G. Parmeggiani 15/5/2017. Algebra e matematica discreta, a.a. 2016/2017, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 5

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "G. Parmeggiani 15/5/2017. Algebra e matematica discreta, a.a. 2016/2017, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 5"

Transcript

1 G. Parmeggiani 5/5/7 Algera e matematia disreta, a.a. 6/7, Suola di Sienze - Corso di laurea: parte di Algera Informatia Svolgimento degli Eserizi per asa 5 Si dia quale delle due seguenti posizioni definise un appliazione lineare: (a T : M n (C M n (C definita da T (A A T per ogni A M n (C; ( T : M n (C M n (C definita da T (A A per ogni A M n (C. Fissato i {, }, per vedere he T i : M n (C M n (C è un appliazione lineare oorre verifiare he siano soddisfatte le seguenti ondizioni: ( T i (A + B T i (A + T i (B per ogni A, B M n (C; ( T i (αa αt i (A per ogni A M n (C ed ogni α C. T verifia la ondizione (? Poihè la trasposta della somma di matrii è la somma delle trasposte si ha: T (A + B (A + B T A T + B T T (A + T (B A, B M n (C. Dunque T verifia la ondizione (. T verifia la ondizione (? Poihè la trasposta del prodotto di una matrie per uno salare è il prodotto della trasposta della matrie per lo salare, si ha: T (αa (αa T αa T αt (A A M n (C, α C. Dunque T verifia la ondizione (. Verifiando entrame le ondizioni ( e (, T è un appliazione lineare. T verifia la ondizione (? Essendo T (A + B (A + B (A + B(A + B A + BA + AB + B T (A A T (B B

2 se fosse T (A + B T (A + T (B per ogni A, B M n (C, saree ( BA + AB O A, B M n (C Ma ( è falsa: si prenda, ad esempio, A B I n. Dunque T non verifia la ondizione ( e quindi non è un appliazione lineare. Sia T : M (C C definita da T (A Ae per ogni A M (C. (a Si provi he T è un appliazione lineare. ( Si trovino il nuleo Ker(T e l immagine Im(T di T. (a M (C e C sono entrami spazi vettoriali omplessi. Verifiare he T è un appliazione lineare signifia verifiare he sono soddisfatte le seguenti ondizioni: ( T (A + B T (A + T (B per ogni A, B M (C; ( T (αa αt (A per ogni A M (C ed ogni α C. (: T (A + B (A + Be Ae + Be T (A + T (B A, B M (C; Dunque T verifia la ondizione (. (: T (αa (αae α(ae αt (A A M (C, α C. Dunque T verifia anhe la ondizione (, per ui è un appliazione lineare. ( Poihè T (A Ae è la a olonna di A, allora Ker(T {A M (C g(a } è l insieme delle matrii omplesse on la prima olonna nulla, ossia { a, } a Ker(T C, Im(T {T (A A M (C} è l insieme dei vettori ( di C he siano prime a olonne di matrii omplesse. Poihè per ogni C esiste A M (C a a tale he sia la prima olonna di A (si prenda, ad esempio A, allora Im(T C. 3 Sia T : R M (R definita da: T ( a a a + a ( a R

3 (a Si provi he T è un appliazione lineare. ( Si determini la matrie A assoiata ad T rispetto alle asi ordinate {( ( { } B ; e D ; ; ; } su dominio e odominio rispettivamente. ( Per provare he T è un appliazione lineare oorre provare : a a a a. T ( + T + T a,, a, R. T (α a a αt α, a, R. T ( ( a + ( a T ( ( a + a + ( a + a (a + a + ( + (a + a ( + + ( a + a (a + + (a + (a + (a + a a + a a + + a a T + T ( a a ( a αa αa αa + α. T (α T α αa α α αa α(a + a a + a α αt α(a α a ( La matrie A assoiata ad T rispetto alle asi ordinate B e D su dominio e odominio rispettivamente è la matrie ( ( A C D (T C D (T. 3

4 Dalla definizione di T si ottiene: T, T quindi 3, ( 3 A C D C D. Caloliamo le oordinate rispetto alla ase ordinata D di un generio elemento R a d. α a C D β d δ γ α + β a d + δ + γ γ α + β β + δ β γ a β d α + β γ a/ Risolvendo il sistema otteniamo, β + δ α β d β d δ β d quindi d a C D d d d. a/ 3 In partiolare, speializzando a,, otteniamo C D 3, C D. / / La matrie A assoiata ad T rispetto alle asi ordinate B e D su dominio e odominio rispettivamente è quindi la matrie A 3. / / 4

5 4 Siano B v ; v ; v 3 B v ; v ; v 3. e Dopo aver provato he B e B sono due asi ordinate di R 3, si alolino le matrii di passaggio M B B (da B a B e M B B (da B a B. Siano A ed A le matrii he hanno ome olonne gli elementi di B e di B rispettivamente. Per provare he B e B sono due asi ordinate di R 3, oorre provare he A ed A hanno entrame rango uguale a 3. Faendo una E.G. su A si ottiene: A E ( E 3( E ( U per ui rk(ark(u 3, ed, analogamente, faendo una E.G. su A si ottiene: A E 3( E 3( U per ui rk(a rk(u 3. E 3( 5

6 La matrie di passaggio M B B da B a B è M B B ( C B (v C B (v C B (v 3 C B ( C B ( C B (. Per alolarla, piuttosto he alolare separatamente C B (, C B ( e C B (, aloliamo C B ( a per un generio vettore a R 3, e spe- ializziamo la formula ottenuta ai tre diversi vettori C B ( a α β δ a α + β + δ,,. Poihè α + β + δ α + β + δ, β + δ α, β e δ sono soluzioni del sistema lineare α + β + δ a ( α + β + δ β + δ Faendo una E.G. sulla matrie aumentata di ( otteniamo a E 3 ( E ( E ( a a a a a + da ui, on la sostituzione all indietro, δ a + β a α β δ + a a + + a + a 6

7 Dunque C B ( a a, per ui a + C B (, C B (, C B (, e quindi Analogamente si ha: M B B. M B B C B ( C B ( C B (, ma dal momento he M B B l algoritmo di Gauss-Jordan: M B B, aloliamo M B B usando ( M B B I 3 / /. / E( E( E 3( E ( E 3 (/ E 3 ( Dunque 7

8 M B B M B B. 5 Sia A 6 la matrie assoiata ad un appliazione lineare T : R R 3 rispetto alle asi ordinate { } B v ; v e D w ; w ; w 3 su dominio e odominio rispettivamente. Si determini la matrie A assoiata ad T rispetto alle asi ordinate { } B 4 3 v ; v e 5 D w ; w ; w 3 su dominio e odominio rispettivamente. La matrie A assoiata ad T rispetto alle asi ordinate B e D su dominio e odominio rispettivamente è la matrie dove M D D A M D D AM B B è la matrie di passaggio da D a D e M B B è la matrie di passaggio da B a B. Per alolare M D D M D D ( C D (w C D (w C D (w 3, aloliamo prima le oordinate rispetto a D di un generio C D ( a α β δ t.. a α +β +δ a R 3. α + β β δ 8

9 Dal momento he α + β a β δ otteniamo: C D ( a a +. δ β α a β a + In partiolare, speializzando a w, w e w 3 ; C D (w C D (, C D (w C D (, C D (w 3 C D ( per ui, M D D M D D. Per alolare M B B ( C B (v C B (v, aloliamo per prima osa a le oordinate rispetto a B di un generio R. a C B α β t.. a α + β α β α + β Dal momento he { α β a α + β { α a + β a { α (a + / β ( a/ a otteniamo C B (a + /. ( a/ In partiolare, speializzando a v e v : 9

10 C B (v 4 C B per ui M B B 4. e C B (v 3 C B 5 4, La matrie A he erhiamo è quindi A M D D AM B B

G. Parmeggiani, Facoltà di Scienze Statistiche, corso di laurea SGI, a.a. 2011/2012

G. Parmeggiani, Facoltà di Scienze Statistiche, corso di laurea SGI, a.a. 2011/2012 6// G. Parmeggiani, Facoltà di Scienze Statistiche, corso di laurea SGI, a.a. / Algebra Lineare A, Svolgimento degli Esercizi per casa 7 Sia V = a+bx+cx a,b,c C} lo spazio dei polinomi a coefficienti complessi

Dettagli

G. Parmeggiani, Facoltà di Scienze Statistiche, corso di laurea SGI, a.a. 2012/2013., w 3 = α se e solo se.

G. Parmeggiani, Facoltà di Scienze Statistiche, corso di laurea SGI, a.a. 2012/2013., w 3 = α se e solo se. 7// G. Parmeggiani, Facoltà di Scienze Statistiche, corso di laurea SGI, a.a. /3 Algebra Lineare A, Svolgimento degli Esercizi per casa 6 Si dica quale dei seguenti sottoinsiemi di R 3 è linearmente indipendente:

Dettagli

G. Parmeggiani, 28/4/2016 Algebra Lineare, a.a. 2015/2016, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 7

G. Parmeggiani, 28/4/2016 Algebra Lineare, a.a. 2015/2016, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 7 G. Parmeggiani, 8/4/6 Algebra Lineare, a.a. 5/6, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MATRICOLA PARI

Dettagli

Analisi 1 e 2 - Quarto compitino Soluzioni proposte

Analisi 1 e 2 - Quarto compitino Soluzioni proposte Analisi 1 e 2 - Quarto ompitino Soluzioni proposte 23 maggio 2017 Eserizio 1. Risolvere il problema di Cauhy y = x(4 y2 ) y y(0) = α al variare di α R, α 0 Soluzione proposta. Se α = 2 oppure α = 2 abbiamo

Dettagli

G. Parmeggiani 22/3/2018. Algebra e matematica discreta, a.a. 2017/2018, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 3

G. Parmeggiani 22/3/2018. Algebra e matematica discreta, a.a. 2017/2018, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 3 G. Parmeggiani /3/018 Algebra e matematica discreta, a.a. 017/018, Scuola di Scienze - Corso di laurea: parte di Algebra Informatica Svolgimento degli Esercizi per casa 3 i 0 i i 1 Sia A() = 1 + 4 0, dove

Dettagli

Gli integrali indefiniti

Gli integrali indefiniti Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una

Dettagli

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( )

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( ) Algoritmo di best-it (o itting) sinusoidale a 3 parametri Supponiamo di disporre della versione digitalizzata di un segnale sinusoidale di ampiezza di pio A, requenza nota, ase assoluta ϕ e on omponente

Dettagli

Enrico Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON

Enrico Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON Enrio Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON Rihiami a studi presenti in fisiarivisitata Leggendo la Quantizzazione del ampo di Klein-Gordon si inontrano rihiami ai seguenti studi: a) Introduzione

Dettagli

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 = aa -6 Soluzioni Esercizi Applicazioni lineari Sia data l applicazione lineare F : R R, F X A X, dove A i Sia {e, e, e } la base canonica di R Far vedere che i vettori e e + e, e e + e, e e, formano una

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Relazione di Fondamenti di automatica

Relazione di Fondamenti di automatica Università degli studi di Cassino relazione finale orso di fondamenti di automatia Elaborato J Relazione di Fondamenti di automatia Doente del orso: Stefano Chiaverini Riardo Galletti Matr. 65 - - Relazione

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta Corso di Laurea in Ingegneria Robotia e dell Automazione Probabilità e Proessi Stoastii (455AA) AA 208/9 - Prova sritta 209-02-5 La durata della prova è di due ore e mezzo Le risposte devono essere giustifiate

Dettagli

Scrivi l equazione di un iperbole conoscendone i fuochi e la costante ( = differenza costante) 2k.

Scrivi l equazione di un iperbole conoscendone i fuochi e la costante ( = differenza costante) 2k. . ESERCIZI SULL IPERBOLE A partire dall equazione di un iperbole stabilisi quanto valgono I. le oordinate dei vertii e dei fuohi II. la ostante (differenza ostante delle distanze di un punto dai fuohi)

Dettagli

Esercizi sulle reti elettriche in corrente continua

Esercizi sulle reti elettriche in corrente continua serizi sulle reti elettrihe in orrente ontinua serizio 1: eterminare la P erogata generatore, e la P R assorita resistore R del iruito in figura 4 Ω Ω Ω 15 Ω 5 Ω Ω R Ω 10 Ω Soluzione: P = 150 W P R =.08

Dettagli

Def. 2. Si dice che una matrice A, m n, ha un inversa sinistra se esiste una matrice L,

Def. 2. Si dice che una matrice A, m n, ha un inversa sinistra se esiste una matrice L, Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 8 Inverse destre, sinistre e bilatere Def. 1. Si dice che una matrice A, m n, ha un inversa destra se esiste una matrice R, n

Dettagli

Fisica dei mezzi trasmissivi Prof. C. Capsoni Prova del 5 luglio 2012

Fisica dei mezzi trasmissivi Prof. C. Capsoni Prova del 5 luglio 2012 Fisia dei mezzi trasmissivi Prof. C. Capsoni Prova del luglio 0 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICOL FIRM Eserizio Un generatore, la ui tensione varia nel tempo ome indiato in

Dettagli

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale.

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale. 8 gennaio 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Compito A Corso del Prof. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. 202-203 PROVA SCRITTA DI GEOMETRIA DEL 8-02-3 Compito A Corso del Prof. Manlio BORDONI Esercizio. Sia W il sottospazio vettoriale di R 4 generato dai vettori

Dettagli

8 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

8 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 8 luglio 015 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 014-015 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

G. Parmeggiani, 29/3/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 4

G. Parmeggiani, 29/3/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 4 G. Parmeggiani, 29/3/2018 Algebra Lineare, a.a. 2017/2018, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MARICOLA

Dettagli

viene detto il sostegno della curva. Se σè iniettiva, diciamo che la superficieè semplice. Le equazioni

viene detto il sostegno della curva. Se σè iniettiva, diciamo che la superficieè semplice. Le equazioni Fondamenti di Analisi Matematia 2 - a.a. 2010-11 (Canale 1) Corso di Laurea in Ingegneria Gestionale, Meania e Meatronia Valentina Casarino Appunti sulle superfii 1. Superfii regolari Riordiamo he si die

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Esercizi di Geometria 1 - Foglio 3bis

Esercizi di Geometria 1 - Foglio 3bis Esercizi di Geometria - Foglio 3bis Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso dicembre 7 Esercizio. Sia f : V W un applicazione e G = {(v,

Dettagli

Unità Didattica 1. Sistemi di Numerazione

Unità Didattica 1. Sistemi di Numerazione Unità Didattia Sistemi di Numerazione Sistemi di Numerazione Posizionali Criterio per la rappresentazione di un insieme infinito di numeri mediante un insieme limitato di simoli. Un sistema di numerazione

Dettagli

Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata via Trieste, Padova

Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata via Trieste, Padova ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, A.A. 8/9, GEMMA PARMEGGIANI Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata via Trieste, 63 353 Padova Programma del corso. Nota

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometrihe Definizione Una trasformazione geometria dei punti del piano è una orrispondenza biunivoa tra i punti del piano: ad ogni punto P del piano orrisponde uno e un solo punto P

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch O Le omotetie Dato un numero reale non nullo h e un punto P del piano l omotetia di rapporto h e entro O è quella trasformazione he assoia a P il punto P' tale he P P OP' = h OP. Se è P(xy) allora P'(hx

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Eserizi svolti a lezione (diembre 2016) Valutazioni di operazioni finanziarie Eserizio 1. Un titolo on vita

Dettagli

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri, ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 05/06 docente: Elena Polastri, plslne@unife.it Esercizi 3: SPAZI VETTORIALI e MATRICI Combinazioni lineari di vettori.. Scrivere il vettore

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Integrale Indefinito e l Antiderivata Il proesso inverso della derivazione si hiama integrazione. Nota la variazione istantanea di una grandezza p.es. la veloità) è neessario sapere ome si omporta tale

Dettagli

GEOMETRIA ANALITICA 8 LE CONICHE

GEOMETRIA ANALITICA 8 LE CONICHE GEOMETRIA ANALITICA 8 LE CONICHE Tra tutte le urve, ne esistono quattro partiolari he vengono hiamate onihe perhé sono ottenute tramite l intersezione di una superfiie i-onia on un piano. A seonda della

Dettagli

Enrico Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO

Enrico Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO Enrio Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO Rihiami a studi presenti in fisiarivisitata Leggendo la Quantizzazione del ampo salare hermitiano si inontrano rihiami ai seguenti studi: a Introduzione

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2002/03, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, A.A. 2002/03, GEMMA PARMEGGIANI ALGEBRA LINEARE I (A PER SCIENZE STATISTICHE, AA /3, GEMMA PARMEGGIANI Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata via Belzoni, 7 353 Padova Typeset by AMS-TEX ALGEBRA

Dettagli

Teoria dei Giochi 18;4

Teoria dei Giochi 18;4 Teoria dei Giohi Eserizio 1 ) Ordinate nel senso di Pareto i possibili esiti del gioo 1 2 1 2 18;4 Per verifiare se vi sono strategie dominanti è neessario vedere se esiste per il gioatore una strategia

Dettagli

Teoria dei Giochi 18;4

Teoria dei Giochi 18;4 Teoria dei Giohi Eserizio 1 Data la seguente matrie dei pay-off in ui 1 e 2 sono le strategie a disposizione del gioatore e 1 e 2 quelle a disposizione del gioatore a) Verifiate se vi sono strategie dominanti

Dettagli

Pag. 1. Esercizi sui Diagrammi di Flusso. Stampa di alcuni numeri interi

Pag. 1. Esercizi sui Diagrammi di Flusso. Stampa di alcuni numeri interi Università degli studi di Parma Dipartimento di Ingegneria dell Informazione Informatia a.a. 202/ Stampa di aluni numeri interi Informatia Faoltà di Mediina Veterinaria a.a. 202/ prof. Stefano Cagnoni

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019. Esercizi 6

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019. Esercizi 6 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2018/2019 Eserizi 6 Durata Media Finanziaria (Duration) Eserizio 1. Un titolo in sadenza tra 2 anni paga una edola di

Dettagli

16 L INTEGRALE INDEFINITO

16 L INTEGRALE INDEFINITO 9. Integrali immediati 6 L INTEGRALE INDEFINITO Riassumiamo le puntate preedenti: si die INTEGRALE INDEFINITO di una funzione f ( ), la famiglia di tutte e sole quelle funzioni la ui derivata è uguale

Dettagli

Gli approcci alla programmazione dinamica: alcuni esempi

Gli approcci alla programmazione dinamica: alcuni esempi Gli approi alla programmazione dinamia: aluni esempi Franeso Menonin February, 2002 Ottimizzazione dinamia Il problema he qui si onsidera è quello di un soggetto he intende massimizzare (o minimizzare)

Dettagli

Fisica Prova d esempio per l esame (MIUR, dicembre 2018) Problema 2

Fisica Prova d esempio per l esame (MIUR, dicembre 2018) Problema 2 Fisia Prova d esempio per l esame (MIUR, diembre 018) Problema Due asteroidi, denominati α e β, sono stati individuati a distanze L 0α 4 ore lue (pari a 4,317 10 1 m) e L 0β 7,5 ore lue (pari a 8,094 10

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

RICERCA OPERATIVA (a.a. 2018/19) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2018/19) Nome: Cognome: Matricola: Sesto appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matriola: ) Si onsideri il seguente problema di PL: max x + x x + x x + x x x Si verifihi se la soluzione x = [, ] sia ottima per il problema.

Dettagli

Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma

Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma Il testo di riferimento è: Appunti di Algebra Lineare, Gregorio, Parmeggiani, Salce 06/12/04 Matrici. Esempi. Tipi particolari

Dettagli

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari:

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: Applicazioni lineari Definizione Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: f(αv + βv 2 ) = αf(v ) + βf(v 2 ) v, v 2 V, α, β K.

Dettagli

Teoria della Dualità

Teoria della Dualità eoria della Dualità Ad ogni problema di PL (Primale) è assoiato un problema Duale Problema Primale (P) min s. t. 1 1 + L+ n n a + L+ a b M 11 1 1n n 1 a + L+ a b m1 1 mn n m Problema Duale (D) ma b11+

Dettagli

Cognome Nome matr. Corso di laurea in Scienze dell architettura Geometria e Algebra a.a. 2010/11 - II compitino fila 0.

Cognome Nome matr. Corso di laurea in Scienze dell architettura Geometria e Algebra a.a. 2010/11 - II compitino fila 0. Cognome Nome matr. Corso di laurea in Scienze dell architettura Geometria e Algebra a.a. 2010/11 - II compitino fila 0 Compilare immediatamente con i propri dati l intestazione. Rispondere ai quesiti e

Dettagli

1 Integrale multiplo di una funzione limitata su di un rettangolo

1 Integrale multiplo di una funzione limitata su di un rettangolo INTEGLE DELLE FUNZIONI DI PIÙ VIBILI INTEGLE MULTIPLO DI UN FUNZIONE LIMITT SU DI UN ETTNGOLO Integrale delle funzioni di più variabili Indie Integrale multiplo di una funzione limitata su di un rettangolo

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

Algebra lineare e geometria AA Soluzioni della simulazione

Algebra lineare e geometria AA Soluzioni della simulazione Algebra lineare e geometria AA. 2018-2019 Soluzioni della simulazione QUIZ Q1. Sia A R nn una matrice che ammette l autovalore λ 0 con molteplicità algebrica k. Quale delle seguenti affermazioni è vera?

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

0.1 Soluzioni Foglio di esercizi 1: Matrici

0.1 Soluzioni Foglio di esercizi 1: Matrici 0.1 Soluzioni Foglio di esercizi 1: Matrici Esercizio 1 (dal Test di Autovalutazione 3/11/2015 M.Manaresi) Siano 1 1 1 1 A 2 2 0, B 1, 1 0 X M 3 (R) Si stabilisca per quali valori del parametro reale k

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

17 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

17 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5 8 Analogamente, T 0 = 6 4 5 4 2. (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre 4 A = 5 C AB = 4 cioé la matrice dei coefficienti delle espressioni

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Università degli Studi di Teramo Faoltà di Sienze Politihe Corso di Laurea in Statistia Lezioni del Corso di Matematia a ura di D. Tondini a.a. 3/4 CAPITOLO II LE EQUAZIONI DIFFERENZIALI. GENERALITÀ È

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria BAER PRIMO CANALE Foglio esercizi 1

Geometria BAER PRIMO CANALE Foglio esercizi 1 Geometria BAER PRIMO CANALE Foglio esercizi 1 Esercizio 1. Risolvere le seguenti equazioni lineari nelle variabili indicate trovando una parametrizzazione dell insieme delle soluzioni. a) x + 5y = nelle

Dettagli

Matrici e sistemi. Geometria. Matrici e operazioni tra matrici. Operazioni elementari e riduzione Sistemi lineari Matrici invertibili Determinante

Matrici e sistemi. Geometria. Matrici e operazioni tra matrici. Operazioni elementari e riduzione Sistemi lineari Matrici invertibili Determinante Geometria Matrici e sistemi Operazioni elementari e riduzione Sistemi lineari Matrici invertibili Determinante 2 2006 Politecnico di Torino 1 Matrici e sistemi Matrici: definizione e notazioni Somma e

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B =

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B = Corso di Laurea in Fisica. Geometria. a.a. 26-7. Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 7//6 Soluzione esercizio. Sia B {e, e 2 } e sia B {v, v 2 }. La matrice B del cambiamento di base

Dettagli

Matrici e sistemi. Sistemi lineari. Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer

Matrici e sistemi. Sistemi lineari. Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer Sistemi lineari Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer 2 2006 Politecnico di Torino 1 Prodotto tra matrici quadrate Date comunque A e B matrici quadrate

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Esercizi di Algebra Lineare - Foglio 2

Esercizi di Algebra Lineare - Foglio 2 Esercizi di Algebra Lineare - Foglio ES 1. Sia f : A B una funzione, siano A 1, A A due sottoinsiemi. Dimostrare che f(a 1 A ) = f(a 1 ) f(a ) e che f(a 1 A ) f(a 1 ) f(a ). Inoltre se f è iniettiva, provare

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 011-01 Prima prova di esonero TESTO E SOLUZIONI 1. Per h, k R si consideri il sistema lineare kx 1 + hx + X 4 = 1

Dettagli

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente,

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente, Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Esonero del 1/12/06 con soluzione Esercizio. Spazio vettoriale R 2 con base canonica fissata e coordinate associate (x 1,

Dettagli

, è Det(A) = a 11 a 22 a 12 a 21. ( il determinante della matrice che si ottiene da A. la 1 a riga e la 2 a colonna di A

, è Det(A) = a 11 a 22 a 12 a 21. ( il determinante della matrice che si ottiene da A. la 1 a riga e la 2 a colonna di A G Parmeggiani, 2/12/2013 Algebra Lineare 1 A, corso di laurea SGI, aa 2013/2014 Nota 4: Calcolo di determinanti Sia A una matrice quadrata di ordine n Il determinante di A è un numero che dipende da A

Dettagli

Appunti di Logica Ternaria: Operatori Diadici

Appunti di Logica Ternaria: Operatori Diadici Appunti di Logia Ternaria: Operatori Diadii Giuseppe Talario 27 Gennaio 2014 Nella logia ternaria, una taella di verità on due ingressi ha nove righe, per ui ne onsegue he il numero totale delle funzioni

Dettagli

Di seguito diamo un procedimento generale che separa nettamente gli aspetti concettuali e gli aspetti di calcolo.

Di seguito diamo un procedimento generale che separa nettamente gli aspetti concettuali e gli aspetti di calcolo. Lezione del 0905 Le basi degli spazi vettoriali permettono di rappresentare vettori con ennuple e applicazioni lineari con matrici Si hanno basi più o meno adatte a rappresentare vettori ed applicazioni

Dettagli

MATEMATICA DISCRETA E LOGICA MATEMATICA

MATEMATICA DISCRETA E LOGICA MATEMATICA Cognome Nome Matricola MATEMATICA DISCRETA E LOGICA MATEMATICA Docenti: C. Delizia, M. Tota Primo Appello 26 gennaio 2011 IMPORTANTE: indicare l esame che si intende sostenere e svolgere solo gli esercizi

Dettagli

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI, A.A. 2013/2014, GEMMA PARMEGGIANI

ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, SGI, A.A. 2013/2014, GEMMA PARMEGGIANI ALGEBRA LINEARE I A PER SCIENZE STATISTICHE, SGI, A.A. 3/4, GEMMA PARMEGGIANI Università degli Studi di Padova Dipartimento di Matematica via Trieste, 63 353 Padova Programma del corso. Nota : Matrici

Dettagli

a.a Geometria 2. Esercizi 9. Interpolazione. Curve composte. 1/2, b 3, b = 1

a.a Geometria 2. Esercizi 9. Interpolazione. Curve composte. 1/2, b 3, b = 1 aa - Geometria Esercizi 9 Interpolazione Curve composte Siano dati i punti del piano b i Determinare una curva di grado che passa per tali punti per t / / ii Quante ce ne sono? iii Col metodo dei minimi

Dettagli

1 Risoluzione di sistemi lineari con l uso dei determinanti

1 Risoluzione di sistemi lineari con l uso dei determinanti 2006 Trapani Dispensa di Geometria, 1 Risoluzione di sistemi lineari con l uso dei determinanti Sia A una matrice n n con det(a) 0 consideriamo il sistema lineare AX = b abbiamo n = numero di righe di

Dettagli

G. Parmeggiani, 17/5/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI

G. Parmeggiani, 17/5/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI G Parmeggiani, 17/5/2018 Algebra Lineare, aa 2017/2018, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MATRICOLA

Dettagli

L invarianza della velocità della luce. Dai postulati della teoria della relatività alle equazioni di Lorentz. (2) R

L invarianza della velocità della luce. Dai postulati della teoria della relatività alle equazioni di Lorentz. (2) R L inarianza della eloità della lue. Dai postulati della teoria della relatiità alle equazioni di Lorentz. Conferma sperimentale dell inarianza della eloità della lue. Relazioni tra spostamenti e eloità

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione Esercizi geometria analitica nel piano Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1. Scrivere le equazioni parametriche delle rette r e s di equazioni cartesiane r : 2x y + = 0

Dettagli

Corso di Laurea in Fisica. a.a Geometria. Canale L-PE (Prof. Paolo Piazza). Compito a casa del 30/11/12 (nono compito). SOLUZIONI.

Corso di Laurea in Fisica. a.a Geometria. Canale L-PE (Prof. Paolo Piazza). Compito a casa del 30/11/12 (nono compito). SOLUZIONI. Corso di Laurea in Fisica. a.a. 2012-1. Geometria. Canale L-PE (Prof. Paolo Piazza. Compito a casa del 0/11/12 (nono compito. SOLUZIONI. Soluzione esercizio 1. Usiamo la linearità di F. Vogliamo calcolare

Dettagli

Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata via Belzoni, Padova

Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata via Belzoni, Padova ALGEBRA LINEARE I (A) PER SCIENZE STATISTICHE, AA /, GEMMA PARMEGGIANI Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata via Belzoni, 7 353 Padova Programma del corso Alcune

Dettagli

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 0 gennaio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Lezione. Prof. Pier Paolo Rossi Università degli Studi di Catania

Lezione. Prof. Pier Paolo Rossi Università degli Studi di Catania Lezione TEIA DELLE STRUZII Prof. Pier Paolo Rossi Università degli Studi di atania 1 Flessione omposta 2 Verifia di sezioni soggette a flessione omposta 3 Flessione omposta 1 stadio (Formule di Sienza

Dettagli

Matematica - Prova d esame (09/09/2004)

Matematica - Prova d esame (09/09/2004) Matematica - Prova d esame (9/9/) Università di Verona - Laurea in Biotecnologie AI - A.A. /. Disegnare sul piano di Gauss i numeri z = i, w = i e z iw. Scrivere la forma trigonometrica di w e calcolare

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO Si die he, per he tende a, la funzione y=f() ha per ite l e si srive: l = l I( ) ESEMPIO DI VERIFICA DI

Dettagli

Il calcolo letterale

Il calcolo letterale Il alolo letterale Monomi Si die ESPRESSIONE ALGEBRICA LETTERALE (o sempliemente espressione algebria) un espressione in ui ompaiono lettere he rappresentano numeri. Esempio: 5 b 4 + 5 1 OSS: QUANDO non

Dettagli

Soluzioni primi compitini - Geometria 1

Soluzioni primi compitini - Geometria 1 Soluzioni primi compitini - Geometria Caterina Vernieri Ottobre 7 Le soluzioni proposte non sono state riviste dai professori Soluzioni Primi Compitini - G I compitino 7//3 Esercizio Al variare di α R

Dettagli

= M di 1 dt = MI 0ω cos( ωt)

= M di 1 dt = MI 0ω cos( ωt) del ompito di isia 17 febbraio 1 (Pordenone) Elettrodinamia Due bobine sono disposte una di fronte all altra. La loro induttanza mutua è M. 1 - H. L intensità di orrente nella bobina 1 osilla sinusoidalmente

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 2

Analisi Vettoriale A.A Soluzioni del Foglio 2 Analisi Vettoriale A.A. 2006-2007 - Soluzioni del Foglio 2 2.1 Esercizio Assegnato il sistema e y + z + x 2 = 0 x 2 + y 2 + z 2 + y 1 = 0 dimostrare che in un intorno del punto (0,0,1) il sistema definisce

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 1 A.A. 28-29 - Docente: Prof. E. Sernesi Tutori: Andrea Abbate e Matteo Acclavio Soluzioni del tutorato numero 1 14

Dettagli

Esercizio 1 (rango) In R 4 (R) si dica per quali valori reali di k il vettore v=(0,k-1,k-1,2) appartiene allo spazio vettoriale generato da

Esercizio 1 (rango) In R 4 (R) si dica per quali valori reali di k il vettore v=(0,k-1,k-1,2) appartiene allo spazio vettoriale generato da Lezione 8 - Esercitazioni di Algebra e Geometria - Anno accademico 9- Esercizio (rango) In R 4 (R) si dica per quali valori reali di il vettore v(,-,-,) appartiene allo spazio vettoriale generato da ((,

Dettagli

Matematica Discreta I

Matematica Discreta I Matematica Discreta I 5 Febbraio 8 TEMA A Esercizio Sia data la matrice A M (R) A = (i) Calcolare gli autovalori di A (ii) Determinare una base di R composta di autovettori di A (iii) Diagonalizzare la

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Prova scritta di metà corso venerdì 20 aprile 2007

Prova scritta di metà corso venerdì 20 aprile 2007 Prova sritta di metà orso venerdì 0 aprile 007 Laurea in Sienza e Ingegneria dei Materiali anno aademio 006-007 Istituzioni di Fisia della Materia - Prof. Lorenzo Marrui Tempo a disposizione: ore e 30

Dettagli

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.:

Compito di Analisi Matematica, Seconda parte, COGNOME: NOME: MATR.: Compito di Analisi Matematica, Seconda parte, gennaio 9 Tema X COGNOME: NOME: MATR.: Esercizio. ( Determinare al variare di β R la soluzione di y (x + y (x + y(x = e x + x tale che y( = β = y (. ( Al variare

Dettagli

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 12/07/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio 1 Si consideri la conica affine d equazione 9x 2 + 6y 2 4xy 6x + 8y = 1 (1)

Dettagli