Strutture snelle. Travi, piastre, membrane << 1 << 1, t/l i. t L. t L

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Strutture snelle. Travi, piastre, membrane << 1 << 1, t/l i. t L. t L"

Transcript

1 Strttre snee Trvi, pistre, memrne t/l i << t L <<, t L 00, 000,K

2 Eementi di trve Eero-Bernoi v( ϕ( ϕ( 4 v'( v''( ( ( Spostmento Crvtr Rotzione Leone Corrdi de Acq, vo, cp, p. 95

3 v Eemento di trve Eero Bernoi Ndof ( N ( i i Imponendo e condizioni contorno ( v(0, ( ϕ(0 ( v( 4, 4( ϕ( ( 4 Si ricv, 4, 4 4

4 Eemento di trve di Eero Bernoi ] ( ( ( [( ( N ] 6 ( 6 ( 6 (4 [(6 N ( B Sono e deformte di n trve incstrt in ci si risci grdo di vincoo per vot Anche chimto eemento finito Hermitino 4

5 Eemento di trve di Timoshenko SP Timoshenko In qesto cso, rotzione non coincide con derivt deo spostmento v Si interpono indipendentemente si o spostmento v che rotzione ϕ D ci si ottengono crvtr fessione e o scorrimento medio γ ϕ (, ( v γ χ (, ( 5

6 Imponendo e condizioni contorno Si ottiene Eemento di trve di Timoshenko ( ( (, v( ( (0 (, v(0 ( 4 ϕ ϕ (,, 4 D ci 4 ( ( ( N v ϕ γ χ 4 B( ( ( Ed inotre dove 0 0 B( N( 6

7 Eemento di trve di Timoshenko: ocking 7 Moti rigidi e deformzioni costnti devono essere rppresentti indipendentemente d tri contriti. L eemento di trve inere di Timoshenko non rispett qest condizione. Inftti d pprossimzione poinomie v(, ϕ( Si ottiene per e deformzioni χ(, γ( ( L crvtr fessione costnte e soo pprentemente presente, in qnto rist proporzione o stesso coefficiente d ci dipende vrizione inere deo scorrimento medio. In trvi snee, o scorrimento e moto piccoo e cio impedisce eemento di deformrsi nche fessionmente. Si pr di ocking

8 Locking Cfr Leone Corrdi de Acq vo II cp, p 7 I ocking è n eccesso di rigidezz dovto vincoi cinemtici che i modeo cinemtico ssocito pprossimzione gi eementi finiti comport γ χ 4 B( ( ( Dove mtrice di comptiiità è 0 0 B( 8

9 Locking γ 0 0 Moto rigido 0 4 Crvtr n! Un eemento inere di trve di Timoshenko non è qindi in grdo di deformrsi fessionmente senz deformzioni tginti: ocking 9

10 Energi di deformzione tote Si osservi che energi potenzie tote è (Bthe, pg 40 Energi fessione Energi tginte Lvoro crichi esterni Ovvero meno dei crichi esterni e dividendo per EI D ci Dove α tende infinito qndo h tende 0 Qindi contino, prim de pprossimzione gi eementi finiti, energi di scorrimento tende zero qndo deformiit tgio ment L pprossimzione gi eementi finiti deve riprodrre qest sitzione 0

11 Esempio ocking

12 Esempio ocking D ci si ottiene i vore de frecci in estremit L frecci predett d teori estic de trve e δ 4PL / Eh Pertnto sozione ottent con eemento nodi e inccrt

13 Esempio ocking F f L,L:, ef ineri; Q: ef qdrtico

14 Locking Modei di trve di ordine pi eevto de inere non eiminno competmente eccesso di rigidezz: L sitzione di scorrimento no ci si vvicin i cso di n trve sne non viene riprodott 4

15 Tecniche per ridrre i ocking Tecniche vote migiorre i comportmento de eemento nodi: - Integrzione seettiv ridott - Teori discret di Kirchhoff (non o considerimo - Assmed enhnced strin (non o considerimo 5

16 Integrzione seettiv ridott L energi di scorrimento viene integrt non esttmente m ricorrendo d n nmero ridotto di pnti di integrzione nmeric Occorre verificre che eemento si efficce e non presenti modi deformtivi non consistenti 6

17 INTEGRAZIONE RIDOTTA E SELETTIVA 7

18 Teori discret di Kirchhoff Si ssme che o scorrimento si cosi piccoo che energi ssocit poss essere trscrt ne EPT. Tttvi, occorrono dee eqzioni ggintive che egno gi spostmenti nodi e e rotzioni. Ti eqzioni si ottengono imponendo che o scorrimento si nni in determinti pnti de dominio de eemento. Si trtt di n tecnic pi efficiente di qe st s integrzione seettiv ridott. 8

19 Memrne ocking Eemento trve crvo Deformzione ssie ε,s χ R,s w R w,ss Deformzione fessione (crvtr 9

20 Memrne ocking Eemento trve crvo Deformzione ssie Deformzione fessione (crvtr Approssimzione di e w con poinomi, d esempio: w 0 0 ξ ξ ξ ξ 0 dove ξ s L

21 Memrne ocking Eemento trve crvo Deformzione ssie Deformzione fessione (crvtr Sostitendo, si h: χ ( RL 0 ε ( L R 6 ξ L L ( R R ξ 5R R ( ξ 5R (ξ 5ξ

22 Memrne ocking Considerimo n rco sottie vente L/t >> ed R/H moto piccoo, esso si comport come n trve soggett fessione inestensiie, e pertnto deformzione memrne ε tende 0 L condizione di inestensiiità 0 L R R 0 0 ε w R, s 0 impic Corso di Meccnic dee Strttre- ing. Een Benventi

23 Memrne ocking 0, 0, 0 impic w 0, w 0, w 0, s,ss, sss Vincoi cinemtici spri che non possono essere sempre soddisftti: Qesto provoc memrne ocking Si dimostr che i termine di energi memrne ne energi estic Π e t t EIχ χ EAε ε ds dopo discretizzzione, distr i termine di energi fessione, csndo n zione di irrigidimento

24 Incompressiie ocking Incompressiie ocking: per mterii incomprimiii, i coefficiente di Poisson v tende 0.5, e.g. soi stri, pstiche, estomeri, gomme e mterii che fiscono, come fidi incomprimiii o come in psticità Qesto impic che i modo vometrico tende infinito e ciò si ripercote s deformzione vometric Si riev n irrigidimento deo spostmento mentre i cmpo di tensione present oscizioni sprie 4

Esercitazione 03: Calcolo della linea elastica e carico critico di strutture a trave

Esercitazione 03: Calcolo della linea elastica e carico critico di strutture a trave Meccnic e Tecnic dee Costruzioni Meccniche Esercitzioni de corso. eriodo II rof. Leonrdo ERTINI Ing. Ciro SNTUS Esercitzione 03: Ccoo de ine estic e crico critico di strutture trve Indice 1 Trve incstrt

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri.. 2008/2009 Integrzione () 29 mggio 2009 1 / 18 Integrzione Problem: pprossimre integrli definiti del tipo: f (x)dx,

Dettagli

RISOLUZIONE DI UN TELAIO CON IL METODO MATRICIALE

RISOLUZIONE DI UN TELAIO CON IL METODO MATRICIALE FACOLTÀ DI STUDI IGEGERIA E ARCHITETTURA A. A. 7-8 - Corso di Lure Mgistre in Architettur TECICA DELLE COSTRUZIOI (9 CFU) DOCETE: IG. GIUSEPPE MACALUSO RISOLUZIOE DI U TELAIO CO IL METODO MATRICIALE Dti

Dettagli

Soluzioni per il problema delle piastre

Soluzioni per il problema delle piastre Corso di Progetto di Strutture POTENZA,.. 0 03 Souzioni per i proem dee pistre Dott. Mrco VONA DiSGG, Università di Bsiict mrco.von@unis.it http://www.unis.it/utenti/von/ LA PIASTRA INDEFINITA APPOGGIATA

Dettagli

Calcolare M, T, N nella sezione S Calcolare lo sforzo nel pendolo PQ III. 12 oo T S. α 3 oo. 1/cos α

Calcolare M, T, N nella sezione S Calcolare lo sforzo nel pendolo PQ III. 12 oo T S. α 3 oo. 1/cos α F P Q S Ccore M, T, N ne sezione S Ccore o sforzo ne pendoo PQ F 4 IV 24 45 2 V 5 II 23 T S S 12 oo III 1 I α 3 oo 1/cos α 1/cos α p t + h F s=cm.2 Sezionetrve = m /3 t=cm.1 h=cm 40 b=cm.25 _ X 1 p + t

Dettagli

Elementi Finiti SPRING, TRUSS, BEAM

Elementi Finiti SPRING, TRUSS, BEAM Progettione Assistit dl Clcoltore Elementi initi SPRING, TRUSS, BEA Elementi initi SPRING Sono elementi finiti monodimensionli costititi d de nodi di estremità. I risltti che si possono ottenere d elementi

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Elemento asta. Identificazione della adatta formulazione dell elemento

Elemento asta. Identificazione della adatta formulazione dell elemento F F Elemento asta I) Identificaione della adatta formlaione dell elemento l elemento ha nodi Un solo spostamento interno è definito II) Scelta di insieme di fnioni con le qali si descriverà il campo interno

Dettagli

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W:

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W: Vengono riportte nel seguito lcune tbelle per il clcolo dei fttori di intensità delle tensioni in modo I utili per eseguire gli esercizi di quest lezione, trtte, con il permesso dell editore, dl testo:

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

ELEMENTI COSTRUTTIVI DELLE MACCHINE

ELEMENTI COSTRUTTIVI DELLE MACCHINE EEMENTI COSTRUTTIVI DEE MCCHINE ESERCITZIONE 1 ppliczioni Numeriche e Teoriche per l Costruzione di Mcchine SOMMRIO Equzione fondmentle delle teori dell trve Clcolo del momento sttico e d inerzi per diverse

Dettagli

CORSO DI COMPORTAMENTO MECCANICO DEI MATERIALI MODULO DI MECCANICA DEI MATERIALI Prova scritta 16 gennaio 2017

CORSO DI COMPORTAMENTO MECCANICO DEI MATERIALI MODULO DI MECCANICA DEI MATERIALI Prova scritta 16 gennaio 2017 Prov scritt 16 gennio 2017 Nome N mtricol 1) L struttur di figur è soggett due forze ( = 4 kn) genti nel pino dell struttur. Si richiede di: ) trccire i digrmmi delle zioni interne, b) effetture l verific

Dettagli

Spostamento delle travi. Comportamento meccanico dei Materiali. Spostamenti dovuti ai carichi. Spostamenti e tensioni di origine termica

Spostamento delle travi. Comportamento meccanico dei Materiali. Spostamenti dovuti ai carichi. Spostamenti e tensioni di origine termica Comportmento meccnico dei terili Spostmento delle trvi Spostmenti e tensioni di origine termic 006 olitecnico di Torino 1 Spostmenti nelle trvi Spostmenti rigidi e spostmenti locli Comportmento estensionle

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri Integrzione 1 Integrzione Problem: pprossimre integrli definiti del tipo: f(x)dx, Sceglimo n + 1 punti nell intervllo

Dettagli

CAP.4. Esempi di strutture

CAP.4. Esempi di strutture A.4 quiibrio di strutture stto finor considerto equiibrio di corpi rigidi singoi soggetti forze e momenti esterni. i trtt or di esminre i cso di strutture, cioè di insiemi di più corpi rigidi coegti fr

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì REAZIONI VINCOLARI AGGIORNAMENTO DEL 23/09/2012

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì REAZIONI VINCOLARI AGGIORNAMENTO DEL 23/09/2012 Sussii ittici per i corso i PGETTZIE, CSTUZII E IPITI Prof. Ing. rncesco Znghì EZII ICLI GGIET DEL 3/9/ Corso i PGETTZIE, CSTUZII E IPITI Prof. Ing. rncesco Znghì incoi Un vincoo è usisi conizione che

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Daniela Lera A.A

Daniela Lera A.A Dniel Ler Università degli Studi di Cgliri Diprtimento di Mtemtic e Informtic A.A. 2016-2017 Formule Gussine Formule di qudrtur Gussine In tli formule l posizione dei nodi non è prefisst, come vviene in

Dettagli

RICHIAMI SULLA TEORIA DELLA TRAVE

RICHIAMI SULLA TEORIA DELLA TRAVE Lezione 28/02/2019 cur di Neri E. e Trin E. Coordinte del bricentro RICHIAMI SULLA TEORIA DELLA TRAVE Per sezioni multimterile il bricentro è pesto sul modulo di elsticità ssile E z, in prticolre le coordinte

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Metodo degli elementi finiti in una dimensione

Metodo degli elementi finiti in una dimensione Metodo degli elementi finiti in un dimensione Luci Gstldi DICATAM - Sez. di Mtemtic, http://luci-gstldi.unibs.it Indice 1 Problemi di diffusione-rezione del secondo ordine Formulzione debole Metodo di

Dettagli

Metodo degli elementi finiti in una dimensione Condizioni di Dirichlet omogenee

Metodo degli elementi finiti in una dimensione Condizioni di Dirichlet omogenee Metodo degli elementi finiti in un dimensione Condizioni di Dirichlet omogenee Luci Gstldi Diprtimento di Mtemtic, http://www.ing.unibs.it/gstldi/ Indice 1 Problemi ellittici del secondo ordine Formulzione

Dettagli

Le piastre:classificazione

Le piastre:classificazione Le piastre 1. piastre sottili h/l= 1/50-1/10 : piastre sottili con rigidezza flessionale che portano distribuzioni di carico bidimensionale prevalentemente attraverso momenti flettenti, momenti torcenti

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

14. Funzioni spline. 434 Capitolo 5. Interpolazione

14. Funzioni spline. 434 Capitolo 5. Interpolazione 44 Cpitolo 5. Interpolzione 14. Funzioni spline A cus del comportmento oscillnte dei polinomi di grdo elevto spesso non è possiile utilizzre l tecnic dell interpolzione per pprossimre le funzioni. Polinomi

Dettagli

MECCANICA COMPUTAZIONALE

MECCANICA COMPUTAZIONALE MECCANICA COMPUAZIONALE Capitolo Formlazione analitica degli elementi Rev. 9 marzo 28 (rev. 9//28) Capitolo : /29 Argomenti trattati nel capitolo Richiami di elastotica Notazione Formlazione discreta Criteri

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 22 SETTEMBRE 25 Si svolgno cortesemente i seguenti esercizi ESERCIZIO (PUNTEGGIO: 6/3) Si clcoli l integrle con A= γ 2z 2 +, SOLUZIONE L funzione integrnd

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

Tabella H.1 Travi variamente vincolate e sottoposte ai tipi di carichi più comuni R A T A. M max = R A

Tabella H.1 Travi variamente vincolate e sottoposte ai tipi di carichi più comuni R A T A. M max = R A H- Te H. Trvi vrimente vincote e sottoposte i tipi di crici più comuni Scem Rezioni - Trve ppoggit gi estremi con crico concentrto R ----- F ; R ----- F T R ; T R 0 mx R R -- ---------------------- E ---------

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Fisica dello Stato Solido

Fisica dello Stato Solido Fisic dello Stto Solido Lezione n. Reticolo reciproco Corso di Lre Specilistic Ingegneri Elettronic..06-07 Prof. Mr Brzzi Lezione n. - Fisic dello Stto Solido Lre specilistic in Ingegneri Elettronic..06-07

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

Complementi 13 - L'approccio alla Prandtl

Complementi 13 - L'approccio alla Prandtl Complementi 13 - L'pproccio ll Prndtl [Ultimrevisione: revisione:18 18febbrio febbrio2009] Un interessnte ppliczione dell teori delle funzioni di tensione e' l'pproccio proposto d L. Prndtl l problem dell

Dettagli

Corso di COSTRUZIONI BIOMECCANICHE A.A Esame scritto 27/02/07

Corso di COSTRUZIONI BIOMECCANICHE A.A Esame scritto 27/02/07 orso di OSTRUZIONI IOMENIHE.. 2005-6 Esme scritto 27/02/07 1) er il cso ipersttico di fig. risolvere l struttur e disegnre i digrmmi delle zioni interne. sez. - h 90 30 ti : = 1 kn = 1000 mm = 50 mm h

Dettagli

Argomenti della Lezione

Argomenti della Lezione ANALISI Argomenti dell Lezione 35. urve, lunghezze, integrli curvilinei 35.1. urve regolri. Definizione 35.1. Un curv regolre Φ é un funzione { (t) : I R φ : I = [, b] R 2 y(t) : I R 25 gennio 2012 continu,

Dettagli

Esercitazione 02: Calcolo degli spostamenti mediante il metodo degli integrali di Mohr

Esercitazione 02: Calcolo degli spostamenti mediante il metodo degli integrali di Mohr Meccanica e Tecnica dee Costruzioni Meccaniche Esercitazioni de corso. Periodo II Prof. Leonardo ERTINI Ing. Ciro SNTUS Esercitazione : Cacoo degi spostamenti mediante i metodo degi integrai di Mohr Indice

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

29/11/2012 M F F EJ. b 2 b 1. Instabilità elastica: carico di punta

29/11/2012 M F F EJ. b 2 b 1. Instabilità elastica: carico di punta b b 1 f 0 C1 sin C cos C1 cos C sin C1 sin C cos C C cos 1 sin 1 b b 1 f 0 C1 sen C cos per =0 =0 0 C1 sen 0 C cos0 C 0 C sen per = =0 C sen 1 0 1 C 1 0 trve non si inflette sen 0 n b b 1 f 0 C1 sen C

Dettagli

Elementi finiti solidi

Elementi finiti solidi Esercitazioni del corso di Costruzione di Macchine 2 e Progettazione FEM a cura dell ing. Francesco Villa Elementi finiti solidi Costruzione di Macchine 2 e Progettazione FEM Prof. Sergio Baragetti Dalmine

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

Travi soggette a taglio e momento flettente

Travi soggette a taglio e momento flettente Trvi soggette tglio e momento flettente Qundo i crichi o i momenti hnno vettori perpendicolri ll sse si prl di sollecitzioni su trvi o bems Il pino di inflessione è quello ove giscono i crichi e che contiene

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgno cortesemente i seguenti esercizi. METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 GIUGNO 5 ESERCIZIO (PUNTEGGIO: 6/) Si clcoli l integrle SOLUZIONE P sen( x) x + x + d x. Fccimo l sostituzione

Dettagli

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica

Note del corso di Laboratorio di Programmazione e Calcolo: Integrazione numerica Corso di lure in Mtemtic SAPIENZA Università di Rom Note del corso di Lbortorio di Progrmmzione e Clcolo: Integrzione numeric Diprtimento di Mtemtic Guido Cstelnuovo SAPIENZA Università di Rom Indice Cpitolo

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

UTILIZZO DEL PRINCIPIO DEI LAVORI VIRTUALE PER ANALISI DI STRUTTURE IPERSTATICHE CALCOLO DI SPOSTAMENTI ESERCIZIO 1

UTILIZZO DEL PRINCIPIO DEI LAVORI VIRTUALE PER ANALISI DI STRUTTURE IPERSTATICHE CALCOLO DI SPOSTAMENTI ESERCIZIO 1 UTILIZZO DEL RINIIO DEI LVORI VIRTULE ER NLISI DI STRUTTURE IERSTTIHE LOLO DI SOSTMENTI ESERIZIO L struttur indict in fig., compost d un unic st sezione circolre pien di dimetro d, simmetric rispetto ll

Dettagli

Il lavoro di una forza

Il lavoro di una forza Il lvoro di un forz Definizione Nello svolgimento che segue, ci limiteremo lvorre in due dimensioni, su un pino. L grn prte dei risultti che troveremo potrà essere estes immeditmente e senz difficoltà

Dettagli

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx Integrli impropri: esercizi AM: Esercizi Discutere l convergenz dei seguenti integrli ed eventulmente clcolrli. d. ( 3) 3 + + d 3. 3 + d 3. d 5. ( + ) 3 e sin d 6. e sin d 7. e cos d 8. d + log 3 9. d

Dettagli

Esercizio 2. Telaio ad aste inestensibili. Carpentieri Gerardo 23/12/2013

Esercizio 2. Telaio ad aste inestensibili. Carpentieri Gerardo 23/12/2013 Scienza dee Costruzioni Esercizio Teaio ad aste inestensibii Carpentieri Gerardo 3/1/013.1 Descrizione preiminare dea struttura. Studio dea struttura S 0.3 Studio dea matrice di rigidezza.4 Cacoo degi

Dettagli

ax' ; -=-;-.-) a.; se a h a h ax' ax' a:...,:x'-;----,;-;- x',, ax' ax' --a.- ax ax J n.3. - Lift completo di una pseudoconnessione lineare.

ax' ; -=-;-.-) a.; se a h a h ax' ax' a:...,:x'-;----,;-;- x',, ax' ax' --a.- ax ax J n.3. - Lift completo di una pseudoconnessione lineare. 11 n.3. Lift competo di un pseudoconnessione inere. ~ Si M un vrietà differenzibie di csse C e dimensione n, ogn1 sistem di coordinte oci (X' ),n un intorno di un punto p e M induce un sistem di coordinte

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

MECCANICA COMPUTAZIONALE

MECCANICA COMPUTAZIONALE Lca Salvatori Enzo Marino MECCANICA COMPUTAZIONALE Lezione Rivisitazione dei modelli della meccanica del contino Rev. febbraio (rev. //) Capitolo : /NDIAP Sommario Richiami di elastostatica e notazione

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Scienza delle Costruzioni II Prova scritta del 13/11/01

Scienza delle Costruzioni II Prova scritta del 13/11/01 Prova scritta de //0 P γ P γ > M 0 0 costante Appicando i teorema cinematico de anaisi imite, determinare i carico di coasso P s a variare de parametro positivo γ. p / L Comportamento e. p. Von Mises π

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Teoria di Gamow dei decadimenti α

Teoria di Gamow dei decadimenti α Istituzioni di Fisic Nuclere e Sunuclere Prof. A. Andrezz Lezione 4 Teori di Gmow dei decdimenti α Legge di Geiger-Nuttll Il decdimento α è un decdimento due corpi: Energi fisst: E α ~Q α Si osserv un

Dettagli

100 Ed ancora. Esercizio n 626

100 Ed ancora. Esercizio n 626 Esercizio n 66 Un ine eettric h resistenz = 1,3 Ω e rettnz X = 1,07 Ω; ess è imentt ingresso con tensione V p = 41 V ed iment rrivo un impedenz Z u vente ngoo crtteristico ϕ υ = 36,87. In queste condizioni

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni 1 Verifica e progetto di sezioni allo SLU Criteri generali Tensione di snervamento o ultima? f u f y 1.Se la zona plasticizzata è molto piccola, queste hanno scarso effetto

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

APPENDICE A. A. Shepp-Logan Head Phantom

APPENDICE A. A. Shepp-Logan Head Phantom Shepp-Logn Hed Phntom PPENDICE Shepp-Logn hed phntom è un simultore digitle che viene utilizzto per vlutre gli lgoritmi di ritruzione pplicili nel cso specifico di ritruzione dell re del crnio Il phntom

Dettagli

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u. Scuol di Architettur Corso di Lure Mgistrle quinquennle c.u. Sommrio È stt descritt un teori pprossimt, dovut Jourwsk, che permette di clcolre le tensioni tngenzili medie presenti in un generic cord (punti

Dettagli

II prova intermedia (salvo cambiamenti causa aula): Venerdì 18 Gennaio 2013, iscrizione via SIFA

II prova intermedia (salvo cambiamenti causa aula): Venerdì 18 Gennaio 2013, iscrizione via SIFA II pro intermedi (slo cmbimenti cs l): Venerdì 8 Gennio, iscrizione i SIFA Per registrre oto complessio proe intermedie o Proe esme: Iscriersi ttrerso l SIFA ll ppello Oggi: de risltti di bse per i sistemi

Dettagli

Università degli Studi della Campania L. Vanvitelli Dipartimento di Architettura e Disegno Industriale - A.A

Università degli Studi della Campania L. Vanvitelli Dipartimento di Architettura e Disegno Industriale - A.A Università degli Studi dell Cmpni L. Vnvitelli Diprtimento di Architettur e Disegno Industrile - A.A. 2017-2018 Corso di Sttic Prov Intercorso del 6/11/2017 Cognome Nome mtr. Rispondere lle domnde utilizzndo

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Cenni di meccanica della frattura. Intagli e meccanica della frattura

Cenni di meccanica della frattura. Intagli e meccanica della frattura ntgli e meccnic dell frttur l problem Stto di sollecitzione ll pice di un intglio Verific di componenti con difetti Determinzione del fttore di intensità delle tensioni Determinzione dell tencità ll frttur

Dettagli

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L.

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L. Anlisi Mtemtic II, Anno Accdemico 7-8. Ingegneri Edile e Architettur Vincenzo M. Tortorelli 5 Settembre 7: prim prov in itinere. N. mtr./nno iscr. Cognome docente/ crediti Nome Istruzioni l fine dell vlutzione:

Dettagli

Esercizi svolti di statica di strutture piane isostatiche

Esercizi svolti di statica di strutture piane isostatiche Gicomo Scco ppunti i Costruzioni Eii Esercizi svoti i sttic i strutture pine isosttiche (ovemre 6) Sttic ei sistemo pini - utore: Ing. Gicomo Scco Inice Esercizio. - Trve ppoggit con forz concentrt pg.

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Studio microscopico della materia nucleare

Studio microscopico della materia nucleare Studio microscopico dell mteri nuclere Mrtin Flco 25 ottobre 27 MTERI NUCLERE Obiettivo fondmentle dell fisic nuclere : Descrizione delle proprietà dei nuclei prtire dll interzione tr i loro costituenti

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2 APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile

Dettagli

STRUTTURE MISTE ACCIAIO-CLS Lezione 3

STRUTTURE MISTE ACCIAIO-CLS Lezione 3 Corso di Complementi di Tecnica delle Costruzioni A/A 008- STRUTTURE ISTE ACCIAIO-CLS Lezione L (LATERALE) Definizione del problema L instabilità F-T delle travi semplicemente appoggiate Il problema in

Dettagli

Ortogonalità di funzioni

Ortogonalità di funzioni Cpitolo 0 Ortogonlità di funzioni 01 Funzioni linermente indipendenti e funzioni ortogonli Si (, b) un intervllo dell sse rele Si dice le n + 1 funzioni φ 0 (x), φ 1 (x),, φ n (x), definite in (, b), sono

Dettagli

Tabella H.1 Travi variamente vincolate e sottoposte ai tipi di carichi più comuni R A T A. M max = R A T A = R A ; T B = R B

Tabella H.1 Travi variamente vincolate e sottoposte ai tipi di carichi più comuni R A T A. M max = R A T A = R A ; T B = R B H- Te H. Trvi vrimente vincote e sottoposte i tipi di crichi più comuni Schem Rezioni - Trve ppoggit gi estremi con crico concentrto ----- F ; R B ----- F ; T B R B M B 0 M mx R B f -- ----------------------

Dettagli

Metodo degli elementi finiti in una dimensione

Metodo degli elementi finiti in una dimensione Metodo degli elementi finiti in un dimensione Luci Gstldi DICATAM - Sez. di Mtemtic, http://luci-gstldi.unibs.it Indice 1 Formulzione debole Metodo di Glerkin Condizioni di Dirichlet omogenee Assemblggio

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Esercitazione 10. Prima parte I = f(x) dx. J k = σ k (x)dx. La scelta è ragionevole. Infatti, utilizzando la base canonica di S(τ) si ha:

Esercitazione 10. Prima parte I = f(x) dx. J k = σ k (x)dx. La scelta è ragionevole. Infatti, utilizzando la base canonica di S(τ) si ha: Esercitzione 10 Istruzioni trttte: interp1. Nell prim prte di quest esercitzione discuteremo due ppliczioni dell ricostruzione con funzioni continue lineri trtti: l pprossimzione numeric di un integrle

Dettagli

= con n N è insieme infinito n limitato sia inferiormente che superiormente, infatti i suoi elementi verificano la condizione 0 a 1.

= con n N è insieme infinito n limitato sia inferiormente che superiormente, infatti i suoi elementi verificano la condizione 0 a 1. Introduzione concetto di imite Prim di vvire i discorso sui imiti è opportuno rivedere i signiicto di cuni termini che sono di uso comune ne trttzione de imite di un unzione. Insieme imitto superiormente:

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Introduzione e strumenti

Introduzione e strumenti Introduzione e strumenti Schemi blocchi Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2 Schemi

Dettagli

COSTRUZIONI AEROSPAZIALI. Principi Energetici

COSTRUZIONI AEROSPAZIALI. Principi Energetici COSTRUZIONI AEROSPAZIALI Principi Energetici Metodi Vrizionli Il metodo vrizionle e un metodo lterntivo per determinre le equzioni di equilibrio di un sistem. E un metodo che utilizz le regole del clcolo

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

Esercizi di Informatica Teorica Pumping lemma e proprietà di

Esercizi di Informatica Teorica Pumping lemma e proprietà di 04-pumping-lemm-regolri-01 Esercizi di Informtic Teoric Pumping lemm e proprietà di chiusur per i linguggi regolri 1 Pumping lemm per linguggi regolri richimi pumping lemm: se L è un linguggio regolre

Dettagli

Lezione 31 - Il problema ai limiti assiale

Lezione 31 - Il problema ai limiti assiale ezione 31 - Il problem i limiti ssile [Ultim revisione: febbrio 009] In quest lezione si pplicno i risultti dell lezione precedente, clcolndo spostmenti e crtteristiche di lcune trvi d un sol cmpt soggette

Dettagli

Introduzione e strumenti. Schemi a blocchi

Introduzione e strumenti. Schemi a blocchi Introduzione e strumenti Schemi blocchi Schemi blocchi Convenzioni generli ed elementi bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli