Scheda (4) per lo svolgimento delle attività

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scheda (4) per lo svolgimento delle attività"

Transcript

1 Scheda (4) per lo svolgimento delle attività 271 Prima parte Domanda 1. Scrivi la definizione di minimo comune multiplo di due numeri naturali a e b. Il minimo comune multiplo (mcm) di due naturali a e b è il più piccolo naturale positivo che è multiplo sia di a che di b. Domanda 2. Considera la corona dello spirografo e la ruota con 36 denti. Con un pennarello fai un segno su uno dei denti della ruota da 36 e un segno sulla corona circolare dello spirografo, in corrispondenza di uno spazio vuoto fra due denti sotto la corona. Posiziona la ruota da 36 denti in modo che i segni fatti sulla ruota e sulla corona siano uno di fronte all altro. Muovi la ruota da 36 denti entro la corona fino a quando i due segni non tornano a coincidere. Quante rivoluzioni ha compiuto la ruota da 36 denti?... 3 Ricordando che la corona dello spirografo ha 96 denti, dopo quanti denti la ruota torna al punto di partenza?... Dopo 3 96 = 288 denti Nello stesso movimento, quante rotazioni ha compiuto la ruota attorno al proprio centro?... 8 Ricordando che la ruota ha 36 denti, dopo quanti denti la ruota torna quindi al punto di partenza?... Dopo 8 36 = 288 denti Considerando i due numeri, 96 e 36, si può concludere che il mcm tra 96 e 36 coincide con il prodotto tra il numero di rivoluzioni della ruota mobile, cioè... 3, e il numero dei denti della corona, quindi a = 288; o analogamente coincide con il prodotto tra il numero di rotazioni della ruota mobile, cioè... 8, e il numero dei denti della ruota stessa, quindi nuovamente a = 288 Domanda 3. Verifica che il mcm tra 96 e 36 è proprio 288. Scrivi la regola per calcolare il mcm di due numeri naturali Il mcm è il prodotto di tutti i fattori primi dei numeri dati, presi una sola volta con il massimo esponente. Scomponi in fattori primi il 96: Scomponi in fattori primi il 36: Calcola l mcm tra 96 e 36: = 288 Domanda 4. Ora riduci ai minimi termini la frazione 96/36 che rappresenta il rapporto tra i numeri dei denti di corona (numeratore) e ruota dentata (denominatore). Ottieni... 8/3

2 Matebilandia 272 Che cosa puoi concludere?... Se si considera la frazione, ridotta ai minimi termini, ottenuta facendo il rapporto tra i numeri dei denti delle ruote, si può vedere che il numeratore indica il numero di rotazioni, mentre il denominatore il numero di rivoluzioni. Domanda 5. Utilizzando un altra ruota dentata e la corona, trova il mcm tra 96 e 30. Riduci il loro rapporto ai minimi termini e ottieni: Numero di rotazioni della ruota mobile: Numero di rivoluzioni della ruota mobile:... 5 Il mcm tra 30 e 96 risulta quindi = 16 30=480, mcm tra 96 e 30. Verifica con lo spirografo che il numero di rotazioni e rivoluzioni concordi con quello trovato algebricamente. Domanda 6. Utilizzando due ruote dentate, trova il mcm tra 63 e 45, agendo come sopra. Numero di rotazioni... 7 Numero di rivoluzioni... 5 Mcm = 7 45=315, mcm tra 63 e 45. Verifica sperimentalmente i risultati trovati. Domanda 7. Utilizza ora lo spirografo virtuale (software Spirograph) e scegli opportunamente i raggi delle due ruote per trovare il mcm tra 90 e 30, agendo come sopra. Numero di rotazioni... 3 Numero di rivoluzioni... 1 Mcm = 3 30=90, mcm tra 90 e 30. Verifica sperimentalmente sul computer i risultati trovati. Che figura ottieni?... deltoide/curva a tre petali. In questo caso il numero di denti della ruota fissa è multiplo del numero di denti della ruota mobile: la figura si chiude dopo una sola rivoluzione. Domanda 8. Utilizza ancora lo spirografo virtuale e scegli opportunamente i raggi delle due ruote per trovare il mcm tra 47 e 29, agendo come sopra. Numero di rotazioni Numero di rivoluzioni Mcm = 47 29=1363, mcm tra 47 e 29. Verifica sperimentalmente sul computer i risultati trovati. Che figura ottieni?... una stella a 47 punte. In questo caso, il numero di denti della ruota fissa e quello della ruota mobile sono primi tra loro: la figura si chiude solo dopo un numero di rivoluzioni pari ai denti della ruota piccola.

3 Seconda parte 273 Domanda 1. Considera la corona dello spirografo (96 denti) e la ruota con 36 denti. Con un pennarello fai un segno su uno dei denti della ruota da 36 denti e un segno sulla corona circolare dello spirografo, in corrispondenza di uno spazio vuoto fra due denti. Posiziona la ruota da 36 denti in modo che i segni fatti sulla ruota e sulla corona siano uno di fronte all altro. Il dente contrassegnato corrisponde al numero uno, poi via via i numeri crescono, andando in senso orario fino all ultimo dente, che corrisponde al numero 36. Muovi la ruota da 36 denti, ruotandola su se stessa in senso antiorario, fino a quando uno dei denti non torna a inserirsi nello spazio vuoto di partenza. Dopo che la ruota da 36 denti ha percorso un primo giro della corona dello spirografo, a quale numero corrisponde (da 1 a 36) il dente che si inserisce nello spazio vuoto di partenza? Quante rotazioni complete ha effettuato la ruota?... 2 Esegui ora la divisione intera 96:36 e ottieni: quoziente... 2 resto Lo spirografo può allora essere usato come macchina per fare alcune divisioni: il quoziente è il numero di rotazioni complete in una sola rivoluzione; il resto è il numero di denti restanti dopo l ultima rotazione completa, ovvero il numero del dente che chiude la prima rivoluzione. Prova con l aiuto dello spirografo, a eseguire le seguenti operazioni: 96 : 30 = : 30 =... (in questo caso devi usare due ruote dentate) 30 : 5 =... (puoi usare lo spirografo virtuale) Diamo la seguente definizione: Dato k Œ N, k > 1, si dice che i numeri naturali n e m sono congrui modulo k, e si scrive n m(mod k), se le divisioni di n e m per k hanno lo stesso resto. Per stabilire se due numeri naturali sono congrui modulo k, risulta utile il seguente teorema: Dati due numeri naturali m e n, si ha n m(mod k) se, e soltanto se,m-n è un multiplo intero di k, ossia se, e solo se, esiste h Œ Z tale che m-n = kh. Nota per il docente. Se la situazione lo consente, è possibile eseguire la dimostrazione del teorema. Inoltre, la relazione definita gode delle proprietà riflessiva, simmetrica e transitiva ed è dunque una relazione di equivalenza. Le classi di equivalenza rispetto a tale relazione sono chiamate classi resto (modulo k).

4 Matebilandia 274 Domanda 2. Indichiamo con [m] k, la classe di equivalenza di un numero m. Da quali numeri naturali è formata la classe di equivalenza [m] k?... Da tutti i numeri naturali che, nella divisione per k, danno lo stesso resto di m. Domanda 3. Il resto di una divisone per k è un numero naturale di k? maggiore uguale minore Quali numeri naturali apparterranno alla prima classe di equivalenza?... Tutti i numeri naturali che divisi per k danno resto 0, cioè i multipli di k. Tale classe sarà quindi chiamata [0] k, perché... il resto della divisione 0:k è uguale a 0. Quali numeri naturali apparterranno alla seconda classe di equivalenza?...tutti i numeri naturali che divisi per k danno resto 1. Tale classe sarà quindi chiamata [1] k. Quante sono le classi resto (modulo k)?... Le classi resto sono k. Domanda 4. Ora considera le ruote dello spirografo, quella da 63 e quella da 30. Con un pennarello fai un segno su uno dei denti della ruota da 30 denti e un segno su uno spazio vuoto sulla ruota da 63. Sulla ruota mobile, il dente contrassegnato corrisponde al numero uno, poi via via andando in senso orario fino all ultimo dente, corrispondente al numero 30. La ruota con il numero maggiore dei denti è mantenuta fissa (con tre chiodini). Posiziona le due ruote in modo che i segni fatti siano uno di fronte all altro. Muovi la ruota da 30 denti, ruotandola su se stessa in senso antiorario, fino a quando uno dei denti non torna a inserirsi nello spazio vuoto di partenza. 63, a quale numero corrisponde il dente che si inserisce nello spazio vuoto di partenza?... 3 Quante rotazioni intere ha compiuto la ruota da 30 denti?... 2 Quindi, ricordando che n m(mod k), dove m vale e k vale qual è il numero n a cui equivale 63 (mod 30)?... 3 Quali numeri formano la classe [3] 30?... 3, 33, 63, 93 Se avessimo fatto muovere la ruota da 63 su quella da 30, tenuta fissa, quale numero n avremmo trovato equivalente a 30 (mod 63)?... 30

5 275 Domanda 5. Ora considera le ruote dello spirografo, quella da 50 e quella da 30 e ripeti le procedure descritte alla domanda 4. Il dente contrassegnato corrisponde al numero uno, l ultimo dente al numero , a quale numero corrisponde il dente che si inserisce nello spazio vuoto di partenza? Quante rotazioni intere ha compiuto la ruota da 30 denti?... 1 Qual è il numero n a cui equivale 50 (mod 30)? Come si indica la classe resto?... [20] 30 Sostituisci quella da 50 denti con quella da , a quale numero corrisponde il dente che si inserisce nello spazio vuoto di partenza?... 6 Quante rotazioni intere ha compito la ruota da 30 denti?... 1 Qual è il numero n a cui equivale 36 (mod 30)?... 6 Domanda 6. In base alle risposte date alla domanda 5, qual è il risultato di 50 (mod 30) + 36 (mod 30) = =26=86 (mod 30) Avendo a disposizione tutte le ruote dello spirografo (30, 36, 45, 50, 63 denti e la corona da 96), in che modo puoi verificare la risposta data alla domanda 6?... Facendo muovere la ruota da 30 denti entro la corona da 96: con un pennarello marca lo spazio vuoto corrispondente al numero 86 (50+36); fai muovere la ruota da 30 fino a quando un suo dente si incastra nell 86esimo spazio vuoto della corona. Conta a che numero (da 1 a 30) corrisponde il dente: 26. Domanda 7. Usando lo spirografo risolvi e verifica, la seguente somma: 50 (mod 36) + 45 (mod 36) = =23=95 (mod 36)

Scheda (2) per lo svolgimento delle attività

Scheda (2) per lo svolgimento delle attività Matebilandia 256 dimostrare che i due tipi di moto, deferente/epiciclo e rotolamento di due circonferenze, sono assimilabili; conoscere alcune delle curve famose; prevedere il tipo di curva che scaturirà

Dettagli

Scheda (1) per lo svolgimento dell attività

Scheda (1) per lo svolgimento dell attività Matebilandia 246 Scheda (1) per lo svolgimento dell attività Prima parte Domanda 1. Scegli una ruota dentata dello spirografo. Leggi il numero dei denti stampato sulla plastica... 36 Quanti denti ci sono

Dettagli

SCHEDA DI RECUPERO SULLE FRAZIONI

SCHEDA DI RECUPERO SULLE FRAZIONI SCHEDA DI RECUPERO SULLE FRAZIONI FRAZIONI EQUIVALENTI a DEFINIZIONE data una frazione si dice che x è equivalente ad a se e solo se a y x (uguaglianza dei y prodotti in croce ). è equivalente a, infatti

Dettagli

OPERAZIONI CON LE FRAZIONI

OPERAZIONI CON LE FRAZIONI OPERAZIONI CON LE FRAZIONI ADDIZIONE prima di eseguire l operazione si riducono le frazioni (se è possibile) ai minimi termini. Si riconoscono tre situazioni. Le frazioni hanno lo stesso denominatore si

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

NUMERATORE dice quante sono le parti che sono state prese LINEA DI FRAZIONE

NUMERATORE dice quante sono le parti che sono state prese LINEA DI FRAZIONE FRAZIONI FRAZIONI La parola frazione nel linguaggio comune indica una parte di qualcosa, ad esempio di un Comune. In MATEMATICA una FRAZIONE è un NUMERO che indica una o più parti in cui è stata SUDDIVISA

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Le Frazioni. Esempio: il giorno è la settima parte della settimana, quindi

Le Frazioni. Esempio: il giorno è la settima parte della settimana, quindi Le Frazioni si dice UNITA FRAZIONARIA il simbolo che rappresenta una delle parti uguali in cui è stata divisa una grandezza che si considera come unità o intero. Esempio: il giorno è la settima parte della

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

Divisibilità per 5 Un numero è divisibile per 5 se termina con 0 o con 5. Esempi: 380, 125, 465 sono divisibili per non è divisibile per 5

Divisibilità per 5 Un numero è divisibile per 5 se termina con 0 o con 5. Esempi: 380, 125, 465 sono divisibili per non è divisibile per 5 Multipli e divisori Def: Si dice multiplo di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. 14 è un multiplo di 7 perché 7 2 = 14. Si dice che 14

Dettagli

Insiemi numerici. Alcune definizioni. La retta dei numeri

Insiemi numerici. Alcune definizioni. La retta dei numeri Insiemi numerici Q Z N 0 1 1 1 4 4 N = 0,1,,,4, = insieme dei numeri naturali Z = insieme dei numeri interi (formato dall unione dei numeri naturali e dei numeri interi negativi) Q = insieme dei numeri

Dettagli

Le Frazioni. Esempio: il giorno è la settima parte della settimana 1 della settimana l ora è 1 del giorno il minuto è 1 dell ora il secondo è 1 60

Le Frazioni. Esempio: il giorno è la settima parte della settimana 1 della settimana l ora è 1 del giorno il minuto è 1 dell ora il secondo è 1 60 Le Frazioni si dice UNITA FRAZIONARIA il simbolo che rappresenta una delle parti uguali in cui è stata divisa una grandezza che si considera come unità o intero. 1\4 1\4 1\4 1\4 1 4 Esempio: il giorno

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 05-06 Classe: B clac, C, E, F, G, L, M Docenti: Battuello, Bosco, Ganassin, Menaldo, Scorza Disciplina MATEMATICA Ripasso del

Dettagli

Congruenze. Classi resto

Congruenze. Classi resto Congruenze. Classi resto Congruenze modulo un intero DEFINIZIONE Siano a e b due numeri interi relativi; fissato un intero m si dice che a è congruo a b modulo m se la differenza a b è multipla di m, e

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Numeri e operazioni su di essi

Numeri e operazioni su di essi Numeri e operazioni su di essi Paolo Montanari Appunti di Matematica Numeri 1 Classificazione dei numeri Il primo obiettivo che ci si pone è quello di classificare i numeri, cioè conoscere i differenti

Dettagli

MODULO FORMATIVO: MATEMATICA. Titolo dispensa: Minimo Comune multiplo, calcolo potenze e numeri decimali

MODULO FORMATIVO: MATEMATICA. Titolo dispensa: Minimo Comune multiplo, calcolo potenze e numeri decimali MODULO FORMATIVO: MATEMATICA Titolo dispensa: Minimo Comune multiplo, calcolo potenze e numeri decimali DOCENTE: MICELI GIOVANNI Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

POTENZE E NOTAZIONE ESPONENZIALE Conoscenze

POTENZE E NOTAZIONE ESPONENZIALE Conoscenze POTENZE E NOTAZIONE ESPONENZIALE Conoscenze 1. Completa la seguente affermazione: L elevamento a potenza è l operazione che associa a...... che si ottiene...... 2. Completa la seguente tabella: Potenza

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

Come risolvere i quesiti dell INVALSI - terzo

Come risolvere i quesiti dell INVALSI - terzo Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

le frazioni NUMERATORE Termini della frazione le frazioni a cura di Barbara Colla 1 Linea di frazione (rappresenta la divisione) DENOMINATORE

le frazioni NUMERATORE Termini della frazione le frazioni a cura di Barbara Colla 1 Linea di frazione (rappresenta la divisione) DENOMINATORE le frazioni Termini della frazione NUMERATORE indica il numero delle parti che vengono considerate Linea di frazione (rappresenta la divisione) DENOMINATORE indica il numero delle parti uguali in cui è

Dettagli

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5

Dettagli

matematica è il numero che indica in quante parti è stato diviso l intero è il numero che indica quante sono le parti da considerare

matematica è il numero che indica in quante parti è stato diviso l intero è il numero che indica quante sono le parti da considerare LE FRAZIONI Segna con X la defnizione giusta di frazione. X una frazione indica che ci sono diversi interi da dividere una frazione indica che un intero è stato diviso in parti uguali una frazione indica

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

OPERAZIONI CON LE FRAZIONI

OPERAZIONI CON LE FRAZIONI OPERAZIONI CON LE FRAZIONI a) FRAZIONI CON LO STESSO DENOMINATORE 9 + 9 = 7 9 Regola: La SOMMA di due o più frazioni che hanno lo stesso denominatore è la frazione che ha: per numeratore la SOMMA dei numeratori

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

1. INSIEME DEI NUMERI NATURALI

1. INSIEME DEI NUMERI NATURALI 1. INSIEME DEI NUMERI NATURALI 1.1 CONCETTO DI NUMERO NATURALE: UGUAGLIANZA E DISUGUAGLIANZA Consideriamo l'insieme E, detto insieme Universo, costituito da tutti i possibili insiemi che si possono costruire

Dettagli

L INSIEME DEI NUMERI RELATIVI

L INSIEME DEI NUMERI RELATIVI L INSIEME DEI NUMERI RELATIVI Scegli il completamento corretto.. L insieme dei numeri reali R si indica con: a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è costituito dallo zero e da tutti i numeri

Dettagli

CAPITOLO 1 I NUMERI RELATIVI E GLI INSIEMI NUMERICI

CAPITOLO 1 I NUMERI RELATIVI E GLI INSIEMI NUMERICI CAPITOLO I NUMERI RELATIVI E GLI INSIEMI NUMERICI VIDEO SETTIMANA DA CASSIERE PRIMA DI COMINCIARE GUARDA! IL VIDEO Robert lavora alla cassa di un negozio e a fine giornata deve vedere dagli scontrini quanto

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

TAVOLA DEGLI INTEGRALI INDEFINITI

TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni elementari c c ln c arc tan c arc tan c a a a e e c TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni composte f( ) f ( ) f '( ) C ' f ln f ( ) c f( ) f '( ) arctan( f

Dettagli

Le quattro operazioni

Le quattro operazioni Le quattro operazioni 1. Addizione a + b = c addendi somma Proprietà commutativa Cambiando l ordine degli addendi, la somma non cambia. a + b = b + a Proprietà associativa La somma di tre numeri non cambia,

Dettagli

POTENZE E NOTAZIONE ESPONENZIALE Conoscenze

POTENZE E NOTAZIONE ESPONENZIALE Conoscenze POTENZE E NOTAZIONE ESPONENZIALE Conoscenze 1. Completa la seguente affermazione : L elevamento a potenza è l operazione che associa a due numeri a ed n, detti rispettivamente base ed esponente, un terzo

Dettagli

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n.

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n. CONGRUENZE 1. Cosa afferma il principio di induzione? Sia P(n) una proposizione definita per ogni n n 0 (n 0 =naturale) e siano dimostrate le seguenti proposizioni: a) P(n 0 ) è vera b) Se P(n) è vera

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

NUMERI RELATIVI. o meno (-),e viene indicato con il simbolo Z. {...-4;-3;-2;-1;0;+1;+2;+3;+4...}

NUMERI RELATIVI. o meno (-),e viene indicato con il simbolo Z. {...-4;-3;-2;-1;0;+1;+2;+3;+4...} NUMERI RELATIVI Si dice NUMERO RELATIVO un numero preceduto da un segno,che può essere più(+) o meno (-),e viene indicato con il simbolo Z. {...-4;-3;-2;-1;0;+1;+2;+3;+4...} Somma algebrica Se i segni

Dettagli

DISEQUAZIONI DI PRIMO GRADO. Prof.ssa Maddalena Dominijanni

DISEQUAZIONI DI PRIMO GRADO. Prof.ssa Maddalena Dominijanni DISEQUAZIONI DI PRIMO GRADO Disuguaglianze Due espressioni numeriche, di diverso valore, separate da un segno di disuguaglianza, formano una disuguaglianza numerica Esempi di disuguaglianze 6 6 Simboli

Dettagli

AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base

AREE. Area = lato * lato. Area = diagonale * diagonale diagonale = Area : 2 2. altezza = area : base AREE QUADRATO Area = lato * lato lato = Area Area = diagonale * diagonale diagonale = Area : 2 2 RETTANGOLO Area = base * altezza base = area : altezza altezza = area : base TRIANGOLO Area = base * altezza

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

Lavoro di Gruppo - I

Lavoro di Gruppo - I Lavoro di Gruppo - I Fulvio Bisi 1 Anna Torre 1 1 Dipartimento di Matematica - Università di Pavia Stage Orientamento 14 giugno 2016 Bisi-Torre (Dip. Mate UniPV) Lavoro di Gruppo I Stage 14 giu 2016 1

Dettagli

c) ogni numero ha infiniti multipli

c) ogni numero ha infiniti multipli Multipli e divisori Def: Si dice MULTIPLO di un numero naturale ogni numero che si ottiene moltiplicando tale numero per qualsiasi numero naturale. Es: è un multiplo di perché. Osservazioni: Es: b) ogni

Dettagli

INSIEME. Gruppo di elementi con caratteristica comune individuabile. Es: Giorni della settimana Numeri naturali Numeri pari

INSIEME. Gruppo di elementi con caratteristica comune individuabile. Es: Giorni della settimana Numeri naturali Numeri pari matematica INSIEME Gruppo di elementi con caratteristica comune individuabile. Es: Giorni della settimana Numeri naturali Numeri pari Un insieme può essere FINITO se il numero di elementi è finito INFINITO

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

Corde. Problema. Materiale didattico dei Grigioni Matematica 1, Capitolo 2c, Eserciziario I, Esercizio 9.4

Corde. Problema. Materiale didattico dei Grigioni Matematica 1, Capitolo 2c, Eserciziario I, Esercizio 9.4 Corde 1. Scegli una disposizione iniziale di due corde. 2. Inserisci la distanza s dove le forbici devono tagliare. a) Prova a inserire una distanza in modo tale che per una corda non risulti un resto,

Dettagli

Teoria dei numeri 2. Alberto Saracco. Università di Parma Udine, 18 ottobre 2015

Teoria dei numeri 2. Alberto Saracco. Università di Parma Udine, 18 ottobre 2015 Teoria dei numeri 2 Alberto Saracco Università di Parma alberto.saracco@unipr.it Udine, 18 ottobre 2015 Alberto Saracco Teoria dei numeri Udine, 18 ottobre 2015 1 / 16 Esercizio Es. 12 gara distrettuale

Dettagli

L INSIEME Q + Conoscenze. a. Una frazione rappresenta il... della... tra... e... Esempio: 5 : 7 =... c. Si chiama numero... assoluto ogni classe di...

L INSIEME Q + Conoscenze. a. Una frazione rappresenta il... della... tra... e... Esempio: 5 : 7 =... c. Si chiama numero... assoluto ogni classe di... L INSIEME Q + Conoscenze. Completa le seguenti affermazioni a. Una frazione rappresenta il. della tra. e.. Esempio =.. b. L insieme N è.. rispetto all operazione di divisione, perché in esso la.. non è

Dettagli

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1.

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1. Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi NOTA: PER FARE PIÚ ALLA SVELTA NON HO SCRITTO TUTTI I DETTAGLI DELLE SOLUZIONI. HO CERCATO DI SPIEGARE LE IDEE PRINCIPALI.

Dettagli

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1)

Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 2015 (versione 1) Istituzioni di Matematiche (V): Seconda Prova Parziale, 13 Gennaio 015 (versione 1) Nome e Cognome: Numero di matricola: Esercizio 1 Esercizio Esercizio 3 Esercizio 4 Esercizio 5 Totale 4 6 6 8 6 Tutte

Dettagli

292 Capitolo 11. Polinomi Scrivi un polinomio di terzo grado nelle variabili a e b che sia omogeneo.

292 Capitolo 11. Polinomi Scrivi un polinomio di terzo grado nelle variabili a e b che sia omogeneo. 9 Capitolo. Polinomi.8 Esercizi.8. Esercizi dei singoli paragrafi. - Definizioni fondamentali.. Riduci in forma normale il seguente polinomio: 5a 4ab + a + ab a a. Svolgimento: Evidenziamo i termini simili

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze)

L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze) Scegli il completamento corretto. L INSIEME DEI NUMERI RELATIVI (prova di verifica delle conoscenze). L insieme dei numeri reali R si indica con : a. R = Q I b. R = Q I c. R = Q Z I. L insieme Z: a. è

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

EQUAZIONI DI II GRADO

EQUAZIONI DI II GRADO RICHIAMI SULLE EQUAZIONI DI PRIMO E SECONDO GRADO PROF.SSA ROSSELLA PISCOPO Indice 1 EQUAZIONI DI I GRADO --------------------------------------------------------------------------------------------------

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

DIVISORI E MULTIPLI DI UN NUMERO

DIVISORI E MULTIPLI DI UN NUMERO DIVISORI E MULTIPLI DI UN NUMERO CONSIDERIAMO LA DIVISIONE 15 : 5 SICCOME IL RESTO E ZERO DICIAMO: 15 E DIVISIBILE PER (cioè lo possiamo dividere per ) E DIVISORE DI 15 (cioe divide 15) MA PROPRIO PER

Dettagli

Le operazioni fondamentali in R L ADDIZIONE

Le operazioni fondamentali in R L ADDIZIONE Le operazioni fondamentali in R REGOLA DEI SEGNI + per + dà + per dà + + per dà per + dà (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3) = 5 + 3 = 2 L ADDIZIONE

Dettagli

Esercizi di matematica per le vacanze estive Future classi prime Scientifico e Scientifico Sportivo

Esercizi di matematica per le vacanze estive Future classi prime Scientifico e Scientifico Sportivo Riscaldamento con i numeri Esercizi di matematica per le vacanze estive Future classi prime Scientifico e Scientifico Sportivo. Di quanto aumenta un numero di due cifre avente la cifra delle decine uguale

Dettagli

Esercizi su Scratch. Esegui la Somma e il Prodotto dei numeri inseriti in Input fino a che non inserisco la vocale e.

Esercizi su Scratch. Esegui la Somma e il Prodotto dei numeri inseriti in Input fino a che non inserisco la vocale e. Esercizi su Scratch Esercizio 1: Indovina il numero Il computer pensa un numero compreso tra uno e 100 e tu lo devi indovinare. Prevedi un avviso che indichi se il Tuo numero è più grande o più piccolo.

Dettagli

Indice degli argomenti: I numeri naturali

Indice degli argomenti: I numeri naturali Indice degli argomenti: I numeri naturali Le potenze La divisibilità I numeri razionali Rappresentazione razionale dei decimali I numeri reali relativi Approfondimento: il piano cartesiano pag. pag. pag.

Dettagli

Introduzione alla Matematica per le Scienze Sociali - parte I

Introduzione alla Matematica per le Scienze Sociali - parte I Introduzione alla Matematica per le Scienze Sociali - parte I Lucrezia Fanti Istituto Nazionale per l Analisi delle Politiche Pubbliche (INAPP) lucrezia.fanti@uniroma1.it Lucrezia Fanti Intro Matematica

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

Frazioni algebriche. Quando ho una frazione con un polinomio al numeratore ed un polinomio al denominatore devo fare la stessa cosa:

Frazioni algebriche. Quando ho una frazione con un polinomio al numeratore ed un polinomio al denominatore devo fare la stessa cosa: Frazioni algebriche Le frazioni algebriche sono frazioni con polinomi al numeratore e al denominatore, quindi sono le frazioni più generiche possibili: studiare e capire le regole delle loro operazioni

Dettagli

Polinomi Definizioni fondamentali

Polinomi Definizioni fondamentali Polinomi. Definizioni fondamentali Definizione.. Un polinomio è un espressione algebrica letterale che consiste in una somma algebrica di monomi. Esempio.. Sono polinomi: 6a + b, 5a b + 3b, 6x 5y x, 7ab

Dettagli

Esercitazione del Analisi I

Esercitazione del Analisi I Esercitazione del 0-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 0-0 Integrale di funzioni razionali Supponiamo di voler calcolare un integrale del tipo P () Q() d

Dettagli

LE FRAZIONI Conoscenze. 1 si ottiene la frazione... b. Se un intero contiene otto unità frazionarie, è stato diviso in... parti.

LE FRAZIONI Conoscenze. 1 si ottiene la frazione... b. Se un intero contiene otto unità frazionarie, è stato diviso in... parti. LE FRAZIONI Conoscenze 1. L unità frazionaria rappresenta: la frazione più piccola di uno una sola delle n parti uguali in cui è stato diviso l intero una sola delle parti in cui è stato diviso l intero

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA CALCOLO LETTERALE Dr. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può

Dettagli

Laboratorio teorico-pratico per la preparazione alle gare di matematica

Laboratorio teorico-pratico per la preparazione alle gare di matematica Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: ercolesuppa@gmail.com Teramo, 10 dicembre 2014 USR Abruzzo - PLS 2014-2015,

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

ESERCIZI DI MATEMATICA

ESERCIZI DI MATEMATICA DI MATEMATICA PER GLI STUDENTI IN INGRESSO ALLA CLASSE PRIMA Rev. Luglio 2019 Pag. 1 di 18 NUMERI NATURALI L insieme dei numeri naturali si indica con N. TABELLA DEI NUMERI PRIMI DIVISIBILITÀ E MULTIPLI

Dettagli

March 31, 2016 FRAZIONI. set

March 31, 2016 FRAZIONI. set FRAZIONI set 17 11.07 1 UTILIZZIAMO LE FRAZIONI NELLA VITA DI TUTTI I GIORNI... ESEMPI: set 17 11.09 2 MANCA UN QUARTO D'ORA ALLA PARTENZA ARRIVEREMO FRA TRE QUARTI D'ORA SEI AD UN TERZO DELLA TUA PROVA

Dettagli

Un monomio è un espressione algebrica che si presenta come prodotto tra un numero e un gruppo di lettere.

Un monomio è un espressione algebrica che si presenta come prodotto tra un numero e un gruppo di lettere. I MONOMI Un monomio è un espressione algebrica che si presenta come prodotto tra un numero e un gruppo di lettere. +2x 3 y 7 z 4 4 5 a4 bc 3 coefficiente parte letterale Attenzione gli esponenti delle

Dettagli

ESERCITAZIONE CON EXCEL SULLE MATRICI

ESERCITAZIONE CON EXCEL SULLE MATRICI ESERCITAZIONE CON EXCEL SULLE MATRICI PROBLEMA 1 commutativa. 2 1 0 e 1 2 4 B = 3 1 2, verificare che la loro somma è Per poter risolvere il problema proposto, è necessario predisporre le matrici sul foglio

Dettagli

NUMERI. Nome e cognome:

NUMERI. Nome e cognome: NUMERI Nome e cognome: Data: 1. Spiega cosa è per te: a] un numero naturale Dopo il confronto nel gruppo Finale b] un numero intero c] un numero razionale d] un numero irrazionale e] un numero reale Per

Dettagli

Calcolare un limite significa determinare quale sia il suo valore quando al posto dell incognita si sostituisce il valore cui essa tende.

Calcolare un limite significa determinare quale sia il suo valore quando al posto dell incognita si sostituisce il valore cui essa tende. Infiniti, infinitesimi e forme indeterminate Calcolare un ite significa determinare quale sia il suo valore quando al posto dell incognita si sostituisce il valore cui essa tende. Cioè calcolare 5 4 significa

Dettagli

è un monomio 2b 4 a non sono monomi

è un monomio 2b 4 a non sono monomi Definizione e caratteristiche Un monomio è un espressione algebrica letterale nella quale: gli esponenti delle lettere sono solo numeri naturali fra le lettere ci sono solo operazioni di moltiplicazione

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

...UN PÒ DI DEFINIZIONI DUE EQUAZIONI SI DICONO EQUIVALENTI QUANDO HANNO LA STESSA SOLUZIONE. IN UN EQUAZIONE: 2x

...UN PÒ DI DEFINIZIONI DUE EQUAZIONI SI DICONO EQUIVALENTI QUANDO HANNO LA STESSA SOLUZIONE. IN UN EQUAZIONE: 2x ...UN PÒ DI DEFINIZIONI IL VALORE ATTRIBUITO ALL INCOGNITA CHE RENDE VERA L UGUAGLIANZA SI CHIAMA SOLUZIONE DUE EQUAZIONI SI DICONO EQUIVALENTI QUANDO HANNO LA STESSA SOLUZIONE. IN UN EQUAZIONE: 2x 3 5

Dettagli

DIVISIONE TRA POLINOMI IN UNA VARIABILE

DIVISIONE TRA POLINOMI IN UNA VARIABILE DIVISIONE TRA POLINOMI E SCOMPOSIZIONE Prof. Erasmo Modica healthinsurance@tin.it DIVISIONE TRA POLINOMI IN UNA VARIABILE L algoritmo della divisione tra polinomi è analogo a quello della divisione ordinaria

Dettagli

Le simmetrie dei poliedri regolari

Le simmetrie dei poliedri regolari Le simmetrie dei poliedri regolari Le isometrie del piano e dello spazio sono state classificate da due illustri matematici. Per quanto riguarda il piano, il teorema di Chasles, del 8, afferma che nel

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Equazioni di primo grado. Equazione. Es. 2x = 3x - x + 3 metto x = = se risolvo ottengo 5 = 5

Equazioni di primo grado. Equazione. Es. 2x = 3x - x + 3 metto x = = se risolvo ottengo 5 = 5 01 Equazione Equazione: prese due quantità che contengono una lettera x (non conosciuta), queste quantità vengono scritte una a destra ed una a sinistra mettendo un segno = (uguale) tra loro. x + 1 = 3x

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Scheda 1. Esercizio 1: il maestro ha chiesto di scrivere centoquattro in cifre e Pierino ha scritto: 1004 Quale errore ha commesso?

Scheda 1. Esercizio 1: il maestro ha chiesto di scrivere centoquattro in cifre e Pierino ha scritto: 1004 Quale errore ha commesso? Scheda 1 Esercizio 1: il maestro ha chiesto di scrivere centoquattro in cifre e Pierino ha scritto: 1004 Quale errore ha commesso? Esercizio 2: scrivi tutti i numeri interi che puoi formare usando le tre

Dettagli

Riassunto Nell'esercitazione di oggi e' stata introdotta la codifica binaria naturale, intera e razionale in virgola fissa. Il materiale teorico

Riassunto Nell'esercitazione di oggi e' stata introdotta la codifica binaria naturale, intera e razionale in virgola fissa. Il materiale teorico Riassunto Nell'esercitazione di oggi e' stata introdotta la codifica binaria naturale, intera e razionale in virgola fissa. Il materiale teorico utilizzato e' disponibile nella Dispensa sulla codifica

Dettagli

ESERCITAZIONE 7 : FUNZIONI

ESERCITAZIONE 7 : FUNZIONI ESERCITAZIONE 7 : FUNZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 20 Novembre 2012 Corso di recupero Docente:

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli