt contnu

21 Integrle Dento: Teorem ondmentle del clcolo Teorem 9 Fondmentle del Clcolo S un unzone contnu su [,]. S F un su prmtv, llor: Dm. S consder: d d d c.v.d. F F d d d F F F F : F F F d Convenzone

22 Integrle Dento: Vlor Med Es. Vlore medo d =,,, n nell ntervllo [,],] [ d [,] d 4 [,] d [,] n d n n Es. Vlore medo d =sen nell ntervllo [,π] Es. Vlore medo d =sen nell ntervllo [,π] ], [ d sen sen ] [, d sen sen cos sn

23 Integrle Dento e unzon prmtve F : F F d Not. Gl ntegrl delle unzon contnue possono essere clcolt con le unzon prmtve se queste s possono esprmere per v elementre. Se l unzone ntegrnd non è contnu m solo -ntegrle, l prmtv potree non esstere perché, d esempo, non esstono unzon dervl che hnno dervte con dscontnutà slto. Tuttv può esstere l ntegrle. Es. d per per per Non esste tuttv un unzone dervle n tutto [,] che come unzone dervt 6

24 Integrle Dento: Integrzone per prt Teorem ' g d g g' d Es. Clcolre l re compres tr l sse delle e l grco dell unzone ln tr punt d scss e ln d ln d ln d ln ~.86 4

25 d Integrzone per sosttuzone / g t cos t d g' t dt sen t dt rccos rccos cos t sen t dt rccos rccos cos cos t sen t dt t sen t dt sen t dt t sen tcos t 4 Are qurto d cercho d rggo 5

26 Integrzone per sosttuzone / Teorem Sno :[,] contnu, Φ :[,] contnu,dervle,con dervt contnu e con Φ n [,]. Allor se g è l unzone nvers d Φ, mo d g t g' t dt Es. g t sen t rcsen cos d t dt rcsen rcsen sen t sen tcos t t cos t dt rcsen rcsen 4 Are qurto d cercho d rggo 6

27 Integrle Dento: Are tr grc d unzon A g d g A g d d A c d d d d 4 d c d 4 c d 7

28 Integrl mpropr d spece Amo snor prlto d ntegrl d unzon lmtte n prtcolre contnue su ntervll lmtt [,]. Esstono delle estenson s per unzon non lmtte che per ntervll non lmtt. Integrzone Funzon non lmtte su ntervll lmtt Integrl IMPOPI d SPECIE S consder :,] non lmtt d es / n,] tle che s -ntegrle su ogn ntervllo dell orm [+ε,] e tle che : Denmo llor: lm d lm d Se l lmte * esste nto llor s dce ntegrle n [,] e che l ntegrle IMPOPIO d SPECIE è convergente Se l lmte * è ± llor s dce che l ntegrle IMPOPIO d SPECIE è dvergente Se l lmte * non esste llor s dce che l ntegrle IMPOPIO d SPECIE non esste * 8

29 9 Integrl mpropr d spece Es. S clcol: d lm lm lm d Es. S clcol: d ln lm lm d Es. S clcol: d lm lm d lm se se Per Per = ved es. precedente. Glolmente: d se se

30 Integrl mpropr d spece d lm d * Ad es. /- n [, Teorem dvergente se d é convergent e se Vle un rsultto perettmente nlogo per: d L ntegrle converge se l unzone è nnt d ordne < ltrment dverge.

31 Integrl mpropr d spece Anlogmente nel cso n cu s : lm S densce: d lm d ** Ad es. /- n [, Vle un rsultto perettmente nlogo quello enuncto nel teorem : Teorem -s dvergente se d é convergent e se L ntegrle converge se l unzone è nnt d ordne < ltrment dverge.

32 Integrle Dento: Integrl mpropr d spece Integrzone Funzon su ntervll llmtt Integrl IMPOPI d SPECIE S consder : [,+ contnu. Ponmo: d : lm d Anlogmente, se :-,] contnu. Ponmo: d : lm d Se :-,+ contnu. Ponmo: d d : d d lm d lm h h d M nche : d d : lm lm d h h

33 Integrle Dento: Integrl mpropr d spece Es. S clcol: Es. S clcol: Es. S clcol: d lm lm d d Es. S clcol per n : d n lm lm d lm ln lm ln d lm lm lm d n n lm d lm lm n n n n n se n se n n n Per n= ved es. precedente. Glolmente: d n n se n se n L ntegrle converge se l unzone è nntesm d ordne n> ltrment dverge.

34 Integrle Dento: Integrl mpropr d spece Es. Andmento grco 4

35 Integrle Dento: Integrl mpropr d spece 4 Es. S clcol: d lm lm h h h d lm lm rctn lm h lm rctn h rctn h 5

36 Integrle Dento: Integrl mpropr d spece «prtcolr» Ecco nne lcun ntegrl mpropr rgurdnt unzon d cu l prmtv non è esprmle con unzon «elementr» e d sn d sn d / 6

37 Integrl mpropr d spece «prtcolr» e d e d Per l smmetr pr dell unzone ntegrnd e e d? y d dy y d e dy e d? z d dz e z d e dz z e dz 7

38 Integrle Dento: Lunghezz d un curv Consdermo un unzone y=. S un unzone contnu con dervt contnu n [,]. Voglmo clcolre l lunghezz dell curv rppresentt dl grco dell unzone tr punt d scss e. Per ncrement nntesm dell vrle d +d l vrle y h un ncremento dy che possmo pprossmre con dy= d derenzle. Allor l lunghezz nntesm dell curv dl può essere scrtt ttrverso l teorem d Ptgor: dl d dy d ' d d ' dl ' d Ne segue: d dl d dy lunghezz ' d d 8

39 9 Integrle Dento: Lunghezz d un curv Es. Lunghezz Crconerenz d rggo L lunghezz dell crconerenz d rggo vle: d d l 4 ' 4 ' d 4 rcsen rcsen t rcsen Es. Lunghezz Arco d Prol ' 4 ' dy y d d l ~ ln 5 y SettSh y y dt t d 4 4

40 Integrle Dento: Lunghezz d un curv Es. Lunghezz Ctenr curv lungo l qule s dspone un une pesnte omogene, nel cmpo d grvtà, sst gl estrem. Ch ' Sh l Sh d Ch d Sh Sh Sh e e 4

41 Integrle Dento: Superce sold d rotzone dl L superce del soldo d rotzone vene clcolt come somm ntegrle delle superc lterl de tronch d cono nntesm d ltezz d. L superce lterle d un tronco d cono vle: S lt r d Essendo l potem ed, r rgg delle s. Il prmo teorem d Pppo-Guldno sscur che l clcolo dell superce d rotzone può essere ttuto moltplcndo l lunghezz del segmento dl che gener l superce d rotzone per l lunghezz dell crconerenz che l rcentro del segmento percorre durnte l rotzone. Percò: ds lt dl S lt dl ' d 4

42 4 Integrle Dento: Superce sold d rotzone Es. Superce Ser ser d S y ' ' 4 4 d S ser

43 Integrle Dento: Volum sold d rotzone / d Il volume del soldo vene costruto come somm ntegrle d clndrett nntesm s spessore ltezz d e superce d se π []. dv d V d Es. Volume Cono P h, h rett : y V h h V h d h h h h 4

44 44 Integrle Dento: Volum sold d rotzone / Es. Volume Ser ser d d V d dy y 4 y y dy y y

45 45 Integrle Dento: Volum sold d rotzone sse y / c d dy y dy y dv d c dy y V Cmmento d vrle: y y ' d c d c d dy y V ' d c d V

46 y Studo Funzone Fre l grco qulttvo dell unzone e clcolre l vlore dell ntegrle nel trtto Asntot vertcle : =- e = y' y'' Asntot Olquo : y= d d d ln d c ln [ln ln ] ln 5, 5 9

47 Studo Funzone g e y Fre l grco qulttvo dell unzone seguente e clcolre l vlore dell ntegrle nel trtto ' e e y 4 '' e e e e y Flesso per =ln Punto tngente vertcle nell orgne d e d t t d t e dt e t dt t t dt t t t d e c e e rctn c t t dt t dt dt t t rctn

48 Studo Funzone g Fre l grco qulttvo dell unzone seguente e clcolre l vlore dell ntegrle nel trtto y e e d e rctn e e rctn e,78

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. ( Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d (n+ punt <

Dettagli

Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

Il problema del calcolo delle aree. Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Inegrle Deno. Il prolem del clcolo delle ree Suddvsone dell nervllo [,] n soonervll che ne cosuscono un przone De. Przone S chm przone P dell nervllo [,] un nseme d n+ pun =<

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Quadratura S = S = F (b) F (a).

Quadratura S = S = F (b) F (a). Qudrtur Formule d qudrtur nterpoltore S f un funzone rele defnt su un ntervllo [, b]. studre è quello dell pprossmzone dell ntegrle Il problem che s vuole S = f(x) dx. () Nel cso n cu l f s un funzone

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

Regressione Lineare Semplice

Regressione Lineare Semplice reressone lnere Reressone nere Semplce Per ottenere l veloctà d un corpo s msur l su poszone vr temp. Spendo che l relzone tr l poszone del corpo s l tempo t è dt dll lee s = v t trovre con l reressone

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y Geometr Anlt Dstnz tr due punt nel pno rtesno P ( x x ) + ( y ) P y Punto medo d due punt nel pno rtesno M x + x y + ( x ; y ) ; M M y Are d un trngolo nel pno rtesno prtre dlle oordnte de suo x y punt

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Strutture cristalline 1

Strutture cristalline 1 Chmc fsc de mterl Strutture crstllne Sergo Brutt Impcchettmento comptto n 2D Esstono 2 dfferent mod d rrngre n un pno 2D crconferenze dentche n modo d tssellre n modo comptto lo spzo dmensonle: Impcchettmento

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Il calcolo integrale. L idea di partenza è semplice. Consideriamo il seguente grafico. Figura 1

Il calcolo integrale. L idea di partenza è semplice. Consideriamo il seguente grafico. Figura 1 Il clcolo tegrle Le dee d Rem sull cocezoe d geometr ho vuto u prood luez scetc, egl h trodotto l ozoe d tegrle deedo quello che o chmmo tegrle d Rem. Il puto d prtez per trodurre l rgometo è estremmete

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da A) meccnc Un srr omogene d lunghezz l, lrghezz trscurle e mss M è ppes vertclmente d un estremtà mednte un perno ttorno cu puo` ruotre. Contro l estremt` ler dell srr vene scglto un corpo che nell urto

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H sultt esme scrtto Fsc del //6 orl: //6 lle ore. presso ul H gl student nteresst vsonre lo scrtto sono pregt d presentrs l gorno dell'orle mtrcol voto 98 7 mmesso 8 7 mmesso 7 7 mmesso 6 7 mmesso 9 7 mmesso

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

Formulario di Analisi Matematica 1

Formulario di Analisi Matematica 1 Formulrio di Anlisi Mtemtic Indice degli rgomenti Punti interni, isolti, di ccumulzione e di frontier Alcune costnti Proprietà delle potenze Proprietà degli esponenzili Proprietà dei logritmi Proprietà

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a,

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a, Relzon bnre Un relzone bnr d un nseme A d un nseme B è un sottonseme R del prodotto crtesno A B Dremo che un elemento A è n relzone con un elemento b B, e scrveremo b se, e solo se, (, b) R Rppresentzone

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff A. hoon esercz Fsc II QUINTA LEZIONE: corrente elettrc, legge ohm, crc e scrc un conenstore, legg Krchoff Eserczo Un conuttore clnrco n rme vente sezone re S mm è percorso un corrente ntenstà 8A. lcolre

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se Cpitolo 6 Integrli L opertore derivt D ssoci d un funzione f l su derivt: Df f 0 Ci ciedimo se è possiile invertire quest operzione, vle dire trovre un funzione l cui derivt si un funzione ssegnt Definizione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

Integrazione numerica

Integrazione numerica Cludo Esttco cludo.esttco@usur.t Itegrzoe umerc Itegrzoe Numerc Itegrzoe umerc Formule d qudrtur. Grdo d esttezz. 3 Metodo de coecet determt. 4 Formule d Newto-Cotes semplc. Formule d Newto-Cotes composte.

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Matematica Finanziaria 29 novembre 2000

Matematica Finanziaria 29 novembre 2000 Mtemtc Fnnzr 9 novembre 000 TEST d Ottmzzzone. FILA A Rspondere lle se domnde sbrrndo l csell ce s rtene corrett. Un sol rspost è corrett. Nel cso s ntend nnullre un rspost cercre l corrspondente csell.

Dettagli

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b Mtemtic per Scienze Nturli, Aree ed integrli 1 IL CONTRIBUTO DEI GRECI h Rettngolo: A =. h h Prllelogrmm A =. h h Tringolo A =!h 2 Poligono come somm di tringoli Cerchio O r A = ". r 2 Mtemtic per Scienze

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Argomenti della Lezione

Argomenti della Lezione ANALISI Argomenti dell Lezione 35. urve, lunghezze, integrli curvilinei 35.1. urve regolri. Definizione 35.1. Un curv regolre Φ é un funzione { (t) : I R φ : I = [, b] R 2 y(t) : I R 25 gennio 2012 continu,

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015 Leo Sentfo Sttle A. Volt, Torno Anno solsto 0 / 0 Cognome e Nome: LOGARITMI ED ESPONENZIALI Complet on l equone d sun funone: A) B) C) D) 0) Qule funone pss per l punto ( ; ) ed è sempre postv? 0) L funone

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Il metodo di esaustione

Il metodo di esaustione Clcolo integrle Il metodo di esustione Il metodo di esustione y= 2 =0 Il metodo di esustione y= 2 k =0= 0 k n n 1 2 = n Il metodo di esustione y= 2 k 0 k n n 1 2 f( ) k n k n 2 Il metodo di esustione y=

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Introduzione al calcolo integrale

Introduzione al calcolo integrale Introduzione l clcolo integrle Indice: Integrle di Riemnn. Proprietà delle funzioni integrbili. Continuità dell funzione integrle. Teorem dell Medi. Teorem Fondmentle del Clcolo Integrle. Metodi di integrzione.

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

1 Lavoro sperimentale (di Claudia Sortino)

1 Lavoro sperimentale (di Claudia Sortino) 1 Lvoro sperimentle (di Cludi Sortino) Prtendo d un nlisi epistemologic del prolem, ho preprto un test che ho successivmente proposto due quinte clssi di un istituto industrile. QUESTIONARIO SULL INTEGRAZIONE

Dettagli

Integrazione definita

Integrazione definita Integrzione definit Si [,b] R un intervllo chiuso e limitto. Si f : [,b] R limitt. Def. Trpezoide di f sull intervllo [,b] è l regione di pino delimitt dll sse =, dlle rette = e = b e dl grfico di f. Viene

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Appunti su. Elementi fondamentali di Algebra Lineare

Appunti su. Elementi fondamentali di Algebra Lineare CORSO DI RICERC OPERTIV ppunt su Element fondmentl d lger Lnere cur del Prof. Guseppe runo Ultmo ggornmento: prle VETTORI, MTRICI E DETERMINNTI. Defnzon generl Un mtrce d dmensone o ordne (m n) è un nseme

Dettagli

DETERMINAZIONE GRAFICA DEL BARICENTRO

DETERMINAZIONE GRAFICA DEL BARICENTRO DETERMNZONE GRFC DEL BRCENTRO (SSTEM D MSSE) Geometria delle masse 1/97 L BRCENTRO D UN SSTEM D MSSE È L CENTRO D UN QULSS SSTEM D VETTOR PRLLEL E CONCORD (DETT VETTOR MSS), PPLCT N CORRSPONDENZ DELLE

Dettagli

Soluzione. Si consideri la figura sottostante che raffigura la geometria del problema: = =

Soluzione. Si consideri la figura sottostante che raffigura la geometria del problema: = = Sessione suppletiv LS_ORD 00 di De Ros Nicol PROBLEMA Del tringolo ABC si nno le seguenti informzioni: ABcm; ACcm; CAB 60. Si trcci l isettrice di CAB e se ne indici con D lintersezione con il lto BC.

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Problemi di Fisica. Principio conservazione momento angolare

Problemi di Fisica. Principio conservazione momento angolare www.lceoweb.t Prnc d Conserzone Problem d Fsc Prnco conserzone momento ngolre www.lceoweb.t Prnc d Conserzone TEORIA Per un coro untorme m che ruot su un crconerenz d rggo R con eloctà costnte, l momento

Dettagli

Elenco dei teoremi dimostrati a lezione

Elenco dei teoremi dimostrati a lezione Elenco dei teoremi dimostrti lezione Muro Sit murosit@tisclinet.it In queste pgine si riport l elenco dei teoremi dimostrti lezione. 1 1 Principio di induzione. 1. Utilizzndo il principio di induzione

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei Curve e integrli curvilinei E. Polini 13 ottobre 214 curve prmetrizzte Un curv prmetrizzt è un funzione : [, b] R n. Al vrire di t nell intervllo [, b] (con < b) il punto (t) descrive un triettori nello

Dettagli

DETERMINAZIONE GRAFICA DEL BARICENTRO

DETERMINAZIONE GRAFICA DEL BARICENTRO DETERMNZONE GRFC DEL BRCENTRO (SSTEM D MSSE) Geometria delle masse 1/75 L BRCENTRO D UN SSTEM D MSSE È L CENTRO D UN QULSS SSTEM D VETTOR PRLLEL E CONCORD (DETT VETTOR MSS), PPLCT N CORRSPONDENZ DELLE

Dettagli

Circuiti Elettrici Lineari Teoremi delle reti elettriche

Circuiti Elettrici Lineari Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Crcut Elettrc ner Teorem delle ret elettrche Crcut Elettrc ner.. 08/9 Prof. uc Perregrn Teorem delle ret elettrche,

Dettagli

Problema: Calcolo dell'area di una superficie piana

Problema: Calcolo dell'area di una superficie piana Corso di Lure in Disegno Industrile Corso di Metodi Numerii per il Design Lezione 7 Novemre 00 Integrle definito F. Cliò Prolem: Clolo dell're di un superfiie pin Metodi Numerii per il Design - Lezione

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrle secondo Riemnn 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte.0 Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO Esercizio : ESERCIZI DI CALCOLO UMERICO Formule di qudrtur Costruire l ormul di qudrtur interpoltori del tipo d ( ) ( ) ( ) clssiicndol e determinndone l ordine di ccurtezz polinomile Mell Per costruzione

Dettagli

Capitolo IV Cenni di calcolo integrale

Capitolo IV Cenni di calcolo integrale Liceo Lugno, - 4B (Luc Rovelli) Cpitolo IV Cenni di clcolo integrle. Introduzione: ree e funzioni primitive Il clcolo integrle si occup principlmente di questioni, pprentemente senz relzione tr loro: dti,

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti.

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti. . dsegnndo l crcuto senz ncroc e pplcndo l trsformzone trngolostell s ottengono gl schem seguent. Ω Ω eq Ω Ω Ω Ω Ω Ω eq Ω Ω Ω Ω eq Ω eq // Ω. S trsform l stell edenzt n rosso n un trngolo (le resstenze

Dettagli