Prova scritta di metà corso mercoledì 12 maggio 2010

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prova scritta di metà corso mercoledì 12 maggio 2010"

Transcript

1 Prova sritta di metà orso meroledì maggio 00 aurea in Sienza e Ingegneria dei Materiali anno aademio Istituzioni di Fisia della Materia - Prof. orenzo Marrui Tempo a disposizione: ora e 55 minuti Uso degli appunti o di libri: NON AMMESSO; uso della alolatrie: AMMESSO Nota: per lasiare un margine di reupero interno a questo ompito, il totale dei punti a disposizione è fissato a 3 invee he a 30, ma il voto massimo di questo sritto ai fini della media per il voto finale resta omunque 30/30. ) Una assa austia genera onde sonore all interno di un tubo di sezione S = 500 m e lunghezza =.00 m, posto ad una temperatura T = 300 K. a membrana della assa austia è inizialmente ferma nella sua posizione di riposo. A partire dall istante t = 0, la membrana della assa si muove avanti e indietro lungo l asse x del tubo, eseguendo un movimento osillatorio armonio, on 4000 osillazioni omplete al minuto. Il movimento iniziale della membrana è nel verso positivo dell asse x. Calolare la frequenza ilia (a), la lunghezza d onda (b) e la fase iniziale () delle onde sonore generate, quest ultima posizionando l origine dell asse x in orrispondenza della posizione di riposo della membrana. Sapendo he quando l onda sonora armonia generata dalla membrana ha raggiunto l estremità finale del tubo, la sua energia omplessiva (mediata per le osillazioni) è pari a 700 mj, alolare anhe l ampiezza (d) dello spostamento dell aria assoiato all onda. Si può dimostrare he la pressione dell aria p(x,t) in presenza dell onda sonora è legata allo spostamento dell aria ξ(x,t) dalla seguente legge: p= p 0 γ ξ. Il tubo x termina on un apertura all aria esterna, dove la pressione risulta fissata a quella atmosferia di equilibrio. Calolare (e) l ampiezza dello spostamento dell aria in orrispondenza dell apertura del tubo, tenendo onto anhe dell effetto di questa apertura sulle onde presenti nel tubo (ma attenzione: non dovete onsiderare la situazione a regime, onsiderate solo la situazione he si realizza poo dopo he l onda generata dalla membrana ha raggiunto l apertura del tubo). Il sistema desritto presenta una serie di frequenze di risonanza aratteristihe per le quali una vibrazione anhe molto piola della membrana può generare onde sonore estremamente intense all interno del tubo. Determinare tali frequenze (f), speifiando il valore numerio di quella più piola. [punti: a = 3; b = 3; = 3; d = 3; e = ; f = ] [Promemoria dell analogia tra suono e atena di pendoli: il modulo elastio K della atena di pendoli viene sostituito ome segue: K γp 0 S, dove p Pa è la pressione atmosferia di equilibrio e γ = 7/5 per un gas biatomio ome l aria; la densità lineare di massa dell aria nel tubo ρ l va determinata a partire dalla densità di volume dell aria ρ = M m p 0 /(RT), dove M m 9 g/mol è la massa molare dell aria, R = 8.3 J/(K mol) è la ostante dei gas e T è la temperatura assoluta a ui si trova l aria.] ξ x ) Srivete un saggio di almeno mezza pagina ma non oltre una pagina su una delle seguenti due trae, a vostra selta (ma NON ENTRAMBE). [punti: 8] a. Introdurre le diverse definizioni possibili di probabilità e i rispettivi ampi di appliazione. b. Illustrare l utilizzo e la generalità del metodo degli esponenziali omplessi nella riera di soluzioni partiolari e generali di molte equazioni differenziali della fisia, sia alle derivate intere he alle derivate parziali, definendone anhe i limiti di appliabilità. ATTENZIONE: la prova ontinua alla pagina seguente...

2 seonda pagina Prova sritta di metà orso /5/00 Istituzioni di Fisia della Materia Prof. orenzo Marrui 3) TEST (vale punto per ogni domanda, 8 punti in totale) COGNOME e NOME: MATRICOA: a) Il signor Bonaventura ha una probabilità del 0% di ereditare un milione di euro da una zia ed una probabilità del 0% di vinere un milione di euro ad una lotteria. Qual è la probabilità omplessiva he il signor Bonaventura si ritrovi ad essere milionario? b) Un ghepardo perorre una distanza di (00±) m in un tempo di (4.00±0.04) s. Calolare la veloità del ghepardo ompleta di inertezza: ) Un osillatore presenta una frequenza di risonanza ω 0 = Mrad/s, ed un tempo di smorzamento τ = /γ = 0 ms. Se l osillatore è sottoposto ad una forza esterna osillante, alolare il fattore di amplifiazione delle osillazioni in risonanza rispetto al aso di bassa frequenza: d) espressione he desrive qualsiasi moto possibile di un sistema di tre osillatori aoppiati, e 3 è la seguente: iωt i3ωt i5ωt iωt i3ωt i5ωt iωt i3ωt i5 t x() t = ae + be e ; x() t = ae + be + 3 e ; x3() t = ae be + e ω, dove a, b e sono tre ostanti indeterminate. Determinare le frequenze aratteristihe e i vettori di ampiezze omplesse (autovettori) di tutti i modi normali del sistema: e) In una atena di pendoli aratterizzata da veloità delle onde v 0 = 0.5 m/s, tutti i pendoli sono inizialmente fermi in posizione vertiale. Al tempo t = 0 viene impressa un veloità positiva al pendolo A posto in x A = m. Dopo quanto tempo si muoverà (se si muoverà) un pendolo B posto in x B = 3 m? f) Una stazione radio dispone di una banda di frequenze larga 50 khz. Qual è la durata del più breve impulso di segnale he la stazione può inviare o rievere? g) Calolate l ampiezza del ampo magnetio di un onda elettromagnetia il ui ampo elettrio osilla on ampiezza E 0 = 3 kv/m: h) Determinare la lunghezza d onda e la direzione di propagazione (espressa a parole) di un onda piana on vettore d onda k = (00, 0, 00) rad/m:

3 Soluzione dell eserizio a) a membrana ompie 4000 osillazioni in 60 seondi, per ui la frequenza ilia è: Frequenza: 4000 ν = = 700 Hz 60 b) Dobbiamo determinare prima di tutto la veloità v 0 delle onde sonore, partendo dalla solita espressione per la atena dei pendoli e sfruttando la orrispondenza K γp 0 S e la relazione tra densità lineare e densità di volume per la massa ρ l = ρs: K γ p S γ p γrt = = = = = ρl ρs ρ Mm 347 m/s Ora possiamo alolare la lunghezza d onda usando la normale relazione di dispersione 347 unghezza d onda: λ = = = 0.50 m = 50 m ν 700 ) Segliamo l origine dell asse x in orrispondenza della posizione di equilibrio della membrana. Per determinare la fase iniziale, sriviamo l espressione reale dell onda armonia generata, in termini di spostamento dell aria ξ: ξ ( xt, ) = Aos( kx ωt+ ϕ) Per x = 0 (ossia sulla membrana) e t = 0, si ha ξ (0,0) = Aos( ϕ ) Sapendo he questa posizione deve anhe orrispondere alla posizione di equilibrio, ossia di spostamento nullo, il oseno deve annullarsi, per ui si ha ϕ = ±π/. Il segno della fase iniziale dipende da ome inizia a muoversi la membrana, se in avanti o indietro. Dato he la membrana inizia a muoversi in avanti, si deve avere ( ω ) ξ(0, t) = Aos t + ϕ > 0 per t > 0 piolo. Quindi si verifia he questo si ottiene per Fase iniziale: ϕ = +π/ d) Dall energia totale E dell onda possiamo alolare la densità di energia per unità di lunghezza ome segue: de E = dx

4 Questa è legata all ampiezza dello spostamento dell aria ome per la atena dei pendoli de dx = Kk A Usando anhe qui la orrispondenza K γp 0 S, otteniamo de dx E = = γ p0sk A Riavando l ampiezza, si ha: E λ E Ampiezza spostamento aria: A = = = 0.8 mm γ pk S π γ ps e) a faia aperta del tubo vinola la pressione dell onda ad essere uguale a quella atmosferia di riposo p 0. Pertanto per x = vale la ondizione al ontorno seguente: ξ p( x =, t) = p γ = p x x= da ui otteniamo ξ x x= = 0 () Questa ondizione al ontorno genera un onda riflessa, però on aratteristihe leggermente diverse da quelle dell onda riflessa da un estremo fisso (ome sarebbe se il tubo fosse hiuso). Utilizziamo questa ondizione per determinare l espressione dell onda riflessa. Utilizzando la notazione omplessa, possiamo srivere onda inidente: ξ = Ae i i ( ωt) ikx dove l ampiezza omplessa è Ai i = Ae ϕ, on A e ϕ determinate preedentemente. onda riflessa: ξ = Ae r r ( ω ) i kx t a ondizione () fornise: ika e ik iωt ika e = 0 ik iωt i r da ui A r = Ae i ik Il ampo totale ξ(x,t) risultante dalla sovrapposizione dell onda inidente e dell onda riflessa è quindi il seguente: ξ ξ ξ [ ] (, ) ikx i ω t ik ikx i ω t ik ikx ik ikx + ik i ω t ik x t os ( ) i ω = t i + r = Aie + Ai e = Aie e + e e = Ai e k x e

5 Per x =, il ampo ξ osilla on ampiezza omplessa A i e ik = A e ik+iϕ. ampiezza reale di osillazione è data dal modulo di questa ampiezza omplessa, ossia da A (perhé l esponenziale ha modulo ). Quindi, abbiamo la risposta Ampiezza di osillazione aria all usita del tubo: A =.6 mm f) e frequenze aratteristihe del sistema sono quelle di un risonatore, in ui però le due ondizioni al ontorno sono diverse. Quella in orrispondenza della membrana è la solita ondizione di annullamento del ampo di spostamento ξ, mentre quella in orrispondenza dell apertura è la ondizione di annullamento della variazione di pressione, ossia della derivata spaziale della ξ. e frequenze possibili di questo risonatore si possono trovare proedendo ome segue. Per una data frequenza ω il ampo ξ è dato in generale dalla sovrapposizione di due onde armonihe ontro-propaganti (he sono le unihe soluzioni dell equazione delle onde he hanno la frequenza data): ikx iωt ξ ( xt, ) = Ae + Ae ikx iωt () Questa espressione va poi soggetta alle due ondizioni al ontorno: ondizione alla membrana: ξ ( ) i t (0, t) = A + A e ω = 0 ξ ik iωt ik iωt ondizione all apertura del tubo: = ikae ika e = 0 x x= a prima ondizione mi impone ondizione A = A. a seonda, dopo aver sostituito questa prima, mi fornise la os( k ) = 0 da ui ottengo le frequenze spaziali k ammesse: k = ( n + ) π dove n è un intero qualsiasi. Per tali frequenze, il ampo interno al tubo dato dalla () diventa il seguente: ( n+ ) π x ξ (, ) = os iωt x t A e Dato he os( α)=os(α), si vede he gli n negativi restituisono le stesse soluzioni degli n positivi. Invee, n = 0 è una soluzione diversa, da onsiderare (al ontrario di quanto suede on il risonatore in ui entrambi gli estremi sono tenuti fermi). e frequenze temporali sono ottenute dalle frequenze spaziali tramite la relazione di dispersione, per ui si ha: frequenze possibili: ν ( n + ) v = 0 = 0,,, n In partiolare la frequenza più bassa (frequenza fondamentale) è quella he si ottiene on n = 0, ossia

6 frequenza fondamentale: ν 0 = = 43 Hz 4 Va notato he le altre frequenze possibili sono solo i multipli interi dispari di questa frequenza fondamentale e non tutti i multipli interi.

7 SOUZIONI seonda pagina Prova sritta di metà orso /5/00 Istituzioni di Fisia della Materia Prof. orenzo Marrui 4) TEST (vale punto per ogni domanda, 8 punti in totale) COGNOME e NOME: MATRICOA: i) Il signor Bonaventura ha una probabilità del 0% di ereditare un milione di euro da una zia ed una probabilità del 0% di vinere un milione di euro ad una lotteria. Qual è la probabilità omplessiva he il signor Bonaventura si ritrovi ad essere milionario? evento he il sig. Bonaventura diventi milionario (evento M) è dato dall unione dei due eventi (hiamamoli Z e ), he però non sono inompatibili (possono aadere entrambi). Trattandosi di due eventi hiaramente indipendenti: P(M) = P(Z)+P() P(Z)P() = 36% j) Un ghepardo perorre una distanza di (00±) m in un tempo di (4.00±0.04) s. Calolare la veloità del ghepardo ompleta di inertezza: errore relativo del rapporto è la somma degli errori relativi, he in questo aso sono del % e dell %. Periò l errore è dato da %+% = 3%. a veloità è 00/4 = 5 m/s, on un errore del 3%, o anhe V = (5.0 ± 0.8) m/s k) Un osillatore presenta una frequenza di risonanza ω 0 = Mrad/s, ed un tempo di smorzamento τ = /γ = 0 ms. Se l osillatore è sottoposto ad una forza esterna osillante, alolare il fattore di amplifiazione delle osillazioni in risonanza rispetto al aso di bassa frequenza: Il fattore di amplifiazione è dato dal fattore di qualità, dato da Q = πτ/t = ω 0 /γ = τω 0 / = 0 4 = 0000 l) espressione he desrive qualsiasi moto possibile di un sistema di tre osillatori aoppiati, e 3 è la seguente: iωt i3ωt i5ωt iωt i3ωt i5ωt iωt i3ωt i5 t x() t = ae + be e ; x() t = ae + be + 3 e ; x3() t = ae be + e ω, dove a, b e sono tre ostanti indeterminate. Determinare le frequenze aratteristihe e i vettori di ampiezze omplesse (autovettori) di tutti i modi normali del sistema: Frequenze: ω, 3ω, 5ω. Vettori ampiezze:,, 3 m) In una atena di pendoli aratterizzata da veloità delle onde v 0 = 0.5 m/s, tutti i pendoli sono inizialmente fermi in posizione vertiale. Al tempo t = 0 viene impressa un veloità positiva al pendolo A posto in x A = m. Dopo quanto tempo si muoverà (se si muoverà) un pendolo B posto in x B = 3 m? xb xa 5 Il tempo è lo stesso neessario ad un onda a propagarsi dal pendolo A al pendolo B: t = = = 0 s 0.5 n) Una stazione radio dispone di una banda di frequenze larga 50 khz. Qual è la durata del più breve impulso di segnale he la stazione può inviare o rievere? Δ t =.6 μs Δω = 4πΔν = o) Calolate l ampiezza del ampo magnetio di un onda elettromagnetia il ui ampo elettrio osilla on ampiezza E 0 = 3 kv/m: B E 5 / = = 0 T = 0μT p) Determinare la lunghezza d onda e la direzione di propagazione (espressa a parole) di un onda piana on vettore d onda k = (00, 0, 00) rad/m: π π λ = = = 4.4 m a direzione è la bisettrie tra gli assi xz, verso il basso e sinistra. k 00

Prova scritta di metà corso mercoledì 23 aprile 2008

Prova scritta di metà corso mercoledì 23 aprile 2008 Prova sritta di metà orso meroledì 3 aprile 008 Laurea in Sienza e Ingegneria dei Materiali anno aademio 007-008 Istituzioni di Fisia della Materia - Prof. Lorenzo Marrui Tempo a disposizione: 1 ora e

Dettagli

Prova scritta di metà corso venerdì 20 aprile 2007

Prova scritta di metà corso venerdì 20 aprile 2007 Prova sritta di metà orso venerdì 0 aprile 007 Laurea in Sienza e Ingegneria dei Materiali anno aademio 006-007 Istituzioni di Fisia della Materia - Prof. Lorenzo Marrui Tempo a disposizione: ore e 30

Dettagli

Prova scritta di metà corso martedì 7 aprile 2009

Prova scritta di metà corso martedì 7 aprile 2009 Prova scritta di metà corso martedì 7 aprile 29 Laurea in Scienza e ngegneria dei Materiali anno accademico 28-29 stituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione: 1 ora

Dettagli

Prova scritta di metà corso mercoledì 6 maggio 2015

Prova scritta di metà corso mercoledì 6 maggio 2015 Prova scritta di metà corso mercoledì 6 maggio 215 Laurea in Scienza e Ingegneria dei Materiali anno accademico 214-215 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione:

Dettagli

Prima prova intercorso giovedì 20 aprile 2006

Prima prova intercorso giovedì 20 aprile 2006 Prima prova intercorso giovedì 0 aprile 006 aurea in Scienza e Ingegneria dei Materiali anno accademico 005-006 Istituzioni di Fisica della Materia - Prof. orenzo Marrucci Tempo a disposizione: ore e 0

Dettagli

In queste circostanze, si riducono subito a: !!!! B. ˆ z (1) (2)

In queste circostanze, si riducono subito a: !!!! B. ˆ z (1) (2) Onde elettromagntihe Le soluzioni alle equazioni di Mawell sono molte: ne abbiamo viste diverse, es.: il ampo elettrostatio, i ampi (elettrii e magnetii) stazionari nei pressi di un filo on orrente ostante,

Dettagli

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4 Esame sritto di Elettromagnetismo del 16 Luglio 2012 - a.a. 2011-2012 proff. F. Laava, F. Rii, D. Trevese Elettromagnetismo 10 o 12 rediti: eserizi 1,2,3 tempo 3 h e 30 min; Reupero di un esonero: eserizi

Dettagli

Le onde elettromagnetiche

Le onde elettromagnetiche Le onde elettromagnetihe orgente di onde elettromagnetihe è un sistema di arihe aelerate he produono un ampo elettrio (x,y,z,t) e un ampo magnetio B(x,y,z,t) I due ampi (x,y,z,t) e B(x,y,z,t) sono strettamente

Dettagli

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013 FACOLTÀ DI INGEGNERIA ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meania PROF A PRÁSTARO /0/03 Fig Diso D, ruotante, on rihiamo elastio radiale in un piano vertiale π, e portatore di aria

Dettagli

Esperienza 13: il Tubo di. Kundt. Laboratorio di Fisica 1 (Modulo 2) A. Baraldi, M. Riccò. Università di Parma. a.a. 2011/2012. Copyright M.

Esperienza 13: il Tubo di. Kundt. Laboratorio di Fisica 1 (Modulo 2) A. Baraldi, M. Riccò. Università di Parma. a.a. 2011/2012. Copyright M. Esperienza 13: il Tubo di Università di Parma Kundt a.a. 011/01 Laboratorio di Fisica 1 (Modulo ) A. Baraldi, M. Riccò Copyright M.Solzi Onde progressive a.a. 011/1 y(,) x t = f ( x vt) y(,) x t = f (

Dettagli

Prima prova intercorso lunedì 19 aprile 2004

Prima prova intercorso lunedì 19 aprile 2004 Prima prova intercorso lunedì 9 aprile 4 aurea in Scienza e Ingegneria dei Materiali anno accademico 3-4 Istituzioni di Fisica della Materia - Prof. orenzo Marrucci Tempo a disposizione: ore e minuti Uso

Dettagli

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito del 3/IX/2002

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito del 3/IX/2002 CONTROLLI AUTOMATICI (0AKS, 0FSQ) ATM, INF Soluzione della tipologia di ompito del 3/IX/00 Eserizio Progetto di un ontrollore Sia dato il sistema di ontrollo riportato in figura on: 0.65 G p ( s) =, Tp

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

= M di 1 dt = MI 0ω cos( ωt)

= M di 1 dt = MI 0ω cos( ωt) del ompito di isia 17 febbraio 1 (Pordenone) Elettrodinamia Due bobine sono disposte una di fronte all altra. La loro induttanza mutua è M. 1 - H. L intensità di orrente nella bobina 1 osilla sinusoidalmente

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 4 Luglio 2014

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 4 Luglio 2014 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 4 uglio 014 1 3 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore on impedenza interna R G è ollegato ad un

Dettagli

Richiami sui fenomeni ondulatori

Richiami sui fenomeni ondulatori Rihiami sui fenomeni ondulatori Cos è un onda? una perturbazione fisia, impulsiva o periodia he, prodotta da una sorgente in un punto dello spazio, si propaga in un mezzo on una veloità ben definita produendo

Dettagli

Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico

Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico Lagrangiana e Hamiltoniana i una partiella aria in ampo elettromagnetio L equazione el moto i una partiella i massa m e aria q in un ampo elettrio E e magnetio B é t m v = q E + q ) v B 1) NOTA -Nel sistema

Dettagli

Analisi 1 e 2 - Quarto compitino Soluzioni proposte

Analisi 1 e 2 - Quarto compitino Soluzioni proposte Analisi 1 e 2 - Quarto ompitino Soluzioni proposte 23 maggio 2017 Eserizio 1. Risolvere il problema di Cauhy y = x(4 y2 ) y y(0) = α al variare di α R, α 0 Soluzione proposta. Se α = 2 oppure α = 2 abbiamo

Dettagli

Linee di Trasmissione: Propagazione per onde

Linee di Trasmissione: Propagazione per onde Linee di Trasmissione: Propagazione per onde v + (z) Rappresentazione shematia di una linea di trasmissione z Definizione matematia dell onda di tensione he si propaga verso la z resente: ω 0 v ( z) =

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 8 Febbraio 013 1 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore, la ui tensione varia nel tempo ome

Dettagli

Fisica Generale Modulo di Fisica II Ingegneria Meccanica - Edile - Informatica Esercitazione 8 ONDE ELETTROMAGNETICHE

Fisica Generale Modulo di Fisica II Ingegneria Meccanica - Edile - Informatica Esercitazione 8 ONDE ELETTROMAGNETICHE OND LTTROMAGNTICH Gb. Si onsideri un onda elettromagnetia piana sinusoidale he si propaga nel vuoto nella direione positiva dell asse x. La lunghea d onda è 5. m e l ampiea massima del ampo elettrio è.

Dettagli

G. Parmeggiani 15/5/2017. Algebra e matematica discreta, a.a. 2016/2017, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 5

G. Parmeggiani 15/5/2017. Algebra e matematica discreta, a.a. 2016/2017, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 5 G. Parmeggiani 5/5/7 Algera e matematia disreta, a.a. 6/7, Suola di Sienze - Corso di laurea: parte di Algera Informatia Svolgimento degli Eserizi per asa 5 Si dia quale delle due seguenti posizioni definise

Dettagli

La risposta oscillatoria del veicolo nel piano verticale è generata dall'eccitazione rappresentata dalla simultanea presenza di:

La risposta oscillatoria del veicolo nel piano verticale è generata dall'eccitazione rappresentata dalla simultanea presenza di: 4. MODELLAZIONE DEI VEICOLI FERROVIARI Per lo studio dei moti osillatori del modello desritto nel apitolo preedente, è neessario introdurre nello stesso le aratteristihe del veiolo ferroviario (Figura

Dettagli

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( )

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( ) Algoritmo di best-it (o itting) sinusoidale a 3 parametri Supponiamo di disporre della versione digitalizzata di un segnale sinusoidale di ampiezza di pio A, requenza nota, ase assoluta ϕ e on omponente

Dettagli

Linee di trasmissione

Linee di trasmissione Le linee di trasmissione sono utilizzate in tutte le appliazioni in ui un segnale in alta frequenza deve essere onnesso da un punto di una rete ad un altro. Nel aso di una linea non si stabilise più istantaneamente

Dettagli

Relazione di Fondamenti di automatica

Relazione di Fondamenti di automatica Università degli studi di Cassino relazione finale orso di fondamenti di automatia Elaborato J Relazione di Fondamenti di automatia Doente del orso: Stefano Chiaverini Riardo Galletti Matr. 65 - - Relazione

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Gli integrali indefiniti

Gli integrali indefiniti Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una

Dettagli

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE E. Borghi - Variabili dinamihe del ampo salare reale Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo salare

Dettagli

Onde. ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio.

Onde. ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio. Onde ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio. La propagazione di onde meccaniche aiene attraerso un mezzo materiale che ne determina caratteristiche e elocità. Esempi: Onde

Dettagli

Esercitazione di Controll0 Digitale n 1

Esercitazione di Controll0 Digitale n 1 8 marzo 3 Eseritazione di Controll Digitale n a.a. /3 =. Si onsideri il segnale x( t) sin ( π t) + sin( 4π t) Si valuti la frequenza minima del ampionatore he permette la riostruibilità del segnale, e

Dettagli

Principali equazioni di acustica

Principali equazioni di acustica RT veloità del suono nel gas m R ostante del gas onsiderato T temeratura [ K Priniali equazioni di austia J Kg K λ λ lunghezza d onda [ m requenza in Hertz s z ρ z imedenza austia aratteristia Pa s m ρ

Dettagli

LEZIONE # 7. y(t) grandezza in ingresso (misurando) x(t) grandezza in uscita (deflessione o risposta dello strumento)

LEZIONE # 7. y(t) grandezza in ingresso (misurando) x(t) grandezza in uscita (deflessione o risposta dello strumento) Appunti di Misure Meanihe & Termihe orso di Laurea Magistrale in Ingegneria Meania (ordinamento ex 7/4) Faoltà di Ingegneria Civile e Industriale - Università degli studi di Roma La Sapienza LEZIONE #

Dettagli

Misure di polarizzazione mediante ricevitori differenziali a microonde

Misure di polarizzazione mediante ricevitori differenziali a microonde Misure di polarizzazione mediante ricevitori differenziali a microonde Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Corso di laboratorio di strumentazione spaziale I A. Mennella

Dettagli

ln1.02 ln ln

ln1.02 ln ln Capitolo 5 oluzioni Faendo il rapporto ra le veloità risulta:,, 35 ( ) ( 965) m/s 33 m/s,,, 6 Considerato he la soglia del dolo è, dalla legge dell inverso del quadrato si ha: 6 r 5 3 r r m 77 m 77 km

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Eseritazioni di Elettrotenia a ura dell Ing ntonio Maffui Parte III: iruiti in eoluzione dinamia 00/003 Eseritazioni di Elettrotenia 00/003 Maffui ESEITZIONE N0: eti dinamihe del primo ordine ESEIZIO 0

Dettagli

TEOREMA DEL CAMPIONAMENTO

TEOREMA DEL CAMPIONAMENTO 1 TEOREMA DEL CAMPIONAMENTO nota per il orso di Teleomuniazioni a ura di F. Benedetto G. Giunta 1. Introduzione Il proesso di ampionamento è di enorme importanza ai fini della realizzazione dei dispositivi

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Le onde. F. Soramel Fisica per Medicina 1

Le onde. F. Soramel Fisica per Medicina 1 Le onde a) onda sonora: le molecole si addensano e si rarefanno b) onda all interfaccia liquido-aria: le particelle oscillano in alto e in basso c) onda in una corda d) onda in una molla e) onda sismica

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizi di acustica Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizio 1 La velocità del suono nell aria dipende dalla sua temperatura. Calcolare la velocità di propagazione

Dettagli

Principio di sovrapposizione.

Principio di sovrapposizione. Principio di sovrapposizione. Il principio di sovrapposizione si applica ogni volta che due (o più) onde viaggiano nello stesso mezzo nello stesso tempo. Le onde si attraversano senza disturbarsi. In ogni

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

FISICA GENERALE I - 10/12 CFU NP II appello di Febbraio A.A Cognome Nome n. matr.

FISICA GENERALE I - 10/12 CFU NP II appello di Febbraio A.A Cognome Nome n. matr. FISICA GENERAE I - / CFU NP II appello di Febbraio A.A. - 5..4 Cognome Nome n. matr. Corso di Studi Docente Voto 9 crediti crediti crediti Esercizio n. Due masse puntiformi scivolano senza attrito su un

Dettagli

Onde. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Onde. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Onde Si è visto come alcuni fenomeni fisici siano periodici, e si ripetano dopo un certo tempo Alcune grandezze fisiche sono in grado di propagarsi nello spazio oppure, se si fissa un punto dello spazio,

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA TRASFORMATA DI LAPLACE I sistemi dinamii invarianti e lineari (e tali sono le reti elettrihe) possono essere studiati, nel dominio del tempo, attraverso le equazioni differenziali nelle quali l'inognita

Dettagli

MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO

MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO Scopo dell esperienza è lo studio della propagazione delle onde sonore all interno di un tubo, aperto o chiuso, contenete aria o altri gas. Si verificherà

Dettagli

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI Enrio Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI E. Borghi - L equazione di Dira nella approssimazione di Pauli Rihiami a studi presenti in fisiarivisitata Leggendo L equazione di Dira

Dettagli

Sistemi di misura digitali Segnali campionati - 1. Segnali campionati

Sistemi di misura digitali Segnali campionati - 1. Segnali campionati Sistemi di misura digitali Segnali ampionati - 1 Segnali ampionati 1 - Il teorema del ampionamento Campionamento ideale Il ampionamento (sampling di un segnale analogio onsiste nel prenderne solo i valori

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI Fondamenti Segnali e Trasmissione Numerizzazione dei segnali Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono di tipo numerio, normalmente

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Università degli Studi di Teramo Faoltà di Sienze Politihe Corso di Laurea in Statistia Lezioni del Corso di Matematia a ura di D. Tondini a.a. 3/4 CAPITOLO II LE EQUAZIONI DIFFERENZIALI. GENERALITÀ È

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Integrale Indefinito e l Antiderivata Il proesso inverso della derivazione si hiama integrazione. Nota la variazione istantanea di una grandezza p.es. la veloità) è neessario sapere ome si omporta tale

Dettagli

Lezione 15 - Onde. Fisica 1 - R. De Renzi - Onde 1

Lezione 15 - Onde. Fisica 1 - R. De Renzi - Onde 1 Lezione 15 - Onde onde su una corda, sulla superficie dell acqua lunghezza d onda, periodo, vettor d onda, frequenza funzione d onda equazione delle onde e velocità dell onda esempio di equazione delle

Dettagli

1 La Lagrangiana di una particella in una campo di forze potenziale

1 La Lagrangiana di una particella in una campo di forze potenziale Introduzione alle equazioni di Eulero-Lagrange e ai potenziali generalizzati G.Falqui, Dipartimento di Matematia e Appliazioni, Università di Milano Bioa. Corso di Sistemi Dinamii e Meania Classia, a.a.

Dettagli

Moto vario elastico: fenomeno del colpo d ariete

Moto vario elastico: fenomeno del colpo d ariete Moto vario elastio: fenomeno del olpo d ariete 1. Desrizione del fenomeno Si onsideri un semplie impianto ostituito da un serbatoio di grande ampiezza in modo tale he in esso il livello di ario rimanga

Dettagli

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec,

8π c 3 ν2. dx x 2 /(e x 1) fotoni/m 2 /sec, Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 8 Giugno 7 - (tre ore a disposizione) Soluzione 1.) Una stazione radio trasmette emettendo una potenza di un kilowatt alla frequenza di 9

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

Scritto Appello II, Materia Condensata. AA 2017/2018

Scritto Appello II, Materia Condensata. AA 2017/2018 Scritto Appello II, Materia Condensata. AA 017/018 19/0/018 Coloro che hanno superato il primo esonero dovranno svolgere gli esercizi 3 e 4 in un tempo massimo di due ore (il punteggio sarà riportato in

Dettagli

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4

M. Usai Circuiti digitali 8_2 1. Figura 8.4 Risposte di ampiezza per filtri a fase lineare del I e II tipo di Chebyshev con N=4 I modelli di Chebyshev Si può ottenere una veloità di aduta più rapida in prossimità della frequenza di taglio rispetto a quella del modello di Butterworth, a disapito di una diminuzione di monotoniità

Dettagli

Introduzione all esperienza sul Tubo di Kundt

Introduzione all esperienza sul Tubo di Kundt Introduzione all esperienza sul Tubo di Kundt 29-04-2013 Laboratorio di Fisica con Elementi di Statistica, Anno Accademico 2012-2013 Responsabile: Paolo Piseri Date: Turno 1: 06-05-2013, 13-05-2013, 20-05-2013

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Teoria perturbativa semiclassica dell interazione radiazione-materia (parte I : regole di selezione)

Teoria perturbativa semiclassica dell interazione radiazione-materia (parte I : regole di selezione) Teoria perturbativa semilassia dell interazione radiazione-materia (parte I : regole di selezione) (vedi Cohen-Tannoudji II, Capitolo XIII e Complemento AXIII) Abstrat L approio uantistio all interazione

Dettagli

FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO ABSTRACT DELL ELABORATO DI LAUREA. Valutazione del trasporto solido

FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO ABSTRACT DELL ELABORATO DI LAUREA. Valutazione del trasporto solido UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO ABSTRACT DELL ELABORATO DI LAUREA Valutazione del trasporto solido in sospensione

Dettagli

ONDA. Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico.

ONDA. Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico. ONDA Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico. Una qualsiasi perturbazione (originata da una sorgente), impulsiva o periodica, che

Dettagli

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Lezione del Corso di Esercitazioni di Laboratorio di Meccanica, Roma, 5 Maggio, 2014 Roberto Bonciani 1, Diparto di Fisica dell

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Gli approcci alla programmazione dinamica: alcuni esempi

Gli approcci alla programmazione dinamica: alcuni esempi Gli approi alla programmazione dinamia: aluni esempi Franeso Menonin February, 2002 Ottimizzazione dinamia Il problema he qui si onsidera è quello di un soggetto he intende massimizzare (o minimizzare)

Dettagli

Quantizzazione - Soluzioni

Quantizzazione - Soluzioni Quantizzazione - Soluzioni INTRODUZIONE Il Passaggio da un segnale analogio ad un segnale digitale avviene tramite due operazioni prinipali: Campionamento, Quantizzazione. Durante la prima ase, ampionamento,

Dettagli

Relatività e Meccanica Quantistica: concetti e idee. Relativity and Quantum Mechanics: concepts and ideas. Carlo Cosmelli

Relatività e Meccanica Quantistica: concetti e idee. Relativity and Quantum Mechanics: concepts and ideas. Carlo Cosmelli Relatività e Meania Quantistia: onetti e idee Relativity and Quantum Mehanis: onepts and ideas Approfondimenti #3 Relatività Speiale Carlo Cosmelli 1 Relatività Speiale: qualhe alolo e osservazione - Come

Dettagli

Esperienza 12: oscillatore. forzato e risonanza. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2011/2012. Copyright M.

Esperienza 12: oscillatore. forzato e risonanza. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2011/2012. Copyright M. Esperienza 1: oscillatore Università di Parma forzato e risonanza a.a. 11/1 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Copyright M.Solzi Oscillazioni libere smorzate a.a. 11/1 1: Oscillatore forzato

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE www.aliceappunti.altervista.org IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE Nel moto circolare uniforme, il moto è generato da una accelerazione centripeta, diretta verso

Dettagli

Esercizi sulle reti elettriche in corrente continua

Esercizi sulle reti elettriche in corrente continua serizi sulle reti elettrihe in orrente ontinua serizio 1: eterminare la P erogata generatore, e la P R assorita resistore R del iruito in figura 4 Ω Ω Ω 15 Ω 5 Ω Ω R Ω 10 Ω Soluzione: P = 150 W P R =.08

Dettagli

Elettronica dello Stato Solido Lezione 5: L equazione di. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 5: L equazione di. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 5: L equazione di Schrödinger Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Argomenti qualitativi per dedurre l equazione di Schrödinger

Dettagli

p V Velocita di propagazione del suono ρ = densita del mezzo k = modulo di compressione

p V Velocita di propagazione del suono ρ = densita del mezzo k = modulo di compressione 1 Onde longitudinali o acustiche del tutto in generale si definisce onda acustica qualsiasi onda longitudinale dovuta alla perturbazione longitudinale di un qualsiasi mezzo meccanico nello specifico e

Dettagli

Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A gennaio 2016

Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A gennaio 2016 Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A. 205-6 - 29 gennaio 206 () Un fascio di protoni entra in una regione di spessore d = 4.0 0 2 m in cui è presente un campo

Dettagli

LA RELATIVITÀ GENERALE

LA RELATIVITÀ GENERALE CAPITOLO 43 LA RELATIVITÀ GENERALE 1 IL PROBLEMA DELLA GRAVITAZIONE 1 Su piole distanze i vettori aelerazione di gravità in due punti differenti sono pressohé paralleli, mentre su grandi distanze no, e

Dettagli

ONDE. Propagazione di energia senza propagazione di materia. Una perturbazione viene trasmessa ma l acqua non si sposta

ONDE. Propagazione di energia senza propagazione di materia. Una perturbazione viene trasmessa ma l acqua non si sposta ONDE Propagazione di energia senza propagazione di materia Una perturbazione viene trasmessa ma l acqua non si sposta Le onde meccaniche trasferiscono energia propagando una perturbazione in un mezzo.

Dettagli

Lezione XXIV Sistemi vibranti a 1 gdl 67580(17,',0,685$'(//(9,%5$=,21,

Lezione XXIV Sistemi vibranti a 1 gdl 67580(17,',0,685$'(//(9,%5$=,21, ezione XXIV 658(,,,685$(//(9,%5$,, Tra le applicazioni del nostro oscillatore vi è quella di usarlo come strumento per la misura delle vibrazioni assolute di un corpo Con riferimento alle grandezze indicate

Dettagli

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE 29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

Lezione 11 Funzioni sinusoidali e onde

Lezione 11 Funzioni sinusoidali e onde Lezione 11 Funzioni sinusoidali e onde 1/18 Proprietà delle funzioni seno e coseno sono funzioni periodiche di periodo 2π sin(α + 2π) = sin α cos α + 2π = cos α a Sin a Cos a a a 2/18 Funzione seno con

Dettagli

Campionamento. Campionamento. esercizi. Segnale analogico. Segnale campionato. x(n)=x(nt c. con T c. : passo di campionamento e f c.

Campionamento. Campionamento. esercizi. Segnale analogico. Segnale campionato. x(n)=x(nt c. con T c. : passo di campionamento e f c. Campionamento eserizi Campionamento x(t) x n Segnale analogio t x(n)x(n ) 0 N- n Segnale ampionato on : passo di ampionamento e / requenza di ampionamento x( t ) x( t )p( t ) p( t ) δ ( t n ) n x( t )

Dettagli

Esercitazione su DOA (18 Giugno 2008)

Esercitazione su DOA (18 Giugno 2008) Eseritazione su DOA (8 Giugno 8) D. Donno Eserizio : DOA e periodogramma Si onsideri una shiera di N7 sensori (antenne omnidirezionali) on spaziatura su ui inide un onda elettromagnetia ( 3 8 m/s) monoromatia

Dettagli

e del guadagno percentuale in conto capitale, dato da e v

e del guadagno percentuale in conto capitale, dato da e v Esame di Eonomia Politia - Istituzioni (A-K) Svolgimento della prova sritta del 8 aprile 2009 B questo è uno svolgimento ompleto, e potrebbe essere molto più sintetio FILA 3 1) (a) Si spieghi il signifiato

Dettagli

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1 ezione 15. Stabilità di sistemi retroazionati F. Previdi Automatia ez. 15 1 Shema 1. Stabilità di sistemi retroazionati 2. Stabilità & inertezza 3. Margine di guadagno 4. Margine di fase 5. Criterio di

Dettagli

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito dell 8/VII/2002

CONTROLLI AUTOMATICI (01AKS, 02FSQ) ATM, INF Soluzione della tipologia di compito dell 8/VII/2002 CONTROLLI AUTOMATICI (0AKS, 0SQ) ATM, IN Soluzione della tipologia di ompito dell 8/VII/00 Eserizio Progetto di un ontrollore Sia dato il sistema di ontrollo riportato in figura on: ( 30 3s + 3 =, ( =,

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Esercizio: pendoli accoppiati. Soluzione

Esercizio: pendoli accoppiati. Soluzione Esercizio: pendoli accoppiati Si consideri un sistema di due pendoli identici, con punti di sospensione posti alla stessa quota in un piano verticale. I due pendoli sono collegati da una molla di costante

Dettagli

NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO

NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO G. Martinelli Abstrat Questi appunti ostituisono un sommario delle prinipali formule relative alla trattazione del orpo nero. 1 Le Equazioni di Maxwell Le

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Prova scritta finale 19 giugno 2009

Prova scritta finale 19 giugno 2009 Prova scritta finale 9 giugno 9 Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico 8-9 Tempo a disposizione: 3 ore Uso degli appunti o di libri: NON AMMSSO uso della calcolatrice:

Dettagli

Onde meccaniche. 1. Velocità delle onde. 2. Equazione delle onde. 3. Onde di compressione. 4. Soluzioni dell equazione delle onde I - 0

Onde meccaniche. 1. Velocità delle onde. 2. Equazione delle onde. 3. Onde di compressione. 4. Soluzioni dell equazione delle onde I - 0 Onde meccaniche 1. Velocità delle onde 2. Equazione delle onde 3. Onde di compressione 4. Soluzioni dell equazione delle onde I - 0 Onde meccaniche Onde meccaniche: trasporto di oscillazioni da un punto

Dettagli

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) Lagrangiana del ampo elettromagnetio Il ampo elettromagnetio nel vuoto è desritto dalle equazioni di Maxwell (in unità MKSA) B = 0 () E = B (2) E = ϱ (3) ɛ 0 B = µ 0 j + µ 0 ɛ 0 E L equazione di ontinuità

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli