Lavori di gruppo per il corso di Storia della Matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lavori di gruppo per il corso di Storia della Matematica"

Transcript

1 Lavori di gruppo per il corso di Storia della Matematica Chiara Avenoso Benedetta Paganizza Marianna Piredda 2maggio2017 Problema 1 Costruire con GeoGebra la prima e la seconda curva disegnate dal compasso di Cartesio. Prima e seconda curva di Cartesio Il compasso cartesiano è uno strumento che genera curve algebriche attraverso un movimento meccanico e un procedimento iterativo. Tali curve in un opportuno sistema di riferimento hanno equazione pari a: (x 2 + y 2 ) 2n 1 = x 4n La curva iniziale è una circonferenza. Prendiamo un punto B variabile su una circonferenza di centro Y e raggio OA. Fissiamo una semiretta a passante per il centro della circonferenza e per ogni punto B consideriamo la semiretta YB. Tracciamo ora la retta BC perpendicolare a YB: essa interseca la semiretta a in un punto C, dal quale innalziamo la perpendicolare che determina il punto D. Ripetiamo la stessa costruzione appena e ettuata al punto D: tracciamo la perpendicolare a YD che determina il punto E sulla semiretta a edalpunto E tracciamo la perpendicolare che individua il punto F. Il luogo dei punti D e F, al variare di B sulla circonferenza, descrive rispettivamente la prima e la seconda curva di Cartesio. 1

2 2

3 Problema 2 Dati i segmenti a e b, determinare con il compasso di Cartesio due medie proporzionali tra a e b, ovvero due segmenti x e y tali che a : x = x : y = y : b. Dati due segmenti a e b, per determinare due segmenti x e y medi proporzionali tra i due dati tramite il compasso di Cartesio dobbiamo: 1. posizionare il segmento a lungo il segmento YX e b lungo YZ, in entrambi i casi facendo coincidere un vertice con Y; 2. aprire il compasso in modo da far coincidere B (o D o F) con l altro estremo di a ed E (o G o N) con l altro estremo di b. Iduesegmentix e y cercati saranno rispettivamente YC (o YE o YG) e YD (o YF o YH). Questo nel caso a sia il segmento più corto, se così non fosse basterà scambiare a con b. Dunque a : x = x : y = y : b. 3

4 Problema 3 Dati i segmenti a e b, determinare con il compasso di Cartesio tre e quattro medie proporzionali tra a e b. Tre medie proporzionali tra a e b Dati due segmenti a e b, per determinare tre segmenti x, y e z medi proporzionali tra i due dati tramite il compasso di Cartesio dobbiamo: 1. posizionare i segmenti a e b lungo il segmento YX in entrambi i casi facendo coincidere uno dei due vertici con Y; 2. aprire il compasso in modo da far coincidere B (o D) con l altro estremo di a e F (o H) con l altro estremo di b. Itresegmentix, y e z cercati saranno rispettivamente YC (o YE), YD (o YF) e YE (o YG). Questo nel caso a sia il segmento più corto, se così non fosse basterà scambiare a con b. Dunque a : x = x : y = y : z = z : b. Quattro medie proporzionali tra a e b 4

5 Dati due segmenti a e b, per determinare quattro segmenti x, y, z e p medi proporzionali tra i due dati tramite il compasso di Cartesio dobbiamo: 1. posizionare il segmento a lungo il segmento YX e b lungo YZ, in entrambi i casi facendo coincidere un vertice con Y; 2. aprire il compasso in modo da far coincidere B (o D) con l altro estremo di a e G (o N) con l altro estremo di b. Itresegmentix, y, z e p cercati saranno rispettivamente YC (o YE), YD (o YF), YE (o YG) e YF (o YH). Questo nel caso a sia il segmento più corto, se così non fosse basterà scambiare a con b. Dunque a : x = x : y = y : z = z : p = p : b. 5

6 Problema 4 Determinare le equazioni della prima e della seconda curva di Cartesio. Prima curva di Cartesio Nel problema uno abbiamo visto come si determinano la prima e la seconda curva di Cartesio. Vogliamo ora determinare l equazione della prima curva. Scegliamo come sistema di coordinate cartesiane un sistema avente origine nel centro Y della circonferenza, come asse delle ascisse la retta a ecome segmento unitario il raggio della circonferenza quindi YB=1. Chiamiamo x = YC e y = CD. L equazione della circonferenza è pertanto pari a x 2 + y 2 =1. MaYB YD= YC 2 ed, essendo YB=1,siricava YD= x 2 equindil equazionedellacurvaèdiquartogrado: Seconda curva di Cartesio x 2 + y 2 = x 4 Sempre nel problema precedente abbiamo visto come si costruisce la seconda curva quindi ora determiniamo la sua equazione. Supponiamo che il punto D abbia coordinate (a,b) rispetto al sistema di riferimento scelto in precedenza eorasiax = YE e y = YF. 6

7 Il luogo descritto da F è una curva la cui equazione si calcola a partire dall equazione precedente. Poiché i triangoli YDC e YFE sono simili, allora si ha la proporzione b : a = y : x da cui si ricava che: bx ay =0 (1) Consideriamo ora il triangolo rettangolo DEF: risulta DE 2 = by ed altra parte, considerando il triangolo rettangolo YDE, si ha che DE 2 = x(x a). Otteniamo quindi: ax + by = x 2 (2) Da (1) e (2) possiamo ricavare a e b in funzione di x e y: a = x3 x + y 2 b = x2 y x + y 2 Sostituiamo questi valori nell equazione della curva precedente a 2 + b 2 = a 4 etroviamocosìl equazionedellasecondacurvadicartesiocheèdigrado8: (x 2 + y 2 ) 3 = x 8 7

8 Problema 5 Costruire con GeoGebra la curva prodotta applicando il meccanismo di Cartesio a una retta, a una circonferenza e a una parabola. Il meccanismo di Cartesio Il meccanismo di Cartesio produce una nuova curva a partire da una vecchia nel seguente modo. Consideriamo un piano fisso di coordinate cartesiane ortogonali x, y e un piano mobile che scorre sul precedente, in direzione parallela all asse y, di coordinate cartesiane ortogonali X, Y, legate alle precedenti dalle equazioni X = x a, Y = y t, dovea è u n a c o s t a n t e e t una variabile. Consideriamo sul piano mobile una curva e intersechiamo questa curva con la retta congiungente l origine O del piano cartesiano fisso con l origine O del piano cartesiano mobile. La curva descritta da tali intersezioni si dice prodotta applicando il meccanismo di Cartesio alla curva assegnata sul piano mobile. Nelle figure seguenti in blu sono rappresentate le curve alle quali va applicato il meccanismo di Cartesio mentre in rosso sono rappresentate le curve prodotte applicando il meccanismo. CIRCONFERENZA Fissati i punti O e O, tracciamo la circonferenza di centro O in modo tale che resti libera di scorrere sulla retta b. Il punto di intersezione H tra la circonferenza e la retta OO genera la curva che rappresenta un ramo di concoide. 8

9 PARABOLA Fissati i punti O e O, tracciamo la parabola di fuoco O e direttrice h. In questo modo la parabola è libera di scorrere lungo la retta b eilpuntoadi intersezione tra la parabola e la retta OO genera l altra parabola in rosso. 9

10 RETTA Fissati i punti O e O, tracciamo la retta passante per B in modo che tale punto resti libero di scorrere in direzione parallela all asse Y. Così facendo il punto di intersezione H genera la curva in rosso che rappresenta due rami di un iperbole. 10

11 Problema 6 Determinare le equazioni delle curve ottenute al punto precedente. Supponiamo che il piano mobile, in cui sono scelte le coordinate X, Y, trasli in direzione parallela all asse delle y del piano fisso, in cui sono scelte le coordinate x, y, di una quantità variabile t mentre il parametro a che compare nelle trasformazioni X = x a e Y = y t è u n a c o s t a n t e fi s s a t a. S u p p o n i a - mo che sul piano che stiamo traslando sia assegnata una curva di equazione f(x, Y )=0. Intersechiamoquestacurvaconlarettachecongiungel origine del piano fisso con quella del piano mobile. Al variare del parametro t, il punto di intersezione genera una curva che ha equazione: f(x a, y ay x ) ed è la curva ottenuta applicando il meccanismo di Cartesio alla curva di equazione f(x, Y )=0. Circonferenza In riferimento alla Fig.1 sia O l origine del sistema di riferimento fisso di coordinate x, y e sia O l origine del sistema di riferimento mobile di coordinate X, Y. Supponiamo che O H sia il segmento unitario: vogliamo scrivere l equazione della concoide, ovvero della curva prodotta con il meccanismo di Cartesio applicato alla ciconferenza. Per come abbiamo scelto il segmento O H, abbiamo che la circonferenza ha equazione: ovvero: X 2 + Y 2 =1 X 2 + Y 2 1=0 Dal momento che valgono le relazioni X = x dell equazione precedente otteniamo: che possiamo riscrivere come: (x a) 2 +(y ay x )2 1=0 a e Y = y ay x, sostituendo (x a) 2 (x 2 + y 2 ) 2 = x 2 11

12 Parabola In riferimento alla Fig.2 sia O l origine del sistema di riferimento fisso e sia O l origine del sistema di riferimento mobile come in precedenza. Supponiamo che O H sia il segmento unitario: dunque la parabola, avendo come vertice H=(0,1), avrà come equazione generica: ovvero: Y = cx 2 1 Y cx 2 +1=0 dove c è u n a c o s t a n t e. V o g l i a m o s c r i v e r e l e q u a z i o n e d e l l a c u r v a p r o d o t t a c o n il meccanismo di Cartesio applicato alla parabola. Sfruttando le relazioni che legano le coordinate come in precedenza, otteniamo: che possiamo riscrivere come: y ay x c(x a) 2 +1=0 (x a) (y cx 2 + acx) =x Retta In riferimento alla Fig.3 sia O l origine del sistema di riferimento fisso e sia O l origine del sistema di riferimento mobile come in precedenza. Scegliendo OB come segmento unitario, allora la retta ha come equazione: Y = m(x +1) ovvero: Y + m(x +1)=0 Sfruttando le relazioni che legano le coordinate x,y e X,Y abbiamo l equazione dell iperbole: y ay + m(x x a +1)=0 che possiamo riscrivere come: (x a) (y + mx) = mx 12

13 Problema 7 Usare una delle curve prodotte per trisecare un angolo qualsiasi. Consideriamo la curva ottenuta applicando il meccanismo di Cartesio ad una circonferenza, la cui costruzione l abbiamo esaminata nel corso del problema cinque. Sia dato l angolo AOB e consideriamo la retta perpendicolare che taglia il segmento OA in un punto D e il segmento OB in un punto E. Tracciamo la parallela ad OA passante per E: essa interseca la concoide in un punto C. Allora il segmento OC triseca l angolo AOB, ovvero l angolo AOC è 1/3 dell angolo AOB. Cartesio dedicò la sua attenzione alla trisezione dell angolo: egli aveva intuito che con una modifica al suo compasso era possibile risolvere anche il problema della trisezione dell angolo (infatti il compasso di Cartesio permette la costruzione di quante medie proporzionali si vogliono tra due segmenti ediconseguenzalacostruzionediradicidiindiciqualsiasidiunsegmento qualsiasi). Esso è formato da quattro regoli AB, AC, AD e AE che hanno 13

14 origine in A. I punti F, I, K e L sono equidistanti da A mentre i segmenti FG, GK, IH e LH possono muoversi lungo AC e il punto H può muoversi lungo AD. Dato un angolo, per dividerlo in tre parti uguali dobbiamo aprire il compasso fino a rendere l angolo ABE uguale all angolo. Essendo i triangoli AFG, AGK, AIH e ALH sempre uguali, ne segue che gli angoli corrispondenti FAC, GAD e DAE saranno sempre uguali indipendentemente dall ampiezza dell angolo BAE. Riferimenti bibliografici [1] Proclamato M., Ergo sum, il sapere esoterico di Cartesio, Torino, Melchisedek Edizioni, [2] Sito pdf progettomatematica.dm.unibo.it/curve\%20celebri/grecia/ concoide.html 14

Lavori di gruppo per il corso di Storia della Matematica

Lavori di gruppo per il corso di Storia della Matematica Lavori di gruppo per il corso di Storia della Matematica Angela Capobianchi Rosa Castronovo Mara Fanti 2maggio2017 1 Costruire con GeoGebra la prima e la seconda curva disegnate dal compasso di Cartesio

Dettagli

Lavori di gruppo per il corso di Storia della Matematica

Lavori di gruppo per il corso di Storia della Matematica Lavori di gruppo per il corso di Storia della Matematica Paolo Picchio Chiara Brandimarti Carlo Chimisso 2maggio2017 1 Costruire con GeoGebra la prima e la seconda curva disegnate dal compasso di Cartesio

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

Determinare l altezza del triangolo relativa al lato AB e tracciare la circonferenza k avente centro in C e tangente al lato AB.

Determinare l altezza del triangolo relativa al lato AB e tracciare la circonferenza k avente centro in C e tangente al lato AB. www.matefilia.it PNI 006 SESSIONE STRAORDINARIA - PROBLEMA 1 È dato il triangolo ABC in cui: AB = 5, AC = 5 5, tg A =. Determinare l altezza del triangolo relativa al lato AB e tracciare la circonferenza

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Le coniche retta generatrice

Le coniche retta generatrice Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono

Dettagli

1. conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio

1. conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio Terzo modulo: Geometria analitica Obiettivi 1 conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio interpretare geometricamente equazioni e sistemi algebrici di primo e

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

Verifica del 8 febbraio 2018

Verifica del 8 febbraio 2018 Verifica del 8 febbraio 018 Esercizio 1 (15 punti) Risolvi le seguenti disequazioni: 1 x 1 a) x + 6x + 8 x 3 b) x + 1 + 1 c) d) Esercizio (0 punti) 3 x 8 x 4 x 3 ax 9 Considera la funzione f ( x) = x 3x

Dettagli

Matematica Lezione 6

Matematica Lezione 6 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 6 Sonia Cannas 25/10/2018 Retta passante per un punto e direzione assegnata Data l equazione di una retta in forma esplicita y = mx

Dettagli

Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1.

Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1. Macerata 9 dicembre 04 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO In un riferimento cartesiano ortogonale è dato il fascio di rette: k + x k y + k + = 0. Determina il centro C del

Dettagli

Costruzione delle coniche con riga e compasso

Costruzione delle coniche con riga e compasso Costruzione delle coniche con riga e compasso Quando in matematica è possibile dare diverse definizioni, tutte equivalenti, di uno stesso oggetto, allora significa che quell oggetto può essere caratterizzato

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Il sistema di riferimento cartesiano

Il sistema di riferimento cartesiano 1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H Verifiche anno scolastico 2009/2010 Classi 3 C 3 H 1) Scrivi l equazione della circonferenza γ che ha centro C(- 2; 0) e raggio r = 2 2. Ricava le coordinate dei punti A, B in cui γ interseca l asse delle

Dettagli

BO CA x 3 BO : OA PC : CA PC OA 2. 3 x 3 1 MD MO PC Applichiamo il teorema di Pitagora al triangolo MDP. (2) y 7x 22x 19

BO CA x 3 BO : OA PC : CA PC OA 2. 3 x 3 1 MD MO PC Applichiamo il teorema di Pitagora al triangolo MDP. (2) y 7x 22x 19 Settembre 1951, primo problema Il triangolo rettangolo AOB ha i cateti OA, OB di lunghezza e 3 rispettivamente. Determinare sull ipotenusa AB un punto P in modo che sia k la somma della sua distanza dal

Dettagli

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa.

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzioni Costruzioni di rette, segmenti ed angoli Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzione. Consideriamo la retta r ed un punto

Dettagli

Soluzione verifica scritta dell 8/10/2013

Soluzione verifica scritta dell 8/10/2013 Soluzione verifica scritta dell 8/10/013 * * * Problema n. 1 a) Determinare l equazione della parabola con asse parallelo all asse y, avente il vertice nel punto V ; ) e passante per l origine degli assi

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA INTRODUZIONE La parabola fa parte di un insieme di curve (circonferenza, ellisse, iperbole) chiamate coniche, perché si possono

Dettagli

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO 1 La circonferenza. 2 La parabola. 3 L ellisse. L iperbole. 5 Le coniche. 6 Equazione generale di una conica. 7 Calcolo delle principali caratteristiche

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

SUPERFICI DI ROTAZIONE

SUPERFICI DI ROTAZIONE SUPERFICI DI ROTAZIONE Esercizio Determinare l equazione del cono di vertice V e avente la curva come direttrice, ove y = 0 V (0; 3; 0) e : x 2 + 3z 2 2x + z = 0 Prendo un punto P generico sulla curva,

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Classe 3Cmm Esercizi di Matematica 8 Novembre Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica?

Classe 3Cmm Esercizi di Matematica 8 Novembre Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica? Classe 3Cmm Esercizi di Matematica 8 Novembre 2016 1. Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica? 3. Consideriamo il vettore p ( 2, 3) associato alla traslazione

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Esercizi riepilogativi sulle coniche verso l esame di stato

Esercizi riepilogativi sulle coniche verso l esame di stato Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo

Dettagli

Risoluzione del problema 2

Risoluzione del problema 2 Esame di Stato Liceo Scientifico Prova di Matematica corso sperimentale PNI - giugno 007 Soluzione del PROBLEMA a cura di Luigi Tomasi (luigitomasi@liberoit) Risoluzione del problema Punto ) Consideriamo

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE INTRODUZIONE L iperbole fa parte di un insieme di curve (circonferenza, parabola, ellisse) chiamate coniche, perché si possono

Dettagli

Compito di matematica Classe III ASA 20 novembre 2014

Compito di matematica Classe III ASA 20 novembre 2014 Compito di matematica Classe III ASA 0 novembre 014 1. Risolvere le seguenti disequazioni irrazionali: 8 x x > 1 x x 1 (x 1) Soluzione (algebrica): La prima disequazione è del tipo A(x) > B(x) e l insieme

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base Geometria analitica e algebra lineare, anno accademico 9/1 Commenti ad alcuni esercizi 17 Diagonalizzazione di matrici simmetriche Coniche Commenti ad alcuni degli esercizi proposti 17 Diagonalizzazione

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Abbiamo visto come, fissato un sistema di riferimento, a ciascun punto sia possibile associare una coppia ordinata di numeri reali (le sue coordinate). Se adesso consideriamo

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

1 Introduzione alla geometria analitica

1 Introduzione alla geometria analitica 1.1 Il piano cartesiano 1 Introduzione alla geometria analitica Se R è l'insieme di tutti i numeri reali (rappresentabile su una retta), allora R R = R rappresenta il piano euclideo; infatti ciascun punto

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico comunicazione opzione sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico comunicazione opzione sportiva Tema di matematica Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico comunicazione opzione sportiva Tema di matematica Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario

Dettagli

Liceo Einstein Milano. Verifica di matematica 10 ottobre 2018

Liceo Einstein Milano. Verifica di matematica 10 ottobre 2018 Liceo Einstein Milano 3G 10 ottobre 2018 1) Risolvi i seguenti sistemi: 2) A) Nel trapezio rettangolo ABCD la base maggiore AB e la base minore CD misurano rispettivamente 15 e 12 e l altezza AD misura

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Geometria BAER Canale A-K Esercizi 10

Geometria BAER Canale A-K Esercizi 10 Geometria BAER 2016-2017 Canale A-K Esercizi Esercizio 1. Data la retta r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di

Dettagli

Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

PIANO. AB= ( x B x A ) 2 +( y B y A ) 2 AB= (2 2) 2 +(3 6) 2 =3 AB= 3 6 =3 AB= (5 0) 2 +(7 7) 2 =5. x A. +x B 2 M ( 2 ) y M = =3 2 2 =9 2

PIANO. AB= ( x B x A ) 2 +( y B y A ) 2 AB= (2 2) 2 +(3 6) 2 =3 AB= 3 6 =3 AB= (5 0) 2 +(7 7) 2 =5. x A. +x B 2 M ( 2 ) y M = =3 2 2 =9 2 PIANO 1. Calcolare la distanza tra i punti delle seguenti coppie: Distanza tra due punti A( x A, y A ) e B( x B, y B ) AB= ( x B x A ) 2 +( y B y A ) 2 a. A(1, 2) B(2, 1) AB= (1 2) 2 +(2 1) 2 = 1+1= 2

Dettagli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli 1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio

Dettagli

Esercizi e problemi sulla parabola

Esercizi e problemi sulla parabola Esercizi e problemi sulla parabola Esercizio 1. Si consideri l'insieme di parabole: con k R, k 1. Γ k : y = (k + 1)x x + k 4 (a) Determinare, per quali k, la parabola passa per l'origine. (b) Determinare,

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

D3. Parabola - Esercizi

D3. Parabola - Esercizi D3. Parabola - Esercizi Traccia il grafico delle seguenti parabole e trova i punti d incontro con l asse e con l asse graficamente e/o algebricamente. 1) = ++ (0;)] ) = -+1 ( + 3 ;0), ( 3 ;0), (0;1)] 3)

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso? A. Languasco - Esercizi Matematica B - 4. Geometria 1 A: Vettori geometrici Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Siano u, v, w vettori. Quali tra le seguenti operazioni

Dettagli

Liceo Scientifico Severi salerno

Liceo Scientifico Severi salerno Liceo Scientifico Severi salerno VERIFICA ORALE MATEMATICA Docente: Pappalardo Vincenzo Data: /0/09 Classe: B. Determina per quali valori del parametro k le seguenti equazioni rappresentano una affinità:

Dettagli

ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di

ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di PARABOLA La parabola si ottiene intersecando un cono con un piano come nella figura sotto. L equazione della parabola è f(x) = ax 2 +bx+c ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni

Dettagli

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

( a 2 ) 2 + ( b 2 ) 2 c>0, infatti:

( a 2 ) 2 + ( b 2 ) 2 c>0, infatti: CIRCONFERENZA Definizione Luogo geometrico dei punti del piano equidistanti da un punto fisso C, detto centro. Fissato nel piano un sistema di riferimento cartesiano, la circonferenza di centro C (α,β)

Dettagli

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola Premessa: Prepararsi al test per l ammissione all università NON significa provare e riprovare i quesiti che si trovano sui vari siti o libretti ma: fare un primo generale ripasso di ogni argomento citato

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1 Geometria Analitica Piano Cartesiano Sistema di coordinate su una retta Presa una retta r orientata, su cui sono stati fissati un origine O e un unità di misura, definiamo sistema di coordinate su una

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla

Dettagli

Appunti di Geometria Analitica. Il sistema di coordinate cartesiane ortogonali nel piano

Appunti di Geometria Analitica. Il sistema di coordinate cartesiane ortogonali nel piano Appunti di Geometria Analitica In questi brevi appunti, richiameremo alcune nozioni di geometria analitica studiate negli anni precedenti: in particolare, rivedremo il concetto di coordinate cartesiane

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x.

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x. Macerata 6 febbraio 05 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: x y x y + + + 4 = 0 Per la presenza del

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE INTRODUZIONE L ellisse fa parte di un insieme di curve (circonferenza, parabola, iperbole) chiamate coniche, perché si possono

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

Compito di Matematica / Classe 2Dsa / 10-marzo-17 / Alunno:

Compito di Matematica / Classe 2Dsa / 10-marzo-17 / Alunno: Compito di Matematica / Classe 2Dsa / 10-marzo-17 / Alunno: Assegnato il triangolo di vertici A 6, 5 B 5, 2 C(13, 2) determina l ortocentro e il circocentro. Determina l equazione della retta di Eulero.

Dettagli

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it SESSIONE SUPPLETIVA 8 - QUESTIONARIO QUESITO A = (; ) e B = (; ) ; y = 4 sen(x) con x Rappresentiamo la regione R ed un rettangolo inscritto in R avente un lato contenuto nel segmento

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG La Retta Cap. II Pag. 1

LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG La Retta Cap. II Pag. 1 II. LA RETTA La Retta Cap. II Pag. 1 LA RETTA In un riferimento cartesiano ortogonale una qualunque retta si può orientare stabilendo la sua direzione e verso, secondo l angolo che essa forma con il verso

Dettagli

Compito di matematica Classe III ASA 12 febbraio 2015

Compito di matematica Classe III ASA 12 febbraio 2015 Compito di matematica Classe III ASA 1 febbraio 015 1. Scrivere l equazione delle funzioni il cui grafico è rappresentato nella seguente figura: [Un quadretto = 1] Prima funzione Per x 4 l arco di parabola

Dettagli

MATEMATICA LA PARABOLA GSCATULLO

MATEMATICA LA PARABOLA GSCATULLO MATEMATICA LA PARABOLA GSCATULLO La Parabola Introduzione e definizione Prima di affrontare la parabola e la sua analisi matematica, appare opportuno definirla nelle sue caratteristiche essenziali. Anzitutto

Dettagli

Esericizi Quadriche e Coniche nello spazio

Esericizi Quadriche e Coniche nello spazio Esericizi Quadriche e Coniche nello spazio 1. In R 3 sia A = (1, 1, 0) e sia r la retta passante per A, parallela al piano x + y + z = 0 e complanare alla retta s di equazione cartesiana x + y z = 0 =

Dettagli

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono.

(a) Le derivate parziali f x. f y = x2 + 2xy + 3 si annullano contemporaneamente in (1, 2) e ( 1, 2). Le derivate seconde di f valgono. Esercizio 1 Si consideri la funzione f(x, y) = x 2 y + xy 2 + y (a) Determinare i punti di massimo e minimo relativo e di sella del grafico di f. (b) Determinare i punti di massimo e minimo assoluto di

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli