FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013"

Transcript

1 FACOLTÀ DI INGEGNERIA ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meania PROF A PRÁSTARO /0/03 Fig Diso D, ruotante, on rihiamo elastio radiale in un piano vertiale π, e portatore di aria elettria barientrale, immerso in ampo elettrio ostante E ed in un ampo magnetio ostante B, (B E, B π) SISTEMA MECCANICO From non-poinsot motions to Poinsot motions Il sistema meanio è esattamente lo stesso della V Eseritazione del --0 Quindi il sistema meanio è ostituito da un diso D, omogeneo di raggio R, piano del diso ortogonale ad una retta r, passante per il barientro G di D La retta r ruota in un piano vertiale, π, intorno ad un punto O π Il barientro G è portatore di una aria elettria q > 0 Inoltre lungo r è infilata una molla ideale di ostante elastia > 0, puntata in O ed appliata a G D Tutto il sistema è immerso in un ampo elettrio ostante E, vertiale e diretto verso l alto ed in un ampo magnetio ostante B, (orizzontale, B E, B π) I vinoli si onsiderano lisi e bilateri (Vedere Fig ) QUESITI ) Assumendo he le equazioni di Lagrange del sistema sono ome riportate in () (Vedere V Eseritazione del --0) () (ρ-omponente) µ ρ µρ α + (µg q E ) os α + ρ q B ρ α = 0 (α-omponente) (µρ + A) α + µρ α ρ + q B ρ ρ (µg q E )ρ sin α = 0 (β-omponente) C β = 0 dimostrare he esistono onfigurazioni di stato stazionario di puro spinning, dove la distanza, ρ 0, di G da O rimane ostante e differente da zero ) Esistono onfigurazioni stabili tra quelle del punto )? 3) È possibile raggiungere queste onfigurazioni partendo dall equatore?

2 SOLUZIONE ) Dimostriamo he esistono moti di Poinsot on β 0 Questi sono onfigurazioni di stato stazionario e sono riportati in Tab Infatti soluzioni possibili he rispet- Tab Configurazioni di stato stazionario di puro spinning α = α 0 ρ = ρ 0 Condizioni Hamiltoniana ρ 0 = 0 q E = µg H = C β 0 = α 0 = π, 3π ρ 0 = 0 H = C β 0 = α 0 = 0 ρ 0 = q E µg 0 q E > µg H = C β 0 (q E µg = α 0 = π ρ 0 = µg q E 0 q E < µg H = C β 0 (q E µg = tino il moto alla Poinsot, sono anhe on β 0 e α = 0 L equazione di Lagrange per questi asi si riduono al sistema () µ ρ + (µg q E ) os α 0 + ρ = 0 () ρ ρ q B (µg q E ) sin α 0 ] = 0 Si vede allora he le unihe possibili soluzioni sono quelle riportate in Tab, he sono tutte di stato stazionario e di puro spinning, nelle quali la distanza del barientro G da O non varia e rimane anhe ostante la posizione dell asta r passante per il barientro G Infatti, una possibile soluzione della seonda equazione in () è ρ = 0 Allora dalla prima equazione in () riaviamo he si deve avere µg = q E, oppure os α 0 = 0, quindi α 0 = π, 3π Se invee si assume l altra possibilità per soddisfare la seonda equazione in (), ioè (3) ρ = dalla prima equazione in () riaviamo q E µg q B / sin α 0, q E µg (4) ρ = os α 0 D altro anto, per integrazione della (3) abbiamo q E µg (5) ρ = sin α 0 t + ρ 0 q B / Quindi ugualiando la (4) on la (5), ioè q E µg q E µg ρ = os α 0 = sin α 0 t + ρ 0 q B / segue neessariamente he deve essere q E µg q B / sin α 0 = 0 Questo può essere realizzato on q E µg = 0, quindi on ρ = 0 = ρ 0, oppure hiedendo he sia sin α 0 = 0, ioè α 0 = 0, π In altri termini, la ondizione he il moto sia di Poinsot, on α = 0 e β 0, implia neessariamente he il moto sia una onfigurazione di stato stazionario, ioè on ρ = 0 e ρ = ρ 0 ome riportato in Tab Osservazione 0 Questo risultato è piu forte he erare sempliemente le soluzioni he sono onfigurazioni di stato stazionario Naturalmente la riera delle onfigurazioni di stato stazionario si può anhe effettuare imponendo i vinoli: {( ρl) =

3 3 0, ( αl) = 0} Infatti β è ignorabile In questo aso si otterrebbero, omunque, sempre e soltanto le onfigurazioni riportate in Tab Osservazione 0 Notare he il ontenuto energetio della onfigurazione di stato stazionario di puro spinning on α = 0, oinide on quella a α = π È omunque da osservare he queste due onfigurazioni non sono realizzabili nello stesso sistema meanio! Infatti dipendono dal parametro γ q E /µ g Esiste la prima (risp la seonda) onfigurazione di puro spinning se γ > (risp γ < ) ) Lo studio della stabilità delle onfigurazioni di puro spinning si ottiene linearizzando l equazione di Lagrange (intorno a queste onfigurazioni) L equazione linearizzata è riportata in (6) (6) (ρ-omponente) (α-omponente) µ ν (µg q E ) sin α 0 ] ν + ν q B ] µρ 0 + A ] ν + q B ρ 0 ν ρ 0 ] ν = 0 (µg q E ) sin α 0 ] ν (µg q E ) os α 0 ρ 0 ] ν = 0 (β-omponente) C ν 3 = 0 La terza equazione si integra direttamente ottenendo ν 3 = C 3 t + C, 3 quindi la oordinata β risulta instabile Per sempliità onsideriamo soltanto il aso (ρ 0 = q E µg, α 0 = 0) Il sistema (6), relativo alle prime due omponenti, si ridue al sistema (7) (ρ-omponente) µ ν + ν q B (7) ρ 0 ν = 0 (α-omponente) (µρ 0 + A) ν + q B ρ 0 ν (µg q E )ρ 0 ] ν = 0 La orrispondente equazione aratteristia, det ( Hj kω]) = 0, on ( ) (Hj k µω ω]) = + ( q B ρ 0)ω ( q B ρ 0)ω (µρ 0 + A)ω (µg q E )ρ 0 si può risrivere nella forma (8) (8) â ω 4 + b ω + ĉ = 0, â = ( µ ĉ + µa > 0 ( ) ] b = ĉ µ + q B + A > 0 ĉ = (q E µg > 0 Quindi abbiamo le soluzioni ω, = ± ξ, ω 3,4 = ± b ξ, on ξ, = b± 4 â ĉ â Il alolo espliito di b 4 â ĉ dà ( ) ( ] ( q B q B q B = ĉ + 4 µ + ĉ A + A > 0 Inoltre, risulta < b, quindi ξ, < 0 Ne segue he le radii ω,,3,4 sono tutte immaginarie, pertanto ogni possibile perturbazione delle onfigurazioni stazionarie, di puro spinning on α 0 = 0 e ρ 0 0, sono stabili per la ρ e la α

4 4 3) Al fine di verifiare se un moto, soluzione dell equazione di Lagrange (), onsente di passare da una onfigurazione ammissibile in α = π, ad una onfigurazione di stato stazionario di puro spinning, per α = 0, dobbiamo vedere se le leggi di onservazione dell equazione () onsentono l esistenza di un tale moto Identifihiamo la ondizione iniziale orrispondente a α = π on (0) e quella orrispondente alla onfigurazione di stato stazionario di puro spinning, per α = 0, on () La legge di onservazione p β = i obbliga a rihiedere he β(0) = β() = β 0 Inoltre la onservazione dell Hamiltoniana, i rihiede he H(0) = H() D altro anto abbiamo: { H(0) = µ ( ρ 0 + ρ α 0 + A α 0 + C β( + ρ 0 H() = C β( Quindi dobbiamo avere (q E µg µ ( ρ 0 + ρ α 0 + A α 0 + ρ 0 = (q E µg Questa equazione non può essere soddisfatta siome il termine di sinistra deve essere positivo e quello di destra è invee negativo In onlusione, qualunque sia la ondizione iniziale per α = π, il orrsipondente moto, soluzione dell equazione di Lagrange (), non potrà mai raggiungere il moto di onfigurazione di stato stazionario, di puro spinning, a α = 0 Osservazione 03 (Moti di Poinsot e moti non di Poinsot) Vale la pena notare he la distinzione tra moti di Poinsot e moti he non sono di Poinsot, per le soluzioni dell equazione di Lagrange (), è onsentita in relazione al fatto he questa equazione, diiamo E JD (W ), è determinata, mentre i moti di Poinsot, si ottengono da un equazione (P oinsot) E sopra-determinata In altri termini, l equazione he identifiano i moti di Poinsot è una sotto-equazione dell equazione (): (P oinsot) E E JD (W ) Osservazione 04 (Soluzioni deboli di Poinsot) È anhe interessante mettere in evidenza l esistenza di soluzioni deboli della (P oinsot) E, he permettono di passare da soluzioni periodihe di Poinsot a soluzioni di puro spinning di Poinsot Infatti, onsideriamo la soluzione periodia aratterizzata dalla ondizione iniziale (ρ 0 = (q E µg), α 0 0, β 0 = 0) on ontenuto energetio a α = 0, H 0 = α 0µ( (q E µg)) + A] Inoltre onsideriamo anhe la soluzione di puro spinning a α = 0, aratterizzata dalla ondizione iniziale (ρ S = q E µg, ρ S = 0, α S = 0, β S 0) Possiamo allora onsiderare la soluzione debole, he passa, dopo un periodo, dalla soluzione periodia alla soluzione di puro spinning, per α = 0 Questo passaggio determina β S, imponendo la ondizione H 0 = H S Infatti, questa ondizione implia β S = C ( α 0 µ 4 ) (q E µg) + A + ] (q E µg) Riordiamo he un equazione differenziale si die determinata se il numero di funzioni inognite è eguale al numero di omponenti indipendenti Per esempio l equazione di Lagrange () è determinata essendo formata da tre omponenti nelle tre funzioni inognite ρ(t), α(t) e β(t) Se invee il numero delle omponenti indipendenti è superiore al numero delle funzioni inognite, l equazione si die sopra-determinata

5 5 Questa soluzione debole, malgrado omporti la onservazione dell Hamiltoniana, e sia formata da due rami he sono moti alla Poinsot, non rispetta globalmente la onservazione del momento angolare Ω(G) Infatti nel ramo periodio, e nel punto di disontinuità, risulta Ω(G) 0 = A α 0 e, mentre nel ramo di puro spinning risulta Ω(G) S = C β S e 3 Questa soluzione debole è quindi ompletamente ontenuta in (P oinsot) E, pur non rappresentando un moto alla Poinsot Soluzioni di questo tipo si possono quindi hiamare soluzioni deboli di Poinsot dell equazione di Lagrange E, riportata in () Notare he la ρ0, nella soluzione periodia, è doppia della ρ S, della soluzione di puro spinning Pertanto il passaggio dalla soluzione periodia a quella di puro spinning, nella onfigurazione α = 0, avviene on il riolloamento del barientro G ad una quota (rispetto ad O) ridotta della metà Le soluzioni deboli sono molto utili, dal punto di vista ingegneristio Infatti queste soluzioni danno importanti informazioni per la progettazione di meanismi interni al fine di realizzare le neessarie disontinuità Per esempio, in questo aso, si tratta di determinare una variazione Ω(G) = Ω(G) 0 Ω(G) S = A α 0 e C β S e 3

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE.

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. DEF. Una funzione F() si die primitiva di una funzione y f() definita nell intervallo

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Eseritazioni di Elettrotenia a ura dell Ing ntonio Maffui Parte III: iruiti in eoluzione dinamia 00/003 Eseritazioni di Elettrotenia 00/003 Maffui ESEITZIONE N0: eti dinamihe del primo ordine ESEIZIO 0

Dettagli

TEOREMA DEL CAMPIONAMENTO

TEOREMA DEL CAMPIONAMENTO 1 TEOREMA DEL CAMPIONAMENTO nota per il orso di Teleomuniazioni a ura di F. Benedetto G. Giunta 1. Introduzione Il proesso di ampionamento è di enorme importanza ai fini della realizzazione dei dispositivi

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Università degli Studi di Teramo Faoltà di Sienze Politihe Corso di Laurea in Statistia Lezioni del Corso di Matematia a ura di D. Tondini a.a. 3/4 CAPITOLO II LE EQUAZIONI DIFFERENZIALI. GENERALITÀ È

Dettagli

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE E. Borghi - Variabili dinamihe del ampo salare reale Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo salare

Dettagli

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta.

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta. FUNZIONI CONTINUE funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si die ontinua in un punto D se risulta Analizza bene la definizione: lim x f ( x) = f ( ) Il punto deve

Dettagli

Esercizi sulle reti elettriche in corrente continua

Esercizi sulle reti elettriche in corrente continua serizi sulle reti elettrihe in orrente ontinua serizio 1: eterminare la P erogata generatore, e la P R assorita resistore R del iruito in figura 4 Ω Ω Ω 15 Ω 5 Ω Ω R Ω 10 Ω Soluzione: P = 150 W P R =.08

Dettagli

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO Si die he, per he tende a, la funzione y=f() ha per ite l e si srive: l = l I( ) ESEMPIO DI VERIFICA DI

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

La misura della resistenza

La misura della resistenza Parte II (Metodi e strmenti di misra in ) Metodi di zero I metodi di zero onsentono il onfronto diretto tra na grandezza inognita X e na fnzione nota di n ampione f(c). Il risltato del onfronto viene tilizzato

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO

NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO NOTE SULLE EQUAZIONI DI MAXWELL E IL CORPO NERO G. Martinelli Abstrat Questi appunti ostituisono un sommario delle prinipali formule relative alla trattazione del orpo nero. 1 Le Equazioni di Maxwell Le

Dettagli

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2.

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2. Politecnico di Milano Ingegneria Industriale Analisi e Geometria Esercizi sul calcolo integrale. Calcolare l area della regione Ω contenuta nel primo quadrante, deitata dalle seguenti curve γ : y + γ :

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 8 Febbraio 013 1 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore, la ui tensione varia nel tempo ome

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

7 Settimana 7-11 novembre

7 Settimana 7-11 novembre 7 Settimana 7-11 novembre 7.1 Topologia di R Definizione 7.1 Sia x R. Un insieme U R si die intorno di x se ontiene un intervallo aperto ontenente x. Equivalentemente, se esiste ɛ > 0 tale he ]x ɛ, x +

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI Fondamenti Segnali e Trasmissione Numerizzazione dei segnali Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono di tipo numerio, normalmente

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

GEOMETRIA ANALITICA 8 LE CONICHE

GEOMETRIA ANALITICA 8 LE CONICHE GEOMETRIA ANALITICA 8 LE CONICHE Tra tutte le urve, ne esistono quattro partiolari he vengono hiamate onihe perhé sono ottenute tramite l intersezione di una superfiie i-onia on un piano. A seonda della

Dettagli

ESERCIZI ELEMENTARI DI FLUIDODINAMICA

ESERCIZI ELEMENTARI DI FLUIDODINAMICA ISTITUZIONI I INGEGNERI EROSPZILE ESERCIZI ELEMENTRI I FLUIOINMIC ESERCIZI ELEMENTRI I FLUIOINMIC RICHIMI INTROUTTII Il fluido viene onsiderato ome un ontinuo, ossia vengono identifiate alune grandezze

Dettagli

Esempio di progetto di un telaio di c.a.

Esempio di progetto di un telaio di c.a. q q 1 q 5 8 11 13 h q q 1 q 1 4 7 10 1 h 1 3 6 9 L L 1 L 1 L Fig. 1 Shema statio. La struttura intelaiata in.a. riportata in Fig. 1 è ostituita da travi di sez. 80 m x 4 m e pilastri di sezione 30 m x

Dettagli

Esperienza n 6: COSTANTE di PLANCK

Esperienza n 6: COSTANTE di PLANCK Laboratorio IV Esperienza n 6: COSTANTE di PLANCK Esperienza n 6: COSTANTE di PLANCK Misura della ostante di Plank Inviando su un fotoatodo fotoni di energia hν, vengono estratti elettroni on una energia

Dettagli

Esercizi sulla funzione integrale

Esercizi sulla funzione integrale Eserizi sulla funzione integrale Versione del 8 marzo 27 In questo fasioletto propongo aluni eserizi sulla funzione integrale. I testi della prima parte sono presi dalle prove assegnate agli esami di stato

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

16 L INTEGRALE INDEFINITO

16 L INTEGRALE INDEFINITO 9. Integrali immediati 6 L INTEGRALE INDEFINITO Riassumiamo le puntate preedenti: si die INTEGRALE INDEFINITO di una funzione f ( ), la famiglia di tutte e sole quelle funzioni la ui derivata è uguale

Dettagli

Elettromagnetismo e Relatività dr.ing. Alberto Sacchi Sviluppo Progetti Avanzati srl- R&D Dept.

Elettromagnetismo e Relatività dr.ing. Alberto Sacchi Sviluppo Progetti Avanzati srl- R&D Dept. Elettromagnetismo e Relatività dr.ing. Alberto Sahi Sviluppo Progetti Avanzati srl- R&D Dept. ing.sahi@alie.it SNTES (ABSTRACT) Analisi ritia dell esperimento di Feynman volto ad illustrare la orrelazione

Dettagli

Moto vario elastico: fenomeno del colpo d ariete

Moto vario elastico: fenomeno del colpo d ariete Moto vario elastio: fenomeno del olpo d ariete 1. Desrizione del fenomeno Si onsideri un semplie impianto ostituito da un serbatoio di grande ampiezza in modo tale he in esso il livello di ario rimanga

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

ESEMPI DI PIASTRE SOTTILI PIANE E CURVE. Corso di Meccanica delle Strutture- ing. Elena Benvenuti

ESEMPI DI PIASTRE SOTTILI PIANE E CURVE. Corso di Meccanica delle Strutture- ing. Elena Benvenuti PIASTRE ESEMPI DI PIASTRE SOTTILI PIANE E CURVE Corso di Meania delle Strutture- ing. Elena Benvenuti Elementi di piastra Disuteremo solo EF piastra (plate) volti a modellare solo il omportamento flessionale

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

a2 Semidischi e asta sono disposti come illustrato in figura. Determinare del sistema:

a2 Semidischi e asta sono disposti come illustrato in figura. Determinare del sistema: Prova scritta di fondamenti di meccanica razionale del 5.6.1 Esercizio 1 Nel piano Oxy di una terna Oxyz si considera il sistema costituito da due semidischi omogenei uguali, D 1 e D, di massa µ, raggio

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

Accoppiatore direzionale

Accoppiatore direzionale Aoppiatore direzionale 1 Rete 4 porte 3 4 Un aoppiatore direzionale ideale è un giunzione a 4 bohe on Adattamento alle porte quando sono hiuse sul ario di riferimento (ioè S 11 =S =S 33 =S 44 =) Due oppie

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI. ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il luogo diretto è costituito da due rami posizionati sull asse reale. Uno di essi si sposta dal polo in a e l altro percorre il segmento

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 10 Gennaio 2017 (usare fogli diversi per esercizi diversi) Primo Esercizio Si consideri il sistema di riferimento Oxy. L estremo

Dettagli

Unità Didattica 1. Sistemi di Numerazione

Unità Didattica 1. Sistemi di Numerazione Unità Didattia Sistemi di Numerazione Sistemi di Numerazione Posizionali Criterio per la rappresentazione di un insieme infinito di numeri mediante un insieme limitato di simoli. Un sistema di numerazione

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Note sulla correttezza di RSA e sulla complessità degli attacchi

Note sulla correttezza di RSA e sulla complessità degli attacchi Note sulla orrettezza di RSA e sulla omplessità degli attahi P. Bonatti 21 novembre 2016 1 Rihiami elementari di algebra Elevamento a potenza di binomi Riordiamo la definizione di oeffiiente binomiale:

Dettagli

PROFILI DI CORRENTE IN MOTO PERMANENTE

PROFILI DI CORRENTE IN MOTO PERMANENTE PROFILI DI CORRENTE IN MOTO PERMANENTE I lassii approi relativi al dimensionamento ed alla verifia delle analizzazioni per fognatura e, più in generale, delle orrenti a pelo libero, muovono dall'ipotesi

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Lezione del Corso di Esercitazioni di Laboratorio di Meccanica, Roma, 5 Maggio, 2014 Roberto Bonciani 1, Diparto di Fisica dell

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

1. Calcolo del Momento di plasticizzazione per una sezione tubolare in acciaio.

1. Calcolo del Momento di plasticizzazione per una sezione tubolare in acciaio. 1. Calolo del Momento di plastiizzazione per una sezione tubolare in aiaio. La sezione presa in onsiderazione è la seguente: Shema di riferimento per il alolo del momento di plastiizzazione della sezione

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 27 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Soluzioni I anno FisMat

Soluzioni I anno FisMat Soluzioni I anno FisMat ) La velocitá delle formiche puó essere separata in una componente tangenziale, v t e una radiale, v r Poiché ad ogni istante le formiche sono poste sul vertice del N-gono, esse

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Numeri complessi. Scrivere in forma algebrica i seguenti numeri complessi. a) z + i) i) + i) i) b) z + i) i) + i) + + i) i) + i) + i) c) z

Dettagli

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine ESERCIZI SVOLTI Sono di seguito svolti due eserizi sulle turbine a vapore assiali, aggiuntivi rispetto a quelli svolti durante il tutorato (i ui testi e i risultati numerii sono riportati alla fine del

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiali inematica piana omportamento meccanico dei materiali inematica ed equilibrio del corpo rigido inematica piana Equilibrio esterno aratteristiche di sollecitazione 2

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1 ezione 15. Stabilità di sistemi retroazionati F. Previdi Automatia ez. 15 1 Shema 1. Stabilità di sistemi retroazionati 2. Stabilità & inertezza 3. Margine di guadagno 4. Margine di fase 5. Criterio di

Dettagli

Confronto fra i sistemi di modulazione AM, DSB e SSB

Confronto fra i sistemi di modulazione AM, DSB e SSB ngelo rotopapa - IK0VVG Conronto ra i sistemi di modulazione M, B e B 1. Introduzione Chi si oupa di autoostruzione avrà siuramente notato he aluni progetti sono relativi a operanti in banda laterale unia

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani

Dettagli

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata)

Esame scritto del corso di Fisica 2 del Corso di laurea in Informatica A.A (Prof. Anna Sgarlata) Esame scritto del corso di Fisica 2 del 2.09.20 Corso di laurea in Informatica A.A. 200-20 (Prof. Anna Sgarlata) COMPITO A Problema n. Un asta pesante di massa m = 6 kg e lunga L= m e incernierata nel

Dettagli

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore

Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Corso di Laurea Specialistica in Ingegneria Meccanica e Ingegneria Energetica Progetto numerico al calcolatore Soluzione di un sistema non lineare con la Regula Falsi generalizzata per la determinazione

Dettagli

TRASFORMATA DI HILBERT

TRASFORMATA DI HILBERT TRASFORMATA DI ILBERT La Trasformata di ilbert è una partiolare rappresentazione he, ontrariamente ad altre trasformate (Fourier, Laplae, Z, ) non realizza un ambiamento del dominio di definizione. In

Dettagli

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 8 Gennaio 06 Soluzioni Esercizio Siano z e z due numeri complessi con modulo e argomento rispettivamente (ρ, θ ) e (ρ, θ ) tali

Dettagli

ATTRITO VISCOSO NEI FLUIDI

ATTRITO VISCOSO NEI FLUIDI ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

A -> Responsabile del ripristino dell equilibrio energetico del sistema di spin Rilassamento ENTALPICO o LONGITUDINALE

A -> Responsabile del ripristino dell equilibrio energetico del sistema di spin Rilassamento ENTALPICO o LONGITUDINALE Rilassamento A. Rilassamento Spin Lattie (Spin Retiolo) B. Rilassamento Spin Spin A -> Responsabile del ripristino dell equilibrio energetio del sistema di spin Rilassamento ENTALPICO o LONGITUDINALE B

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle.

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle. PRIMO PRINCIPIO DLLA RMODINAMICA In una trasformazione adiabatia: In una trasformazione isoora: L In una trasformazione generia: L (7) (Primo riniio della termodinamia) Aliazione del riniio di onservazione

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico PNI

Proposta di soluzione della prova di matematica Liceo scientifico PNI Proposta di soluzione della prova di matematica Liceo scientifico PNI - 14 Problema 1 Punto a) In A e O, g non è derivabile in quanto la tangente risulta verticale (punto di cuspide). Stesso dicasi per

Dettagli

1 Sistemi di equazioni lineari

1 Sistemi di equazioni lineari UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Faoltà i Farmaia e Meiina - Corso i Laurea in CTF 1 Sistemi i equazioni lineari Sia ato un sistema i equazioni lineari in ue equazioni in ue inognite Se, a

Dettagli

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1 Esercizi di Analisi Matematica Paola Gervasio Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto Es Determinare il carattere delle seguenti serie

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

Coordiante omogenee e proiezioni

Coordiante omogenee e proiezioni CAPITOLO 15 Coordiante omogenee e proiezioni Esercizio 15.1. Utilizzando le coordinate omogenee, determinare l equazione della retta r passante per i punti A(2,) e B( 1,0) e della retta s passante per

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Esercizio 2 In una terna cartesiana ortogonale destra Oxyz = Oê 1 ê 2 ê 3 si considera il sistema S di vettori applicati:

Esercizio 2 In una terna cartesiana ortogonale destra Oxyz = Oê 1 ê 2 ê 3 si considera il sistema S di vettori applicati: Prova in itinere di Fondamenti di meccanica razionale e Meccanica razionale del 7.4.16 Esercizio 1 In una terna ortogonale Oxyz Oê 1 ê ê un sistema è composto da un anello circolare omogeneo γ, di massa

Dettagli

Espansione dell Universo e redshift

Espansione dell Universo e redshift Espansione dell Universo e redshift Primo Galletti Aldo Aluigi Roma, 21 Settembre 2002 In un Universo in ui avviene ontinuamente la nasita e la morte della materia 1 l ipotesi di una grande esplosione

Dettagli

Versione di Controllo

Versione di Controllo Università degli Studi di Trento test di ammissione ai corsi di laurea in Fisica - Matematica - Informatica Ingegneria dell Informazione e Organizzazione d Impresa Ingegneria dell Informazione e delle

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli