MATEMATICA 1 Ingegneria Edile e Civile Prof. P. Ciatti, Prof. C. Sartori. TEMA A Padova 13/12/2006

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA 1 Ingegneria Edile e Civile Prof. P. Ciatti, Prof. C. Sartori. TEMA A Padova 13/12/2006"

Transcript

1 MATEMATICA Ingegneria Edile e Civile Prof. P. Ciatti, Prof. C. Sartori TEMA A Padova //00 ) Studiare la funzione fx) =e arctg x ). Dominio, iti notevoli di f e f, crescenza e decrescenza, massimi e minimi, asintoti. Abbozzo del grafico. Non è richiesto lo studio della convessità.) SOL. f è pari. Domf = R. f x) = x ± fx) =eπ, e arctg x ) e arctg x ) x +x ) se x > x +x ) se x < La funzione è crescente per x>e <x<0 decrescente altrove. x =0 pto di max, f0)=e π/, x = ± punti di minimo f±) =, x f x) =, x +f x) =. Asintoto orizzontale y =e π/. y x ) Sia F x) = x 0 log + t ) + cos t dt, si calcoli il primo termine non nullo della formula di Taylor in x =0esi decida la natura del punto x =0. SOL. Si ha log+ t ) +cos t = t t) + t + 4! t4 +ot 4 )= t4 + ot 4 )pert 0dacuiFx) = 0 x5 + ox 5 )per. x =0è punto di flesso con tangente orizzontale.

2 ) Sia f :a, b) R una funzione derivabile e c a, b). Dimostrare che se c è punto di massimo per f allora f c) =0. 4) Sia f :[a, b] R una funzione continua tale che fa) <a e fb) >b. Dimostrare che esiste un punto c a, b) in cui il grafico della funzione incontra quello della parabola y = x cioè un punto tale che fc) =c. SOL. Si applica il teorema sugli zeri delle funzioni continue alla funzione gx) =fx) x. 5) Calcolare e sin x x e sin x x x SOL. Si ha e sin x x x =e + 4 +ox) =+ x x e sin x =e x x4 +ox4) = +x x4 )+ da cui ) ) x x + x x + ) 4 + ox 4 )=+x + x 8 x4 + ox 4 ), sin x =x x! + ox )) = x x4 + ox 4 ), x x4 x x ) + ) +ox 4 )=+x + x4 +ox4 ), e sin x x e sin x x x +x + = x4 + ox 4 ) x +x + x x4 8 + ox4 ) x = x x4 = 4 8 x4 ) Si dimostri che una funzione crescente e continua in un intervallo ha inversa che è crescente e continua.

3 TEMA B Padova //00 ) Studiare la funzione fx) =e arctg x ). Dominio, iti notevoli di f e f, crescenza e decrescenza, massimi e minimi, asintoti. Abbozzo del grafico. Non è richiesto lo studio della convessità.) SOL. f è pari. Domf = R. e arctg f x) = fx) x ± =e π, x ) x e arctg x ) x +/x ) se x > +/x ) se x < La funzione è crescente per 0 <x<ex< decrescente altrove. x =0 pto di min, f0) = e π/, x = ± punti di massimo f±) =, x f x) =, x +f x) =. Asintoto orizzontale y =e π/ y - x ) Sia x F x) = 0 et + cost) dt, si calcoli il primo termine non nullo della formula di Taylor in x =0esi decida la natura del punto x =0. SOL. Si ha et +cost) = +t + t4) + t + 4! t4 +ot 4 )) =

4 7 4 t4 +ot 4 )pert 0dacuiFx) = 0 x5 +ox 5 )per. x =0è punto di flesso con tangente orizzontale. ) Sia f :a, b) R una funzione derivabile e c a, b). Dimostrare che se c è punto di minimo per f allora f c) =0. 4) Sia f :[a, b] R una funzione continua tale che fa) <a/efb) >b/. Dimostrare che esiste un punto c a, b) in cui il grafico della funzione incontra quello della retta y = x/ cioè un punto tale che fc) =c/. SOL. Si applica il teorema sugli zeri delle funzioni continue alla funzione gx) =fx) x/. 5) Calcolare log + sin x) x xlog + sin x) x + x ) SOL. Si ha sin x =x x! + ox )) = x x4 + ox 4 ), log + sin x) = log + x x4 + ox4 )) = x 5x4 + ox4 ), )) log + sin x) = log + x x ) x x! + ox ) da cui x x! + ox ) log + sin x) x xlog + sin x) x + x ) =! + ox ) = ) + ) x x4 + ox4 ) x x4 )) + ox4 = x x! + ox ) ) = x 5 x4 + ox 4 ) x x x + x + ox ) x + x x + x + ox ) ) = 5 x4 + x4 = 5 ) Si dimostri che una funzione decrescente e continua in un intervallo ha inversa che è decrescente e continua. 4

5 TEMA C Padova //00 ) Studiare la funzione fx) =e arctg x ). Dominio, iti notevoli di f e f, crescenza e decrescenza, massimi e minimi, asintoti. Abbozzo del grafico. Non è richiesto lo studio della convessità.) SOL.Domf = R. f x) = fx) x ± =eπ, e arctg x ) x +x ) se x> e arctg x ) x +x ) se x< La funzione è crescente per x> decrescente altrove. x = 0 pto di flesso a tangente orizzontale, f0)=e π/, x = punto di minimo f)=, x f x) =, x +f x) =. Asintoto orizzontale y =e π/. y x ) Sia F x) = x 0 e t + sint ) dt, si calcoli il primo termine non nullo della formula di Taylor in x =0esi decida la natura del punto x =0. SOL. Si ha e t sint )=+t + t4 + ot 4 ) t + t + ot )= t4 + ot 4 )pert 0 da cui F x) = 0 x5 + ox 5 ), per x 0. x =0è punto di flesso con tangente orizzontale. 5

6 ) Sia f :a, b) R una funzione derivabile. Dimostrare che se f x) =0 x allora f è costante. 4) Sia f :[a, b] R una funzione continua tale che fa) <a e fb) >b. Dimostrare che esiste un punto c a, b) in cui il grafico della funzione incontra quello della funzione y = x cioè un punto tale che fc) =c. SOL. Si applica il teorema sugli zeri delle funzioni continue alla funzione gx) =fx) x. 5) Calcolare log + cos x) ) 4 x4 x log cos x + x ) SOL. Si ha cos x) = x 4! x4 + ox 4 ) ) = 4 x4 4! x + ox ), log + cos x) )= 4 x4 4! x + ox ), logcos x) = log ) x x4 4! + ox 4 ) da cui x x4 log cos x) ) 4 x4 x logcos x)+ x ) )) 4! + ox 4 ) x x4 4! + ox 4 ) = ) + ox 4 )= x x4 + ox4 ) 4! = x + ox ) ) = x x x4 + ox4 )+ x 4! x x =. ) Si dimostri che una funzione decrescente e continua in un intervallo ha inversa che è decrescente e continua.

7 TEMA D Padova //00 ) Studiare la funzione ) fx) =e arctg x. Dominio, iti notevoli di f e f, crescenza e decrescenza, massimi e minimi, asintoti. Abbozzo del grafico. Non è richiesto lo studio della convessità.) SOL. f è pari. Domf = R. f x) = fx) x ± =e π, ) e arctg x ) e arctg x x +/x ) se x< x +/x ) se x> La funzione è crescente per x< decrescente altrove. x = 0 pto di flesso a tangente orizzontale, f0) = e π/, x = punto di massimo f) =, x f x) =, x +f x) =. Asintoto orizzontale y =e π/ y - x ) Sia F x) = x 0 log + t ) sint ) dt, si calcoli il primo termine non nullo della formula di Taylor in x =0esi decida la natura del punto x =0. SOL. Si ha log + t ) sint )=t t4 + ot 4 ) t + t + ot )= t4 + ot 4 )pert 0dacuiF x) = 0 x5 + ox 5 ), per x 0. x =0è 7

8 punto di flesso con tangente orizzontale. ) Siano f, g :[a, b] R due funzioni continue, derivabili in a, b). Dimostrare che se fa) =ga) ef x) <g x) x a, b) allora fx) <gx) x a, b). 4) Sia f :[a, b] R una funzione continua tale che fa) <a/efb) >b/. Dimostrare che esiste un punto c a, b) in cui il grafico della funzione incontra quello della retta y = x/ cioè un punto tale che fc) =c/. SOL. Si applica il teorema sugli zeri delle funzioni continue alla funzione gx) =fx) x/. 5) Calcolare e cos x x e cos x x SOL. Si ha cos x = x + 4! x4 + ox 4 )) = x + x4 + ox 4 ), e cos x =+x x4 + ox 4 )) + x x4 + ox 4 )) + ox 4 )=+x + x4 + ox4 ), e cos x =e x 4! x4 +ox 4) =+ x 4! x4) + x 4! x4) + ox 4 )= + x + x4 + ox 4 ) da cui e cos x x e cos x x = +x + x4 + ox4 ) x + x + x4 + ox 4 ) = x x 4 x4 = ) Si dimostri che una funzione crescente e continua in un intervallo ha inversa che è crescente e continua. 8

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2]

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] ANALISI Soluzione esercizi 25 novembre 2011 8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] cos x cos x in [ 2π, 2π];

Dettagli

ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. 1: Limiti di funzioni e continuitá

ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. 1: Limiti di funzioni e continuitá ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. : Limiti di funzioni e continuitá a) Calcolare, se esistono, i seguenti limiti di funzioni: ( ) 5x. lim 3 x 8 +4x+ x +. lim x 5 4+x +x 3

Dettagli

Analisi matematica 1 - Ingegneria civile, ambientale, edile. Secondo compitino (16 aprile 2019) x 4 y 2 x 2 + y 4 se (x, y) (0, 0)

Analisi matematica 1 - Ingegneria civile, ambientale, edile. Secondo compitino (16 aprile 2019) x 4 y 2 x 2 + y 4 se (x, y) (0, 0) Analisi matematica 1 - Ingegneria civile, ambientale, edile Secondo compitino (16 aprile 2019) Esercizio 1 Calcolare, se esiste, il ite seguente: tan 2 2x sin 2 2x ln(1 + x 2 ) e 3x2 + 1 + 4x 2. Esercizio

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r.

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r. Testo 1 ESONERO I 1) Calcolare le seguenti espressioni log 3 135 log 3 5 = log 5 1 125 + log 4 256 = 2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

APPELLO X AM1C 17 SETTEMBRE 2009

APPELLO X AM1C 17 SETTEMBRE 2009 Cognome e nome APPELLO X AMC 7 SETTEMBRE 29 Esercizio. Sia f(x) = x arctan x + log( + x 2 ) (a) Determinarne: insieme di esistenza e di derivabilità, iti ed eventuali asintoti, eventuali massimi, minimi

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria Politecnico di Milano Ingegneria Industriale Analisi Matematica e Geometria Preparazione al primo compito in itinere Cognome: Nome: Matricola: Prima Parte. Determinare, se esistono, il minimo, il massimo,

Dettagli

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C Analisi Matematica I (M-Z).C1 08-0-1997 1) Data la funzione h(x) = x log(x + 1 + x + x + ) + log(1 + ) determinarne il dominio D. Provare poi che h(x) > 0 x D ]0, + [, h(x) = 0 x = 0. ) Utilizzando i risultati

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

COGNOME... NOME... Matricola... II corso Prof. Camporesi. Esame di ANALISI MATEMATICA - 9 Settembre 2004

COGNOME... NOME... Matricola... II corso Prof. Camporesi. Esame di ANALISI MATEMATICA - 9 Settembre 2004 COGNOME... NOME... Matricola... II corso Prof. Camporesi Esame di ANALISI MATEMATICA - 9 Settembre 2004 A ESERCIZIO 1. (5 punti) 1. Risolvere in campo complesso l equazione z 5 + (1 + i)z = 0. 2. Dimostrare

Dettagli

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante)

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Corso di laurea in Fisica, a.a. 2015/16 Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Seconda prova in itinere 15 gennaio 2016 I Regolamento. Annerire in modo evidente un opzione a scelta

Dettagli

STUDIO DI FUNZIONI pag. 1

STUDIO DI FUNZIONI pag. 1 STUDIO DI FUNZIONI pag. Dominio e ricerca asintoti.0. f () = 6 +.0. f () =.0.3 f () = 3.0. () = log( 5 6) + [ dom () = R \ { ±} [ dom () = R \ {, 3} f ; asintoti verticali in = e = 3; asintoto orizzontale

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x Domanda Si consideri la funzione SOLUZIONI f x = x 2 2/ e x. Determinare il campo di esistenza, il segno, i iti alla frontiera e gli eventuali asintoti. Classificare gli eventuali punti di discontinuità

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Informatica. Prova in itinere del giorno di. Formazione Analitica.C1. n + 1 4n + 3 = 1 2. lim. lim 3n n n (4n)! (2n)! [(n + 2)!

Informatica. Prova in itinere del giorno di. Formazione Analitica.C1. n + 1 4n + 3 = 1 2. lim. lim 3n n n (4n)! (2n)! [(n + 2)! Prova in itinere del giorno 28-11-2003 di Formazione Analitica.C1 1) Provare che n k=2 log (1 1k ) 2 = log n + 1 2n n N 2) Provare, utilizzando la definizione di ite, che n + 1 4n + 3 = 1 2 3) Calcolare

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente f x = x 2 1 allora Im f = [ 1, + ) 1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente + è l estremo superiore della funzione (sup f = + R) e quindi la funzione

Dettagli

Analisi Matematica I Calcolo differenziale e applicazioni

Analisi Matematica I Calcolo differenziale e applicazioni Analisi Matematica I Calcolo differenziale e applicazioni Esercizio. Stabilire se le seguenti funzioni sono derivabili in 0 = 0. f = 2 f = sin 3 f = sin 4 f = sin 3 5 f = e sin 3 6 f = e sin 3 { 3 log+

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/09/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.

ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M. ESERCIZI DI ANALISI MATEMATICA Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica M Z Prof. M.Patrizia Pera Insiemi e numeri reali Parte -a. Risolvere le seguenti disequazioni:

Dettagli

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R 9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissione L Caravenna, V Casarino, S Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Nome, Cognome, numero di matricola: Vicenza, 7 Luglio 205 TEMA - parte B Esercizio

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 16 giugno 1999

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 16 giugno 1999 assegnato il 16 giugno 1999 16 2 x+7 x 2 + 3x 4 + (2x + 1)2 2 Scrivere l equazione della circonferenza passante per i punti A = (0, 2), B = (0, 10) e tangente alla retta r di equazione x 8 = 0 3 Sia f

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009 A Esame di Istituzioni di Matematiche I 13 Gennaio 2009 Determinare l equazione del piano passante per il punto A = (2, 1, 3) e perpendicolare al vettore v dato da v = Au, dove A = 2 1 3 0 1 2, u = 1 3.

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a. 4- Corsi di laurea in Scienze Statistiche 4 febbraio TEMA Esercizio 8 punti) Si consideri la funzione ) e f) = arctan e a)

Dettagli

Esercizi di Matematica Generale -C.d.L. in Economia Aziendale - per gli studenti degli a.a. 2013/14 Prof.ssa Rinauro Silvana

Esercizi di Matematica Generale -C.d.L. in Economia Aziendale - per gli studenti degli a.a. 2013/14 Prof.ssa Rinauro Silvana Esercizi di Matematica Generale -C.d.L. in Economia Aziendale - per gli studenti degli a.a. 201/14 Prof.ssa Rinauro Silvana Regole per l esame: Si darà facoltà agli studenti di convalidare il voto dello

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine nno ccademico 5/6 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/7/6 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

Prova scritta del modulo di Analisi Matematica I (N.O.) 2 ore A 23/1/2013. Prova scritta del modulo di Analisi Matematica I (N.O.) 2 ore B 23/1/2013

Prova scritta del modulo di Analisi Matematica I (N.O.) 2 ore A 23/1/2013. Prova scritta del modulo di Analisi Matematica I (N.O.) 2 ore B 23/1/2013 Prova scritta del modulo di Analisi Matematica I (NO) ore A // ) Data la funzione f ( ) = ( + ) log( + ), b) Studiare gli eventuali punti di non derivabilità, c) Determinare i massimi e minimi assoluti

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I (A) Ingegneria Edile, 19 dicembre 2000 () 1. Studiare il seguente ite: x 0 log 2 (cos x) ( 3 1 x 1 ) e (x3 ) 1. 2. Dire per quali numeri complessi entrambe le radici quadrate

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

14. Studio grafico completo di funzioni

14. Studio grafico completo di funzioni 14. Studio grafico completo di funzioni Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Prova scritta del 18/12/2008, tema A

Prova scritta del 18/12/2008, tema A 1 È Data la funzione: fx) e x x 3x + 3) Prova scritta del 18/1/8, tema A Determinarne: a) dominio, limiti significativi, asintoti; b) derivata prima, crescenza, punti di massimo e di minimo; c) derivata

Dettagli

40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI

40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI 40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI Derivate parziali e piani tangenti Scrivere l equazione del piano tangente al grafico delle funzioni: f(, y) = (y ) + log nel punto = y = y + f(,

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 28 Febbraio 2011, ore x e2x e 2x 1. f(x) = e 2x log(e 2x + 1) dx.

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 28 Febbraio 2011, ore x e2x e 2x 1. f(x) = e 2x log(e 2x + 1) dx. Esame di ANALISI MATEMATICA I - 28 Febbraio 211, ore 8.3 A ESERCIZIO 1. (1 punti) Sia data la funzione f(x) = x e2x e 2x 1. (a) Determinarne il dominio e dimostrare che f si prolunga ad una funzione continua

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Esercitazione del 14 gennaio f(x) = e x x2 x 2. { e x2 +2x+2 e x2 2. se x [ 1, 2] ; {

Esercitazione del 14 gennaio f(x) = e x x2 x 2. { e x2 +2x+2 e x2 2. se x [ 1, 2] ; { Esercitazione del gennaio 0 Esercizio. Tracciare il diagramma della funzione f(x) = e x x x. Svolgimento.. La funzione risulta definita, positiva e continua x R.. Si ha f(x) = e x +x+ se x < x >, e x se

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R una funzione derivabile in 0 tale che f(0) = f (0) = 0. Si consideri la funzione g(x) = f(x). Allora, necessariamente sin x (a) lim g(x) = 0 (b) lim g(x) = 1 (c)

Dettagli

APPELLO A DI AM1C - SESSIONE ESTIVA - 4 LUGLIO f(x) = 1 x e x 1

APPELLO A DI AM1C - SESSIONE ESTIVA - 4 LUGLIO f(x) = 1 x e x 1 Cognome e nome APPELLO A DI AMC - SESSIONE ESTIVA - 4 LUGLIO 2008 Esercizio. (a) Data la funzione f(x) = x e x x determinare: insieme di esistenza e di derivabilità, iti ed eventuali asintoti, derivata

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova parziale di ANALISI MATEMATICA I - 15/11/2017 Prova A Prova parziale di ANALISI MATEMATICA I - 5//207 Prova A da Si studino l insieme di definizione ed il segno della funzione definita fx) = log 2 ) 2 sinx3 cos x+5) + arctan 3 x 3 x + π 4 ) 2 Si risolva la

Dettagli

Analisi Matematica I (30/1/2018)

Analisi Matematica I (30/1/2018) Analisi Matematica I (30/1/018) Risposte non giustificate non verranno considerate. Consegnare solo la bella copia. Scrivere anche sul retro del foglio. Cognome: Nome: Matricola: 1 3 4 5 TOTALE Versione

Dettagli

Esame di Analisi Matematica Prova scritta del 9 giugno 2009

Esame di Analisi Matematica Prova scritta del 9 giugno 2009 Prova scritta del 9 giugno 2009 A1 Data la funzione f(x) = x2 3 e x, (f) determinare in base al grafico di f il numero delle soluzioni dell equazione f(x) = λ al variare di Calcolare un valore approssimato

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA" SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000

UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000 UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA" SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000 - I PROVA SCRITTA DI ESONERO DI ANALISI I 20/2/999

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 22 luglio 2016 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Lezione 11 (30 novembre)

Lezione 11 (30 novembre) Lezione 11 (30 novembre) Teorema di De l Hopital Massimi e minimi assoluti e relativi Funzioni limitate superiormente e inferiormente Legame tra derivata prima e crescita e decrescita della funzione Derivata

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018 Prova scritta di ANALISI MATEMATICA I - 22/0/208 Studiare la funzione definita da fx) = x + x 2 2 Calcolare, se esiste, il ite sin3x) x cos3x) 2x x 0 log 4 + sin cos x) x ) 3 Calcolare log 2 xdx 4 Si risolva

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f(x) = (µx ± 2µ) e 1/x,

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f(x) = (µx ± 2µ) e 1/x, CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO I PROVA SCRITTA DI GIUGNO 2005: SOLUZIONI ESERCIZIO - Data la funzione f(x) = (µx ± 2µ) e 1/x, si chiede di: a) calcolare

Dettagli

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k

9 k. k. k=2. Soluzione: Ricordiamo la formula di Newton per le potenze del binomio: (a + b) n = a n k b k. k. k=0. (1 + 9) 100 = k 9 k, k Ingegneria Elettronica e Informatica Analisi Matematica 1a Foschi Compito del 18.1.018 1. Utilizzando la formula di Newton per le potenze del binomio calcola il valore della somma 9. = Soluzione: Ricordiamo

Dettagli

Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 15 gennaio 2004

Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 15 gennaio 2004 Esame di Istituzioni di Matematiche I 5 gennaio 2004 Monaco 02BJVa W0034 60 De ngelis 02BJVb W003 630 Pieraccini 0BJU Biglio 03BJV Esame completo Prova intermedia Teoria: teoremi sulle funzioni continue.

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di CONVESSITÀ Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Derivata seconda Se la derivata (prima) di una funzione è definita

Dettagli

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 )

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 ) ANALISI MATEMATICA I (Versione A) - 4 Novembre 000 RISOLUZIONE ESERCIZIO 1. Data la funzione = (e x 1) log(1 + 4x ) : 1. Calcolare lo sviluppo di ordine 3 di MacLaurin di. Scriviamo gli sviluppi di ordine

Dettagli

Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I

Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I Trieste Udine giugno 005 Prefazione Questo volume raccoglie i temi assegnati alle prove d esame dei corsi di Analisi matematica I

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di TEOREMI DEL CALCOLO DIFFERENZIALE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Teorema di Estremi locali Richiamiamo la

Dettagli

Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica 1 del 18/12/2006

Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica 1 del 18/12/2006 Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica del 8/2/26 () Fornire la definizione di derivata ed il suo significato geometrico. (2) Enunciare e dimostrare

Dettagli

Politecnico di Milano Ingegneria Chimica, dei Materiali e delle Nanotecnologie Analisi Matematica 1 e Geometria Secondo Appello 19 Giugno 2018

Politecnico di Milano Ingegneria Chimica, dei Materiali e delle Nanotecnologie Analisi Matematica 1 e Geometria Secondo Appello 19 Giugno 2018 Politecnico di Milano Ingegneria Chimica, dei Materiali e delle Nanotecnologie Analisi Matematica 1 e Geometria Secondo Appello 19 Giugno 218 Cognome: Nome: Matricola: 1. Disegnare il grafico della funzione

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico /3 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9//3 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Numero di matricola VOTO...

Matematica A Corso di Laurea in Chimica. Prova scritta del Numero di matricola VOTO... Matematica A Corso di Laurea in Chimica Prova scritta del 04.12.07 Tema A Nome Cognome Numero di matricola VOTO... Svolgere gli esercizi utilizzando ESCLUSIVAMENTE lo spazio predisposto P1) Data la funzione

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000 assegnato il 1 giugno 1 Risolvere il sistema di disequazioni ( ) 1 x 1 3 9 3 log (13 x) > 3 x 9 x 4 + 1 < Scrivere le equazioni delle circonferenze che passano per il punto A = (, ) e sono tangenti alle

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Analisi e Geometria 1 Docente: Politecnico di Milano Prima prova in itinere. Ingegneria Industriale 16 novembre 2009 Compito A Cognome: Nome: Matricola: Punteggi degli

Dettagli

Analisi Matematica 1 - a.a. 2017/ Primo appello

Analisi Matematica 1 - a.a. 2017/ Primo appello Analisi Matematica - a.a. 7/8 - Primo appello Soluzione del test Test A 3 4 5 6 7 8 9 C E E C D E A B B D Test B 3 4 5 6 7 8 9 A A B E B B C D E A Test C 3 4 5 6 7 8 9 B D C A E D E C D C Test D 3 4 5

Dettagli

Matematica, 12 CFU, Corso di laurea in Scienze Biologiche- A.A Laurea Triennale

Matematica, 12 CFU, Corso di laurea in Scienze Biologiche- A.A Laurea Triennale Matematica, CFU, Corso di laurea in Scienze Biologiche- A.A. 009-00 Laurea Triennale Luglio 00- COMPITO - Totale punti 40, punteggio minimo 4 Nome Cognome. (4 punti) Calcolare i seguenti limiti: (a) lim

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola:

Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola: Es. 1 Es. 2 Es. Teoria: Totale Numero di iscrizione alla prova scritta: Docente: Analisi e Geometria 1 Prima Prova 22 Novembre 2016 Compito F Cognome: Nome: Matricola: Punteggi: Es.1: 7; Es.2: 7; Es.:

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Analisi Matematica I prof. Antonio Greco Def. della derivata Esercizi [301] 1) Applicando la definizione, trovare, se esiste, la derivata delle seguen

Analisi Matematica I prof. Antonio Greco Def. della derivata Esercizi [301] 1) Applicando la definizione, trovare, se esiste, la derivata delle seguen Analisi Matematica I prof. Antonio Greco Def. della derivata Esercizi [301] 1) Applicando la definizione, trovare, se esiste, la derivata delle seguenti funzioni nel punto x 0 = 0. (a) La funzione costante

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Secondo appello 2005/ Tema 1

Secondo appello 2005/ Tema 1 Secondo appello 2005/2006 - Tema Esercizio Risolvere l equazione di variabile complessa determinando le soluzioni in forma algebrica. Ponendo z = x + iy con x, y R, si ottiene z 2 + 2iz + 2 z = 0, () (x

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 T Totale

Es. 1 Es. 2 Es. 3 Es. 4 T Totale Es Es Es 3 Es 4 T Totale Analisi e Geometria COMPITO A Docenti: P Antonietti, F Cipriani, F Colombo, F Lastaria, G Mola, E Munarini, PTerenzi, C Visigalli Ingegneria Industriale Prova del /9/009 Cognome

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

4.3 Teoremi sulle funzioni derivabili

4.3 Teoremi sulle funzioni derivabili 4.3 Teoremi sulle funzioni derivabili Teorema (di Fermat) Sia : [, ] ℝ una funzione derivabile in (, ) e si un punto di massimo o minimo (relativo o assoluto) per. Allora 0 si dice anche che è un punto

Dettagli

Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica

Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica 7 giugno 2017 1. Determinare (a) a quale proprietà si riferisce la seguente scrittura inerente ad una successione {a

Dettagli

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z (1) Calcolare il seguente integrale definito 3/π 1/π 1 3 sen ( 1 ) d integrando dapprima per sostituzione

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli