DECISIONI E PROBABILITÀ SOGGETTIVA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DECISIONI E PROBABILITÀ SOGGETTIVA"

Transcript

1 Andrea ELLERO DECISIONI E PROBABILITÀ SOGGETTIVA Appunti per il corso di METODI MATEMATICI PER L ECONOMIA DELL ARTE A.A

2 2 Queste pagine raccolgono alcune lezioni del corso di METODI MATEMATICI PER L ECONOMIA DELL ARTE per la laurea specialistica in Economia e Gestione delle Arti e delle Attività Culturali dell Università Ca Foscari di Venezia (a.a ). Ringrazio la Dott. Francesca Cerisano che ha fornito una prima versione dattiloscritta degli appunti delle lezioni.

3 3 Elementi di teoria delle decisioni La teoria delle decisioni è una disciplina che studia il processo logico-formale con cui un individuo si accinge ad assumere un comportamento, a suo avviso ottimale, in presenza di informazioni incomplete o, come si suole dire, in condizioni di incertezza. Un individuo si trova a dover prendere delle decisioni in condizione di incertezza quando deve scegliere una fra più azioni possibili, le cui conseguenze non sono determinabili a priori, nel senso che ogni alternativa contemplata condurrà certamente ad una delle conseguenze previste senza, però, poter stabilire esattamente a quale di esse. Solitamente, si suppone che l incertezza che lascia indeterminata la conseguenza, dipenda dalla non conoscenza di alcuni eventi (o stati di natura) e che le conseguenze di ciascuna scelta possano essere valutate in termini di utilità o di perdita. 1. Criteri decisionali in condizioni di incertezza Supponiamo di dover allestire una mostra temporanea utilizzando sia spazi al coperto che spazi al chiuso. Possiamo scegliere di sfruttare gli spazi al coperto (decisione o alternativa d1), quelli esterni (decisione d2), oppure in eguale misura tali spazi (decisione d3). Gli spazi al coperto comportano costi maggiori ma, ovviamente, comportano un numero di visite più elevato in caso di cattivo tempo. Nel periodo di fruibilità della mostra ci si attende dunque un profitto che dipende dalle condizioni atmosferiche e dalla decisione all utilizzo degli spazi espositivi effettuata inizialmente. Considerati tre possibili scenari (o stati di natura) futuri s1 (tempo prevalentemente piovoso), s2 (tempo variabile), s3 (tempo prevalentemente soleggiato) sono stati valutati i possibili profitti come raccolti nella seguente tabella, detta matrice delle utilità (o dei payoff): s1 s2 s3 d d d

4 4 Indicheremo con M ij il risultato corrispondente alla decisione i nel caso si realizzi lo scenario j. Una rappresentazione diversa, che consente di cogliere quale sia la sequenza di decisioni/esiti all interno del processo decisionale è data dal cosiddetto albero di decisione: Come stabilire quale sia la decisione più conveniente, in termini di profitto/utilità? Osserviamo anzitutto che l alternativa d3 presenta utilità minori o uguali alle utilità di d2, in corrispondenza di ciascuno scenario sj, si dice in questo caso che d3 è dominata da d2 e, ai fini della nostra scelta, d3 è chiaramente una decisione inopportuna, da scartare. Resta da compiere la scelta, non ovvia ed immediata, tra d1 e d2. Vediamo una rassegna dei più noti criteri di scelta proposti dalla letteratura. 1.1 Criterio di Wald (del maximin) Il decisore suppone che si realizzi, in corrispondenza di ciascuna alternativa, lo scenario peggiore. Nel nostro esempio: s1 s2 s3 minimo d d

5 5 Dopo aver rilevato i valori minimi per ogni riga, scegliamo tra questi quello massimo, minimizzando, in tal modo, la perdita: max(min ) Nel nostro esempio la scelta cade sull alternativa d2. i j M ij 1.2 Criterio dell ottimismo Il decisore suppone che si realizzi, in corrispondenza di ciascuna alternativa, lo scenario migliore. Nel nostro esempio: s1 s2 s3 massimo d d Dopo aver rilevato i valori massimi per ogni riga, scegliamo tra questi quello massimo, minimizzando, in tal modo, la perdita: min(maxm Nel nostro esempio la scelta cade sull alternativa d2. Dunque, l alternativa d2 è ancora la migliore. i j ij ) 1.3 Criterio di Laplace o della media aritmetica Si sceglie l alternativa che presenta media aritmetica delle utilità più elevata. Nell esempio le medie aritmetiche sono 2.32 per d1 e 3.69 per d2. La scelta migliore è ancora d Criterio di Savage (minimax dei regret) Questo criterio prevede una scelta fondata sulla valutazione, per ogni fissato stato di natura, il mancato guadagno (regret, rammarico) che, in corrispondenza di ciascuna decisione, si ha rispetto alla decisione migliore per quello stato di natura (la decisione che si adotterebbe in condizioni di informazione perfetta). Costruiamo, a partire dalla matrice dei payoff la matrice dei Regret, definendo il regret corrispondente alla decisione i nel caso si realizzi lo stato j r ij = ( max M ) M k kj ij

6 6 Tra tutte le decisioni opteremo per quella che presenta il più basso valore massimo del regret (minimax): min(max ) Nell esempio: [regret] s1 s2 s3 max regret d d i j r ij La scelta da adottare è ancora d Criterio delle eccedenze (maximin delle eccedenze) Contrariamente al criterio precedente, si calcola, in corrispondenza di ciascuno scenario, la distanza (eccedenza) dalla scelta che presenta il profitto minore per un fissato stato di natura. Per questo motivo costruiamo, a partire dalla matrice delle utilità, la matrice delle eccedenze, definendo l eccedenza corrispondente alla decisione i nel caso si realizzi lo stato j e ij = M ij ( min Mkj) La scelta cadrà sulla decisione che presenta il più alto valore minimo di eccedenza (maxmin): max(mine ) Tornando all esempio: [eccedenze] s1 s2 s3 min eccedenza d d i j ij k Le decisioni sono valutate come equivalenti. Osservazione: non abbiamo considerato la variabilità delle utilità in corrispondenza di una singola decisione; possiamo tuttavia osservare che l alternativa d3 è, da questo punto di vista, desiderabile poiché seppure non fornisca profitti molto elevati evita il rischio di profitti molto bassi; opportuni criteri, che qui non consideriamo, consentono di tener conto di questo importante aspetto.

7 7 1.6 Un altro esempio Data la matrice delle utilità: s1 s2 s3 d d d determiniamo la decisione migliore con l ausilio dei diversi criteri analizzati. s1 s2 s3 Wald ottim. Laplace d1 d d d3 d1 d2 Regret : s1 s2 s3 max Regret d1 d d d1 e d2 Eccedenze: s1 s2 s3 min eccedenza d1 d d d2

8 8 2. Calcolo delle Probabilità Introduzione La logica elementare divide gli enunciati (che qui chiameremo eventi) in veri e falsi, ammettendo, per principio, che non vi siano altre possibilità di qualificarli (secondo il classico principio del Terzo Escluso aristotelico, una proposizione non può che essere vera o falsa tertium non datur). Tuttavia se qualcuno dice: domani pioverà, quest affermazione non è né vera, né falsa in questo momento; soltanto domani, dopo che avremo constatato le condizioni del tempo, potremo attribuirle una delle due qualifiche. In attesa di una verifica, dunque, due persone possono avere valutazioni contraddittorie circa la verità o falsità di un affermazione, senza che si possa decidere quale delle due abbia ragione, possono cioè avere un grado di fiducia diverso riguardo al verificarsi dell evento. Se ci è consentito scommettere sull una o sull altra possibilità (ed è quello che facciamo quando decidiamo o meno di portare con noi l ombrello quando ancora non piove) l entità della nostra scommessa è un indice del nostro grado di fiducia nell enunciato e, perciò, può prendersi come misura del grado di verità che siamo disposti ad attribuirgli. 2.1 La definizione di probabilità soggettiva Diamo ora una definizione precisa di probabilità, rifacendoci alla concezione soggettiva di de Finetti (1937). DEFINIZIONE La probabilità di un evento E, secondo l opinione di un dato individuo, è il prezzo E) che egli giudica equo pagare per riscuotere un importo unitario nel caso in cui E si verifichi. Supponiamo di voler assegnare in modo soggettivo una probabilità all evento E = Il prossimo vincitore delle elezioni USA sarà un repubblicano. Tale probabilità è, per definizione, il prezzo (certo) che siamo disposti a pagare oggi per riscuotere 1 nel caso in cui E si verifichi (in futuro!). Se siamo disposti a scommettere 0.25, 25 centesimi, allora la nostra valutazione di probabilità è E)=0.25=1/4.

9 9 Uno schema grafico può aiutare ad illustrare lo svolgimento temporale della scommessa: pago certamente E) riscuoto 1 se E si verifica in futuro Oggi futuro Il termine prezzo equo nella definizione di probabilità sta ad indicare che i verbi pagare e riscuotere devono poter essere scambiati senza che la valutazione di probabilità cambi: in altri termini, riguardo alla scommessa sul futuro Presidente degli Stati Uniti dobbiamo essere anche disposti ad accettare (facendo da banco ) la scommessa che stabilisce di pagare 1 in futuro nel caso si realizzi l evento E, riscuotendo 0.25 oggi. La probabilità da assegnarsi ad un evento che si realizzerà sicuramente (evento certo) dovrà di conseguenza essere uguale a 1 [E)=1], perché, in questo caso, riscuoteremo certamente 1, avendo la certezza della realizzazione di E. La probabilità di un evento che senza dubbio non si realizzerà (evento impossibile) dovrà invece essere uguale a 0 [E)=0], perché tale è la somma che siamo disposti a sborsare, avendo la consapevolezza di scommettere sul realizzarsi di un evento che non accadrà mai. La probabilità deve essere allora un numero compreso tra i due valori soglia 0 e 1: E) [0,1]. Osservazione importante. Se E)=0, ciò non implica l impossibilità del realizzarsi dell evento stesso. Vediamo un esempio. Consideriamo un bersaglio quadrato di lato unitario e supponiamo di sparare a caso (ad occhi chiusi) colpendo il punto di coordinate (¾,¾). Si è realizzato l evento H = viene colpito il punto (¾,¾). 1 ¾ 0 ¾ 1

10 10 Supponiamo ora di ripetere l esperimento: qual è la probabilità di riuscire a colpire di nuovo il medesimo punto? Essendo infiniti i punti del piano, infinite saranno le nostre possibilità e 0 è ciò che saremmo disposti a pagare nello scommettere sulla realizzazione di H: l evento è altamente improbabile, ma non impossibile. 2.2 Probabilità, scommesse e quote. Ritorniamo all evento E= Il prossimo vincitore delle elezioni USA sarà un repubblicano. Su tale evento è possibile effettuare delle scommesse (nel web è facile reperire aziende che, più in generale, gestiscono scommesse a quota fissa, in Italia si può vedere ad esempio il sito della SNAI, Tipicamente una società di gestione di scommesse presenta per ogni evento sul quale si può scommettere la quota con la quale viene ricompensata una giocata unitaria nel caso si realizzi l evento. Naturalmente quota e probabilità sono inversamente proporzionali ma vediamo le cose più precisamente. Definiamo quota equa relativa all evento E la quantità q(e) = 1 E) Dire che la quota equa è di 4 a 1, significa che all evento viene assegnata la probabilità ¼. Non abbiamo, però, ancora precisato il motivo per il quale parliamo di quota equa q. Infatti, si utilizza tale aggettivo per distinguerla dalla quota reale Q. Quest ultima risulta comprensiva delle remunerazioni αi, per i gestori delle scommesse. La quota reale, quella effettivamente pubblicata dal gestore (il banco) è: Q(Ei) = (1 αi) q(ei) Pertanto la valutazione di probabilità effettuata dal gestore è Ei) = 1 q( Ei) = 1 α i Q( Ei) < 1 Q( Ei) La probabilità assegnata dal gestore ad Ei è minore di 1 Q( Ei) ( 1 ). ( 1 ) Per legge, il guadagno del banco viene limitato. Si parla, perciò, della cosiddetta percentuale di allibramento: PA = n i= 1. Tale percentuale deve essere inferiore alla percentuale di allibramento massima 100 Qi n 100 = 100 Ei) =100. q( Ei PAmax, fissata per legge. Possiamo notare che se αi = 0 i, allora: PA = i= 1 ) In altre parole, nel caso di tutte quote eque la percentuale di allibramento è 100. Nel caso in cui αi>0 per almeno un indice i, si ha PA >100 ovvero, nel caso delle quote reali PA è superiore a 100.

11 Il requisito della coerenza Consideriamo un insieme di eventi Ω = { E1, E2, E3 En } che siano incompatibili (o esclusivi: si può realizzare soltanto uno di essi) ed esaustivi (si realizza almeno uno di essi). Diremo in tal caso spazio campionario l insieme Ω e chiameremo eventi elementari i suoi elementi. area = E1) Ω Assegnando una probabilità ad ogni evento, si ottiene una funzione: P : Ω [ 0, 1] ; Ei Ei) che ad ogni evento Ei associa la corrispondente valutazione di probabilità Ei). Poiché gli eventi sono esaustivi la probabilità che non si realizzi alcun evento di Ω (Evento impossibile = Ø) è Ø) = 0, mentre la probabilità che si realizzi almeno un evento di Ω ovvero che si realizzi Ω (evento certo) è Ω) = 1. Vediamo ora come valutare le probabilità degli eventi dell insieme delle parti P (Ω) dello spazio campionario Ω (l insieme delle parti è un insieme che ha per elementi tutti i sottoinsiemi di Ω, compresi l insieme vuoto Ø e l insieme Ω stesso). A partire dalle probabilità assegnate agli eventi elementari possiamo estendere la valutazione ad altri sottoinsiemi di Ω. Vogliamo però che tale estensione sia coerente nel senso che andiamo a definire. DEFINIZIONE Una valutazione di probabilità è detta coerente se nessuna combinazione di scommesse consente di realizzare un guadagno certo (assenza di arbitraggi).

12 12 Lavoreremo d ora in poi solo con valutazioni di probabilità coerenti. Teorema La richiesta di coerenza è equivalente a chiedere che, dati due qualsiasi eventi Ei ed Ej elementari (quindi incompatibili) di Ω si abbia Ei v Ej) = Ei) + Ej) (1) (Il simbolo v sta per oppure ) Per la dimostrazione si veda ad esempio Daboni (1967). Un esempio numerico può però convincere di come il mancato rispetto della proprietà (1) porti alla possibilità di effettuare arbitraggi, cioè all incoerenza. Supponiamo di scommettere sul realizzarsi, separatamente, degli eventi E1 ed E2 valutati con probabilità E1)=E2)=0.2. Nel contempo supponiamo di accettare una scommessa (in qualità di banco) sull evento E1 v E2 valutato con probabilità E1 v E2) = 0.5 (ovvero maggiore di E1) + E2)). In questo caso oggi pago ma intasco 0.5 pertanto ho in tasca +0.1; in futuro, se uno dei due eventi si realizza ottengo 1 (per aver scommesso) e pago 1 (per aver accettato la scommessa), se nessun evento si realizza non ricevo nulla e non devo pagare. In conclusione: oggi intasco 0.1 e in futuro sono in ogni caso in pareggio, pertanto complessivamente ottengo un guadagno certo di 0.1 (arbitraggio). 2.4 Conseguenze della coerenza Poiché E1 v E2 v En = Ω si ha: Ω) = n i= 1 Ei) = 1 L evento E C (complementare di E) che si realizza se e solo se non si realizza E, ha probabilità E C ) = 1 E) infatti per mantenere la coerenza deve essere E v E C ) = E) + E C ) ma E v E C ) = 1, perché almeno uno dei due si realizzerà certamente, da cui la proprietà.

13 Alcuni esempi LANCIO DI UNA MONETA Vogliamo calcolare la probabilità di ottenere Testa e quella di ottenere Croce col lancio di una moneta. In questo caso lo spazio degli eventi è Ω = {T,C} (T= si realizza testa; C= si realizza croce). L insieme delle parti è Ω) = {Ø, T, C, Ω }. La coerenza impone T) + C) = 1 Questa relazione non ci consente di calcolare separatamente T) e C). A questo scopo, occorre un osservazione esterna. Se la moneta ci appare del tutto simmetrica, ovvero non è truccata, non vediamo a priori alcun motivo per attribuire a uno dei due esiti una probabilità maggiore o minore di quella dell altro. Perciò ci sentiamo autorizzati ad assumere: T) = C). Le due relazioni, insieme, risolvono ora il problema della determinazione delle due probilità fornendo: T) = C) = ½. LANCIO DI DUE O PIU MONETE Lanciamo due monete (o la stessa moneta due volte) e studiamo la probabilità che si presenti testa sia al primo che al secondo lancio. Vogliamo, in altre parole, calcolare TT). Poiché le realizzazioni possibili del lancio di due monete sono TC, CC, CT, TT, mentre l unico caso favorevole è TT, per motivi di simmetria dell informazione analoghi a quelli del caso del lancio di una singola moneta valutiamo TT) = ¼. La probabilità che si presenti una testa su due lanci effettuati è invece ½ Lanciando tre monete qual è la probabilità che si presenti almeno una croce? Se consideriamo distintamente le tre monete, allora si presentano 8 casi egualmente probabili: TTT, TTC, TCT, CTT, CTC, CCT, CCC. Soltanto nel primo caso non si hanno croci, quindi la valutazione di probabilità richiesta è ⅞. LANCIO DI UN DADO Assegniamo la probabilità a ciascuno dei sei possibili esiti del lancio di un dado: Ω = {f1, f2, f3, f4, f5, f6} Indicando con fi la faccia del dado sulla quale sono incisi i punti. Abbiamo

14 14 6 i= 1 fi) = 1 Inoltre, se il dado non presenta alcuna deformità evidente, non c è motivo di pensare che i diversi esiti abbiano probabilità differenti. Da ciò segue: 1 fi) = per ogni i. 6 Negli esempi affrontati, abbiamo invocato una ragione di simmetria, che può esprimersi come condizione a priori sulla distribuzione di probabilità. In tal caso tutti gli eventi elementari considerati vengono ad avere la stessa valutazione di probabilità, sono ritenuti, cioè, equiprobabili. ALTRI ESEMPI Determiniamo la probabilità P per ciascuno dei seguenti eventi: a) nel lancio di un dado si presenta un numero pari. L evento può verificarsi in tre modi (un 2, un 4, un 6) su 6 casi equiprobabili: pari) = ½ ; b) nel lancio di un dado si presenta 1 oppure 2. Essendo 1 v 2) = 1) + 2) si ha 1 v 2) = ⅓. c) lanciando una moneta e un dado si presentano Testa e un numero pari. Essendo i casi possibili 12 (T1, T2, T3, T4, T5, T6, C1, C2, C3, C4, C5, C6), mentre i casi favorevoli sono 3 (T2, T4, T6), la probabilità è data da T,pari) = ¼.

15 Misura della probabilità nel caso di eventi compatibili Siano dati lo spazio campionario Ω e due suoi sottoinsiemi A e B costituiti da più eventi elementari: Ω A = E1 E2 E3 B = E3 E4 E5 (Il simbolo sta per unione ed è equivalente a v) Qual è la probabilità A B)? In questo caso A e B (eventi compatibili, data la loro possibile contemporanea realizzazione) hanno in comune l evento E3, per cui la probabilità non è più A B) = A) + B), altrimenti verrebbe conteggiato due volte E3, intersezione di A e B. Vale infatti il seguente teorema: Teorema A B) = A) + B) A B) (2) (Il simbolo sta per intersezione ) Dimostrazione. L insieme A B è l unione dei 3 eventi incompatibili A B C, A B e A C B. Si ha A B) = A B C )+A B)+A C B) = = [A B C )+A B)]+[A C B)+ A B)] - A B) = = A) + B) - A B). 2.7 Probabilità condizionate o subordinate Immaginiamo che lo spazio campionario Ω si riduca ad un suo sottoinsieme proprio H Ω. Graficamente:

16 16 Ω Il realizzarsi dell evento H costringe a rivedere la probabilità da assegnare alla realizzazione dell evento E: E dato H (si scrive E H), ha una probabilità E H) che in generale sarà diversa rispetto a E). Nell approccio assiomatico la probabilità condizionata è definita ponendo E H) = E H ) H ) ovvero E H) = E H) H). Utilizzando l approccio soggettivo alla probabilità tale formula può essere dimostrata. In termini di quote eque essa può essere riscritta come 1 q( E H ) = 1 1 q( E H ) q( H ) ovvero q(e H) = q(e H) q(h). Dimostriamo quest ultima versione della formula. Consideriamo un esperimento che si svolge negli intervalli di tempo [0, t1] e [t1,t2]. Supponiamo di giocare una unità monetaria al tempo 0 sulla realizzazione dell evento H al tempo t1, ottenendo in caso di vittoria la quota q(h) e di puntare al tempo t1 tutta l eventuale vincita sulla realizzazione dell evento E al tempo t2. H E H 0 t1 t2 In caso di vittoria, vale a dire se E H si realizza al tempo t2, potremo intascare la quota q(e H) moltiplicata per la quantità giocata q(h). Pensiamo ora di giocare un unità monetaria al tempo 0 sulla realizzazione dell evento H E al tempo t2, ottenendo in caso di vittoria la quota q(h E). Si tratta di una scommessa diversa ma equivalente alla precedente nel senso che comporta una vittoria

17 17 esattamente negli stessi casi. L equità nella valutazione della probabilità soggettiva chiede allora che sia q(e H) = q(e H) q(h), come volevamo dimostrare. 2.8 Alcune osservazioni Evidentemente la formula E H) = E H ) H ) chiede che la probabilità che si realizzi l evento H sia diversa da 0. Se l evento H si realizza certamente, H)=1, allora E H) = E). Più interessante è il caso 0<H)<1, in cui si ha E H) > E H). Osserviamo che E = (E H) (E H C ). Poiché E H ed E H C sono disgiunti risulta E) = E H) + E H C ). Ma essendo E H) = E H) H) possiamo scrivere E) = E H) H) + E H C ) H C ). Confrontiamo le due probabilità E H) e E) in un caso particolare. Consideriamo gli eventi E = la cantante Alexia vince il Festival di Sanremo H = una donna vince il Festival di Sanremo In questo caso evidentemente sarà E H) > E). Se, invece H = un uomo vince il Festival di Sanremo allora E)>E H) = 0. In generale non esiste alcuna relazione particolare che lega le due probabilità considerate: o se E/H) > E) si dice che E è positivamente correlato ad H, o se E/H) < E) si dice che E è negativamente correlato ad H, o se E/H) = E) si dice che E è indipendente da H. Nel caso di eventi indipendenti si può scrivere E) = E/H) = E H ) H )

18 18 da cui: E H) = E) H) ovvero, la probabilità che i due eventi, E ed H, si verifichino contemporaneamente corrisponde al prodotto delle loro probabilità di realizzazione. 2.9 Esempi Lanciando due monete di seguito, consideriamo la probabilità di ottenere testa al secondo lancio, dato che si è ottenuto testa anche al primo. Essendo i due lanci indipendenti, l informazione a nostra disposizione non influenza la valutazione finale: T 2 T 1 ) = T 2 ) = ½. Determiniamo la probabilità che, lanciando due volte un dado, si verifichi l evento E= la somma dei punti ottenuti nei lanci è 3 Avendo in tutto 36 possibili esiti, dei quali solo due [(1,2); (2,1)] ci permettono di avere somma 3 si ha E)=2/36. Consideriamo ora l evento H= al primo lancio è uscito il numero 1. Se H si realizza allora lo spazio campionario si riduce e si ottiene: E H) = somma= 3 lancio1= 1) lancio1= 1) = 1/ 36 1 = 1/ 6 6 Determiniamo, lanciando sempre due dadi, le probabilità degli eventi A = almeno un dado presenta il numero 3 B = la somma è 4. Utilizziamo la formula (2): A) = lancio1=3 v lancio2=3) = =lancio1=3)+lancio2=3) lancio1=3 lancio2=3) = + - = Inoltre B) = (1,3);(3,1);(2,2))= 36 3 A B) = (1,3);(3,1))= Da cui otteniamo A B) = + - =

19 Teorema di Bayes Se nelle formule precedenti scambiamo i ruoli degli eventi E ed H otteniamo H E) = H E) E) che può essere scritta anche: H E) = H E) E) Ovviamente H E) = E H), pertanto possiamo scrivere: E H) H) = H E) E) Risulta allora dimostrato il seguente teorema. Teorema di Bayes H E) = E H ) H ) E) 2.11 Alcuni esempi di utilizzo del teorema di Bayes Esempio 1 Supponiamo di dover decidere quale delle due imprese (Artsystem e Buonarroti S.r.l.) di trasporto di opere d arte contattare per l allestimento della nostra mostra temporanea. Sappiamo che la probabilità di rottura o danneggiamento delle opere è del 5% per l impresa A su un totale di 800 pezzi trasportati e del 10% su un totale di 1000 opere trasportate per l impresa B, alla fine del loro viaggio. Qual è la probabilità che un opera sia stata trasportata da A se l opera ha effettivamente subito dei danni? Ovvero, quanto vale A Danni)? E utile alla risoluzione del problema, ricorrere al cosiddetto albero di probabilità. Il diagramma ad albero è un mezzo usato, in generale, per enumerare tutti i possibili esiti di una serie di esperimenti, dove ciascun esperimento può avere un numero finito di esiti. Esso viene costruito da sinistra a destra e, ad ogni nodo, il numero dei rami verso destra corrisponde ai possibili esiti dell esperimento successivo. Nel nostro caso: a) la probabilità che un opera venga trasportata da A è b) la probabilità che un opera venga trasportata da B è 800 = =

20 20 A questo punto, per conoscere A D), dobbiamo ricorrere alla formula di Bayes: A D) = D A) A) D) Conosciamo D A) = 0.05 e A) =4/9, ci resta da valutare D) sommando tutti i rami che portano all esito D: D) = D A) + D B) = D/A) A) + D/B) B) Pertanto A D) = Esempio 2 Al museo di Oslo, nonostante le efficienti misure di sicurezza, sono stati sottratti, nel mese di agosto 2004, alcuni dipinti del pittore norvegese Edward Munch. Vengono arrestati due uomini (Arsenio Lupin e BonBon) sospettati di aver commesso il reato. Soggettivamente, giudichiamo maggiormente probabile che il furto sia stato compiuto da A: A) = 0.6, B) = 0.4. Disponiamo però di una macchina della verità che fornisce indicazione di innocenza con probabilità del 90% per chi è realmente innocente e con probabilità del 20% per un colpevole 2. Desideriamo conoscere la probabilità che, qualora A superi il test e B non ce la faccia, A sia il ladro. Costruiamo l albero di probabilità: 2 Il fatto che A superi il test dipende esclusivamente dal suo essere o meno il colpevole, non dai risultati ottenuti, al medesimo test, da B. Ciò consente, qualora avessimo stabilito, ad esempio, l innocenza di A, di calcolare la probabilità che A e B superino entrambi il test come prodotto (0.2)(0.9), che A superi il test e B no [(0.2)(0.1)], e così via.

21 21 La probabilità che A sia il ladro, dato che A ha superato il test e B no, in base alla formula di Bayes è: A A supera B, non supera) = A supera B, non supera A) A) A supera B, non supera) ( ) = = = ( ) 0.6+ ( ) La nuova informazione costringe pertanto a spostare la valutazione della probabilità di colpevolezza di A al 4% contro il 60% della probabilità stabilita inizialmente. Analogamente, volendo valutare la probabilità che A sia il ladro nel caso in cui A non abbia superato il test, mentre B vi sia riuscito si ottiene ( ) A A non supera, B supera) = = ( ) 0.6+ ( ) =.

22 22 3. Criteri decisionali in condizioni di rischio Introduzione Torniamo a considerare una matrice dei payoff, contenente i risultati economici Mij, espressi in termini di utilità (o, più semplicemente, profitto) corrispondenti al realizzarsi dello stato di natura sj avendo in precedenza optato per la decisione di. Supponiamo ora di essere in grado di attribuire delle probabilità riguardo alla realizzazione dei diversi scenari (Pj = probabilità di realizzazione di sj): s1... sj... sn d1... di Mij dm P1... Pj... Pn Si parla in tal caso di decisioni in condizioni di rischio: esaminiamo ora alcuni tra i più noti criteri di scelta in tali ipotesi. Considereremo come esempio la tabella seguente: s1 s2 s3 d d d P Criterio della massima verosimiglianza Si opta per l alternativa che fornisce il payoff massimo in corrispondenza dello scenario con più elevata probabilità di realizzazione.

23 23 Nell esempio, lo scenario con più alta probabilità di realizzazione è s2 (probabilità 0.6): optiamo per d1 che fornisce utilità 9. Più in generale: a) calcoliamo per quale scenario j* si ha P j* = max P j j b) si opta per la decisione d i* tale che M i*j* = max M ij* i 3.2 Criterio del valore atteso (o dell utilità attesa) Si opta per l alternativa che fornisce il massimo valore atteso delle utilità (massima utilità attesa). L utilità attesa della decisione di è definita da: n E(di) = j= 1 Mij Pj La scelta cade dunque sulla decisione d i* tale che Nell esempio si ottiene: E(d1) = = 6.3 E(d2) = = 7.3 E(d3) = = 7.7 E(di*) = max E(di). i La scelta cade allora su d3, mentre d1 è la decisione peggiore (mentre con il criterio della massima verosimiglianza era la scelta migliore). Si può notare che nel caso in cui gli scenari fossero equiprobabili il criterio del valore atteso fornisce esattamente le stesse indicazioni del criterio della media aritmetica (criterio di Laplace) visto in precedenza. 3.3 Criterio della probabilità di rovina È data una soglia di utilità K al di sotto della quale il decisore è da ritenersi in rovina. La probabilità di rovina relativa alla decisione di è data dalla somma delle probabilità relative a tutte gli scenari sj per i quali si ha Mij K: P di rovina(di) = Pj Mij α Il criterio della probabilità di rovina indica come scelta per cui optare quella cui corrisponde probabilità di rovina minore P di rovina(di*) = Nell esempio, fissata la soglia K=7, si ottiene: min P di rovina(di) i

24 24 P di rovina (d1) = = 0.4 P di rovina (d2) = = 0.9 P di rovina (d3) = 0.1 La decisione da prendersi è ancora d Criterio della probabilità di fare fortuna Fissata una soglia di utilità H al di sopra o in corrispondenza della quale facciamo fortuna. Definita la probabilità di fare fortuna relativa alla decisione di: P di fortuna(di) = Pj Mij H viene scelta la decisione d i * per la quale è massima la probabilità di far fortuna: P di fortuna(di*) = Nell esempio, fissata la soglia H=10, si ottiene: P di fortuna (d1) = 0 P di fortuna (d2) = 0.1 P di fortuna (d3) = 0 max P di fortuna(di) i La scelta cade allora su d2, che, con gli altri criteri, non era mai apparsa opportuna. 3.5 Alcune osservazioni sul valore atteso. Consideriamo la tabella seguente s1 s2 d d P I valori attesi delle due decisioni sono E(d1) = 45 E(d2) = 50

25 25 La differenza tra le due utilità attese non è grande; la variabilità delle utilità è invece molto più marcata, bassa con d1, con variazione 50 40=10, alta con d2, con variazione 90 10=80. Altro esempio: s1 s2 d d P Ora si ha E(d1) = E(d2) = 45: nel caso fossimo avversi al rischio, sarebbe opportuno scegliere d1. Consideriamo ora: s1 s2 d d P p 1-p Si ottiene: E(d1) = 1000, E(d2) = 1001 p + 0 (1 p). Utilizzando il criterio del valore atteso, la scelta cade su d2 quando 1001 p > 1000, ovvero con p > 1000/ Il criterio di massima verosimiglianza, al contrario, suggerisce di optare per d2, quando p>1 p. Dunque, è sufficiente p = 0.501(vs p del primo criterio), perché si scelga d2!

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it

Teoria delle Decisioni. Lezioni 1 e 2 a.a. 2006 2007. J. Mortera, Università Roma Tre mortera@uniroma3.it Teoria delle Decisioni Lezioni 1 e 2 a.a. 2006 2007 J. Mortera, Università Roma Tre mortera@uniroma3.it Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi,

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

Distribuzioni discrete

Distribuzioni discrete Distribuzioni discrete Esercitazione 4 novembre 003 Distribuzione binomiale Si fa un esperimento (o prova): può manifestarsi un certo evento A con probabilità p oppure no (con probabilità q = p). La distribuzione

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes.

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1. Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 7 - Pag. 1 Capitolo 7. Probabilità, verosimiglianze e teorema di Bayes. Probabilità, verosimiglianza e teorema di Bayes Se A e B sono

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo Scientifico Pascal Merano (BZ) Classe 2 Liceo Scientifico Tecnologico Insegnante di riferimento: Maria Elena Zecchinato Ricercatrice: Ester Dalvit Partecipanti: Jacopo Bottonelli,

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it TEORIA DELLE DECISIONI DOCENTE: JULIA MORTERA mortera@uniroma3.it 1 Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi, aziende, sindacati ecc. si trovano

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Aspetti probabilistici del gioco d azzardo

Aspetti probabilistici del gioco d azzardo Università degli Studi di Genova Scuola di Scienze Sociali Dipartimento di Economia Perché il banco vince sempre? Aspetti probabilistici del gioco d azzardo Enrico di Bella (edibella@economia.unige.it)

Dettagli

Economia Pubblica Rischio e Incertezza

Economia Pubblica Rischio e Incertezza Economia Pubblica Rischio e Incertezza Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Seconda parte del corso di Economia Pubblica I problemi dell

Dettagli

PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ

PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ PROBABILITÀ - SCHEDA N. 1 INTRODUZIONE ALLA PROBABILITÀ 1. Che cos è la probabilità? «La teoria delle probabilità non è altro che il tentativo del genere umano di comprendere l incertezza dell universo,

Dettagli

Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali:

Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali: Teoria dei Giochi Dr. Giuseppe Rose (Ph.D., M.Sc., London) Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 1 1 Nozioni introduttive La teoria

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il problema di Monty Hill nel film 21 Elementare!! Statistiche, cambio di variabili. 1 Il coefficiente di correlazione tra Indicee Stipendio vale 0,94. E possibile asserire che

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

La Massimizzazione del profitto

La Massimizzazione del profitto La Massimizzazione del profitto Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. Ora vedremo un modello per analizzare le scelte di quantità prodotta e come produrla.

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Componenti di un sistema KNOWLEDGE-BASED

Componenti di un sistema KNOWLEDGE-BASED Componenti di un sistema KNOWLEDGE-BASED DYNAMIC DATABASE PROBLEM FORMALIZATION CONTROL STRATEGY IL DATABASE DESCRIVE LA SITUAZIONE CORRENTE NELLA DETERMINAZIONE DELLA SOLUZIONE AL PROBLEMA. LA FORMALIZZAZIONE

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Riepilogo: Postulati del calcolo della probabilità (Kolmogorov): Dato un evento A Ω, dove è lo spazio degli

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Capitolo II Le reti elettriche

Capitolo II Le reti elettriche Capitolo II Le reti elettriche Fino ad ora abbiamo immaginato di disporre di due soli bipoli da collegare attraverso i loro morsetti; supponiamo ora, invece, di disporre di l bipoli e di collegarli tra

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI

GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI GLI INIZI 3 I GLI EVENTI 7 I.1 Incertezza e probabilità 7 I.2 Lo spazio degli eventi 9 I.3 L evento 10 I.4 Algebra degli eventi 11 II I VARI APPROCCI ALLA PROBABILITÀ 17 II.1 Probabilità in senso classico

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

2 Progetto e realizzazione di funzioni ricorsive

2 Progetto e realizzazione di funzioni ricorsive 2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire

Dettagli

Convertitori numerici in Excel

Convertitori numerici in Excel ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA Convertitori numerici in Excel Prof. G. Ciaschetti Come attività di laboratorio, vogliamo realizzare dei convertitori numerici con Microsoft Excel

Dettagli

COEFFICIENTI BINOMIALI

COEFFICIENTI BINOMIALI COEFFICIENTI BINOMIALI Michele Impedovo micheleimpedovo@uni-bocconiit Una definizione insiemistica Se n è un numero naturale e è un numero naturale compreso tra e n, si indica con il simbolo il coefficiente

Dettagli

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1

Matematica finanziaria: svolgimento della prova di esame del 4 settembre 2007 1 Matematica finanziaria: svolgimento della prova di esame del 4 settembre. Calcolare il montante che si ottiene dopo anni con un investimento di e in regime nominale al tasso annuale del % pagabile due

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità Valutare un test 9 Quando si sottopone una popolazione ad una procedura diagnostica, non tutti i soggetti malati risulteranno positivi al test, così come non tutti i soggetti sani risulteranno negativi.

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Analisi Decisionale. (Decision Analysis) Caratteristiche:

Analisi Decisionale. (Decision Analysis) Caratteristiche: Analisi Decisionale 1 Analisi Decisionale (Decision Analysis) Metodologia che si applica quando un decisore può scegliere tra varie azioni future il cui esito dipende da fattori esterni che non possono

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

Economia monetaria e creditizia. Slide 4

Economia monetaria e creditizia. Slide 4 Economia monetaria e creditizia Slide 4 Le teorie diverse che spiegano come di determina la domanda di moneta possono essere ricondotte alle due funzioni di mezzo di pagamento e di riserva di valore la

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Giochi ripetuti. Gianmaria Martini

Giochi ripetuti. Gianmaria Martini Giochi ripetuti Gianmaria Martini INTRODUZIONE In molte situazioni strategiche l elemento temporale ha un ruolo rilevante, nel senso che le scelte vengono ripetute nel tempo. I giochi ripetuti studiano

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 A DEFINIZIONI - Si definiscano sinteticamente i termini anche con l ausilio, qualora necessario, di formule e grafici. 1. Beni

Dettagli

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie

Caso e probabilità. Il caso. Il caso. Scommesse e probabilità Fenomeni aleatori Probabilità Variabili aleatorie Introduzione Il caso Il caso commesse e probabilità Il caso i chiama evento casuale quello che si verifica in una situazione in cui gli eventi possibili sono più d uno, ma non si sa a priori quale si verificherà.

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

LA RAPPRESENTAZIONE DELLE INFORMAZIONI

LA RAPPRESENTAZIONE DELLE INFORMAZIONI ISTITUTO TECNICO E LICEO SCIENTIFICO TECNOLOGICO ANGIOY LA RAPPRESENTAZIONE DELLE INFORMAZIONI Prof. G. Ciaschetti DATI E INFORMAZIONI Sappiamo che il computer è una macchina stupida, capace di eseguire

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

6.4 Risposte alle domande di ripasso

6.4 Risposte alle domande di ripasso Economia dell informazione e scelta in condizioni di incertezza 45 6.4 Risposte alle domande di ripasso 1. Se si potesse falsificare il segnale, questo cesserebbe di essere un segnale perché diventerebbe

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott.

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Modello probabilistico di un esperimento aleatorio Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Un esperimento è il processo attraverso il quale un osservazione

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006 Calcolo delle probabilità riassunto veloce Laboratorio di Bioinformatica Corso aa 2005-2006 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento

Dettagli

La scelta in condizioni di incertezza

La scelta in condizioni di incertezza La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

Giochi e decisioni strategiche

Giochi e decisioni strategiche Teoria dei Giochi Giochi e decisioni strategiche Strategie dominanti L equilibrio di Nash rivisitato Giochi ripetuti Giochi sequenziali Minacce impegni e credibilità Deterrenza all entrata 1 Giochi e decisioni

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli