Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scuola di Architettura Corso di Laurea Magistrale quinquennale c.u."

Transcript

1 Scuol di Architettur Corso di Lure Mgistrle quinquennle c.u.

2 Sommrio È stt descritt un teori pprossimt, dovut Jourwsk, che permette di clcolre le tensioni tngenzili medie presenti in un generic cord (punti llineti su un segmento) di un sezione trsversle di un st sollecitt d un zione tglinte dirett prllelmente d un direzione principle d inerzi dell sezione stess. È stto mostrto che, sull bse di sole considerzioni di equilibrio, d tle teori si ottiene l seguente relzione per il clcolo delle tensioni tngenzili medie A2 A1 TS TS zs (96) bi bi dove T tglio (ip. prllelo ll sse principle ) r T b A 2 zs s b I S zs lunghezz dell cord in esme momento d inerzi di TUTTA l sezione rispetto ll sse (sse neutro) momento sttico rispetto ll sse dell porzione di sezione l di sopr dell cord in esme tensione tngenzile medi presente sull cord in esme nell direzione ortogonle ll cord stess

3 Introduzione È stto evidenzito più volte che l tensione tngenzile clcolt ttrverso l (96) rppresent il vlore medio di quelle effettivmente presenti nei punti dell cord in esme. L errore che si commette pplicndo l (96) dipende d vri fttori fr cui, non ultimo, l form dell sezione. Si consideri d esempio un sezione T. T Il digrmm delle tensioni tngenzili medie presenti nelle corde dell sezione ortogonli l crico tglinte è quello indicto nell prte () dell figur finco. Tle digrmm è suddiviso in due trtti prbolici venti mssimo in corrispondenz dell cord per cui pss l sse neutro reltivo ll sollecitzione flessionle ccoppit l tglio T. Si osservi che il slto del vlore delle tensioni tngenzili che si h in corrispondenz del cmbio di lunghezz dell cord (ossi nel pssggio dll l ll nim) è un «nomli» dovut lle pprossimzioni contenute nell teori di Jourwsk. Figur trtt d Comi-Corrdi, Introduzione ll meccnic strutturle

4 Introduzione T z z Le tensioni tngenzili effettivmente presenti in un generic cord ortogonle l crico tglinte hnno un ndmento del tipo indicto in zzurro nell prte (c) dell figur finco: per l sezione in esme, l formul di Jourwsk pprossim meglio i vlori reli di tensione tngenzile nei trtti più stretti dell sezione. z z Questo è in ccordo con qunto descritto per l sezione rettngolre. Figur trtt d Comi-Corrdi, Introduzione ll meccnic strutturle

5 Sommrio profili perti in prete sottile sezione T sezione doppio T profili chiusi in prete sottile sezione C sezione d L Nell presente lezione nlizzeremo un cso di notevole importnz pplictiv, ossi quello delle trvi profilo (sezione trsversle) in prete sottile, crtterizzte dll vere un sezione trsversle di spessore molto piccolo rispetto lle ltre dimensioni. È quest un tipologi di trvi (soprttutto metlliche) molto diffus nelle ppliczioni ingegneristiche e per l qule l formul di Jourwsk fornisce risultti molto ccurti. sezione sctolre sezione tubolre

6 Profili prete sottile profili perti in prete sottile sezione T profili chiusi in prete sottile sezione sctolre sezione doppio T sezione C sezione tubolre sezione d L In nlogi qunto descritto precedentemente con riferimento un sezione rettngolre, visto che le sezioni in esme sono costituite d elementi molto llungti, è lecito supporre che le tensioni tngenzili dovute lle sollecitzioni tglinti sino prevlentemente dirette prllelmente ll line medi dell sezione stess e che il loro vlore si pressoché costnte per tutti i punti di un cord ortogonle ll line medi. In tl modo il problem in esme si trduce llor nell semplice ppliczione dirett dell formul di Jourwsk per l determinzione dell tensione tngenzile medi presente in un generic cord del profilo in esme nell direzione dell line medi dell sezione stess.

7 Profili perti in prete sottile profili perti in prete sottile sezione T sezione doppio T sezione C sezione d L Anlizzeremo inizilmente i profili perti prete sottile. Il metodo di nlisi per questi tipi di profili srà descritto opertivmente con riferimento d un sezione trsversle specific, ed in prticolre per un sezione T. L procedur descritt di seguito può essere pplict ll nlisi di sezioni prete sottile venti ltre forme. profili chiusi in prete sottile sezione sctolre sezione tubolre

8 L sezione "T" 1 2 2mm M T 5kN Considerimo un trve vente un sezione trsversle T, crict d un sollecitzione tglinte prllel l suo sse di simmetri come indicto in figur. Per qunto si è detto, tle sollecitzione tglinte è ssocit nche un sollecitzione flessionle (rett per il cso in esme), i cui effetti, che non sono considerti in quest sede, possono essere vlutti pplicndo l formul di Nvier (28). li ssi del sistem di riferimento indicti in figur sono ssi principli d inerzi per l sezione in esme: l sse è sse di simmetri e quindi sicurmente è sse principle d inerzi, e l sse è bricentrico ed ortogonle d un sse principle e quindi nch esso principle d inerzi. 30 mm

9 Osservzione 1 2 Si osservi che, per motivi opertivi, bbimo indicto T come dirett secondo un sse pssnte per il bricentro. In generle però, stimo semplicemente supponendo che l su direzione si prllel ll sse principle e quindi ognun delle forze indicte in figur (ed un qulunque zione tglinte d esse prllel) è mmissibile per qunto verrà descritto nell presente lezione. Anticipimo però che, se l forz tglinte non pss per il centro di tglio dell sezione, ess produce nche sollecitzioni torsionli. 2mm 30 mm In definitiv llor, per l zione tglinte in esme non è stto specificto né il punto di ppliczione, né l direzione estt, m solo che ess si prllel ll sse.

10 L sezione "T" 1 2 T 5kN L prim cos d fre, per poter pplicre le relzioni determinte nell precedente lezione, è clcolre il bricentro dell sezione (l fine di poter posizionre gli ssi del sistem di riferimento). Visto che l sse è sse di simmetri, esso conterrà il bricentro. 2mm 30 mm

11 L sezione "T" 1 2 T 5kN d L prim cos d fre, per poter pplicre le relzioni determinte nell precedente lezione, è clcolre il bricentro dell sezione (l fine di poter posizionre gli ssi del sistem di riferimento). Visto che l sse è sse di simmetri, esso conterrà il bricentro. L distnz d tr il bricentro e l line medi dell l dell sezione in esme si può clcolre come segue: indicndo con A l re dell sezione in esme e con S t il momento sttico di tutt l sezione rispetto ll rett t-t, pssnte per l line medi dell l si h S t Ad 2 2 d 2A mm 30 mm

12 L sezione "T" 1 2 T 5kN Voglimo desso determinre le tensioni tngenzili medie presenti in un generic cord ortogonle ll line medi dell sezione. /10 2mm 30 mm

13 L sezione "T" 1 2 T 5kN s 1 /10 Considerimo inizilmente un cord generic nell prte destr dell l dell sezione. Al fine di poterl identificre univocmente si introduce un sciss intrinsec s 1 come indicto in figur. Ess può vere i seguenti vlori (si trscur lo spessore rispetto d ) 0 s 1 Le tensioni tngenzili medie su tle cord si clcolno ttrverso l (96) come segue dove T 5kN zs b 2 4 mm A1 TS bi trscurbile (2) 2mm 30 mm I mm

14 Osservzione 1 2 T 5kN s 1 /10 Nel clcolo del momento d inerzi effettuto nell precedente slide è stto trscurto il termine in 3 in qunto, per definizione, nelle sezioni in prete sottile lo spessore è molto più piccolo delle ltre dimensioni. In generle, llor, per le sezioni in prete sottile i termini cubici nello spessore possono essere trscurti senz che si fccino errori significtivi. 2mm 30 mm

15 L sezione "T" 1 2 T 5kN s 1 /10 I precedenti vlori non dipendono dll posizione dell cord sul trtto in esme, mentre il momento sttico dell porzione di sezione che precede l cord rispetto ll sse vri linermente come segue: 1 S A 1s1 s Sostituendo i dti così determinti nell (101) si ottiene l seguente espressione delle tensioni tngenzili medie A1 TS 6T zs s s (102) 1 bi 17 che definisce un ndmento linere rispetto l sciss s 1. 2mm 30 mm

16 L sezione "T" 1 2 T 5kN s 1 /10 I precedenti vlori non dipendono dll posizione dell cord sul trtto in esme, mentre il momento sttico dell porzione di sezione che precede l cord rispetto ll sse vri linermente come segue: 1 S A 1s1 s Sostituendo i dti così determinti nell (101) si ottiene l seguente espressione delle tensioni tngenzili medie 2mm 30 mm lj τ zs = T S bi = 6T 17δ 2 s 1 = [ N mm 3]s 1 che definisce un ndmento linere rispetto l sciss s 1. Nel dominio di vlidità dell (102), le tensioni tngenzili medie hnno segno positivo e sono quindi uscenti dll sezione. (102)

17 L sezione "T" 2mm 30 mm 1 2 T 5kN s 1 Si osservi che nell (102) il coefficiente è espresso in N/mm 3 e quindi, esprimendo s 1 in millimetri si ottengono vlori dell tensione in MP. /10 s s1 zs s 0 1

18 L sezione "T" 2mm 30 mm 1 2 s 2 T 5kN s 1 /10 Considerimo desso un generic cord ortogonle ll line medi dell sezione ed pprtenente ll prte sinistr dell l dell sezione, individut dll sciss s 2, il cui vlore è compreso ll interno del seguente intervllo 0 s 2 Le tensioni tngenzili medie su tle cord si clcol ncor ttrverso l (96) come segue: T 5kN b 2 4 mm s s1 zs I S A mm s s 4 2 s 0 1 τlj zs = T S = 6T bi 17δ 2 s 2 = N/mm 3 s 2 (103)

19 L sezione "T" 2mm 30 mm T 5kN Le tensioni tngenzili medie clcolte sulle corde di tle trtto sono ncor lineri e positive e quindi uscenti dll sezione per l qule è stto clcolto il momento sttico. s 2 s /10 s s2 zs s s1 zs 0 s 2 0 s 1

20 L sezione "T" 2mm 30 mm 1 2 s 2 T 5kN s 1 /10 Considerimo desso un generic cord ortogonle ll line medi dell sezione ed pprtenente ll nim, individut dll sciss s 3, il cui vlore è ncor compreso ll interno del seguente intervllo 0 s 3 In questo cso l (96) si prticolrizz come segue T 5kN s s2 zs s 3 s s1 zs 0 s 2 0 s 1 b 2 mm I mm 9 10 s 2 3 S A1 s s3 s A1 6T 9 5s TS 3 s3 zs s 3 s 3 3 (104) bi 17

21 L sezione "T" 2mm 30 mm s 2 T 5kN s 1 Nel suo dominio di definizione, l (104) è sempre negtiv e quindi le tensioni tngenzili sono entrnti nell cord in esme. Il loro ndmento è prbolico con s 3 e presentno un mssimo in corrispondenz dell sse neutro. 1 2 /10 s 3 s s2 zs s s1 zs 0 s 2 0 s s s zs 3 3 s 0 3

22 L sezione "T" 2mm 30 mm T 5kN Le leggi delle tensioni tngenzili così determinte possono essere digrmmte sull line medi dell sezione come segue 2 s 2 s /10 1 m 9 /10 27 mm s 3 s s2 zs 0 s 2 0 s s s zs 3 3 s 0 3 s s1 zs I vlori ssoluti delle tensioni tngenzili (significtive) indicte nell precedente figur sono pri MP MP MP m

23 Osservzione 2mm 30 mm s 2 T 5kN s 1 È fcile verificre (nche opertivmente) che, per sezioni sottili formte d elementi rettngolri, nelle prti prllele ll sse neutro l ndmento delle tensioni tngenzili è sempre linere. 1 2 /10 2 s s s2 zs s s1 zs m 9 /10 27 mm 0 s 2 0 s s s zs 3 3 s 0 3

24 Scuol di Architettur Corso di Lure: Mgistrle Architettur c.u. Profili perti in prete sottile: esercizi proposti

25 Profili "T" T 5kN Si clcoli e si digrmmi il vlore delle tensioni tngenzili medie per l sezione indict in figur mm 30 mm

26 Profili "C" 2 T 1kN 2 Si clcoli e si digrmmi il vlore delle tensioni tngenzili medie per l sezione indict in figur. Per il procedimento risolutivo l llievo può consultre il libro di testo (Comi-Corrdi, Introduzione ll meccnic strutturle) pg mm 50 mm

27 Profili "C" T 1kN Si clcoli e si digrmmi il vlore delle tensioni tngenzili medie per l sezione indict in figur mm 50 mm

FLESSIONE E TAGLIO (prof. Elio Sacco)

FLESSIONE E TAGLIO (prof. Elio Sacco) Cpitolo FLESSIONE E TALIO (prof. Elio Scco). Sollecitzione di flessione e tglio Si esmin il cso in cui l risultnte delle tensioni genti sull bse dell trve x = L consist in un forz tglinte V, tlechev e

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

Corso di COSTRUZIONI BIOMECCANICHE A.A Esame scritto 27/02/07

Corso di COSTRUZIONI BIOMECCANICHE A.A Esame scritto 27/02/07 orso di OSTRUZIONI IOMENIHE.. 2005-6 Esme scritto 27/02/07 1) er il cso ipersttico di fig. risolvere l struttur e disegnre i digrmmi delle zioni interne. sez. - h 90 30 ti : = 1 kn = 1000 mm = 50 mm h

Dettagli

CORSO DI COMPORTAMENTO MECCANICO DEI MATERIALI MODULO DI MECCANICA DEI MATERIALI Prova scritta 16 gennaio 2017

CORSO DI COMPORTAMENTO MECCANICO DEI MATERIALI MODULO DI MECCANICA DEI MATERIALI Prova scritta 16 gennaio 2017 Prov scritt 16 gennio 2017 Nome N mtricol 1) L struttur di figur è soggett due forze ( = 4 kn) genti nel pino dell struttur. Si richiede di: ) trccire i digrmmi delle zioni interne, b) effetture l verific

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

UTILIZZO DEL PRINCIPIO DEI LAVORI VIRTUALE PER ANALISI DI STRUTTURE IPERSTATICHE CALCOLO DI SPOSTAMENTI ESERCIZIO 1

UTILIZZO DEL PRINCIPIO DEI LAVORI VIRTUALE PER ANALISI DI STRUTTURE IPERSTATICHE CALCOLO DI SPOSTAMENTI ESERCIZIO 1 UTILIZZO DEL RINIIO DEI LVORI VIRTULE ER NLISI DI STRUTTURE IERSTTIHE LOLO DI SOSTMENTI ESERIZIO L struttur indict in fig., compost d un unic st sezione circolre pien di dimetro d, simmetric rispetto ll

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido omportmento meccnico dei mterili rtteristiche di sollecitione inemtic ed equilirio del corpo rigido rtteristiche di sollecitione efiniione delle crtteristiche Esempio 1: trve rettiline Esempio : struttur

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

ELEMENTI COSTRUTTIVI DELLE MACCHINE

ELEMENTI COSTRUTTIVI DELLE MACCHINE EEMENTI COSTRUTTIVI DEE MCCHINE ESERCITZIONE 1 ppliczioni Numeriche e Teoriche per l Costruzione di Mcchine SOMMRIO Equzione fondmentle delle teori dell trve Clcolo del momento sttico e d inerzi per diverse

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

P (a,a) PROBLEMA 10 . C

P (a,a) PROBLEMA 10 . C PROBLEMA 10 4 FILI LUNGHI CONDUTTORI SONO TRA LORO PARALLELI E DISPOSTI AI VERTICI DI UN QUADRATO DI LATO = 0 cm; IN OGNI FILO CIRCOLA LA CORRENTE i = 0 A, CON I VERSI MOSTRATI IN FIGURA A) CALCOLARE IL

Dettagli

RICHIAMI SULLA TEORIA DELLA TRAVE

RICHIAMI SULLA TEORIA DELLA TRAVE Lezione 28/02/2019 cur di Neri E. e Trin E. Coordinte del bricentro RICHIAMI SULLA TEORIA DELLA TRAVE Per sezioni multimterile il bricentro è pesto sul modulo di elsticità ssile E z, in prticolre le coordinte

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri Integrzione 1 Integrzione Problem: pprossimre integrli definiti del tipo: f(x)dx, Sceglimo n + 1 punti nell intervllo

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

m 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha

m 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha 1 Esercizio (trtto dl problem 7.52 del Mzzoldi 2) Sul doppio pino inclinto di un ngolo sono posizionti un disco di mss m 1 e rggio R e un blocco di mss m 2. I due oggetti sono collegti d un filo inestensibile;

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri.. 2008/2009 Integrzione () 29 mggio 2009 1 / 18 Integrzione Problem: pprossimre integrli definiti del tipo: f (x)dx,

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

OPTOELETTRONICA E FOTONICA Prova scritta del 7 luglio 2009

OPTOELETTRONICA E FOTONICA Prova scritta del 7 luglio 2009 OPTOLTTRONC FOTONC Prov scritt del 7 luglio 9 COGNOM Nome Mtricol Posto n dell fil n s Un sistem untistico (che rppresent un sort di ttrzione centrle su un prticell d prte di, dove è un costnte rele con

Dettagli

Diagrammi N, T, N analitici

Diagrammi N, T, N analitici igrmmi,, nlitici 1) ompito scritto del 10/0/201: R sx = 4 R dx = 4 = 4 2 F = 4 Rezioni vincolri R sup = 3 F = 4 R = 4 R inf = = 4 2 R = 3 = 28 2 R x = ; R y = 2 nlisi dell struttur L struttur è costituit

Dettagli

2. il modulo ed il verso della forza di attrito al contatto disco-piano [6 punti];

2. il modulo ed il verso della forza di attrito al contatto disco-piano [6 punti]; 1 Esercizio (trtto dl problem 7.5 del Mzzoldi ) Sul doppio pino inclinto ( = 0 o ) sono posizionti un disco di mss m 1 = 8 Kg e rggio R = 1 cm e un blocco di mss m = 4 Kg. I due oggetti sono collegti d

Dettagli

Seconda prova d esonero del Tema B

Seconda prova d esonero del Tema B UNVRSTÀ DGL STUD G. D ANNUNZO D CHT-PSCARA FACOLTÀ D ARCHTTTURA CORSO D LAURA SPCALSTCA, CORS D LAURA TRNNAL SCNZA DLL COSTRUZON TORA DLL STRUTTUR Cnli B,C).. 7-8 Docenti: M. VASTA, P. CASN Second prov

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Prova scritta di SCIENZA DELLE COSTRUZIONI VERIFICA DELLE COMPETENZE ACQUISITE

Prova scritta di SCIENZA DELLE COSTRUZIONI VERIFICA DELLE COMPETENZE ACQUISITE Prov scritt di SIENZA DELLE OSTRUZIONI VERIFIA DELLE OMPETENZE AQUISITE Ingegneri Edile Architettur - Prof. Ersmo Viol - A.A. 2015/16 30 Aprile 2016 - OMPITO 1 Nome ognome Mtricol: Note: Lo studente è

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

29/11/2012 M F F EJ. b 2 b 1. Instabilità elastica: carico di punta

29/11/2012 M F F EJ. b 2 b 1. Instabilità elastica: carico di punta b b 1 f 0 C1 sin C cos C1 cos C sin C1 sin C cos C C cos 1 sin 1 b b 1 f 0 C1 sen C cos per =0 =0 0 C1 sen 0 C cos0 C 0 C sen per = =0 C sen 1 0 1 C 1 0 trve non si inflette sen 0 n b b 1 f 0 C1 sen C

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

SIMULAZIONE DELLA II PROVA SCRITTA[ 1 ] 30 maggio 2017

SIMULAZIONE DELLA II PROVA SCRITTA[ 1 ] 30 maggio 2017 SIMULAZIONE DELLA II PROVA SCRITTA[ ] 0 mggio 07 Nome del cndidto _ Clsse Il cndidto risolv uno dei due problemi; il problem d correggere è il numero Problem Il direttore dello zoo di Berlino desider fr

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

Principio conservazione energia meccanica. Problemi di Fisica

Principio conservazione energia meccanica. Problemi di Fisica Problemi di isic Principio conservzione energi meccnic Su un corpo di mss M0kg giscono un serie di forze 0N 5N 37N N (forz di ttrito), secondo le direzioni indicte in figur, che lo spostno di 0m. Supponendo

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

Definizione. R Ax R A H B1. R Ay V B1 A M

Definizione. R Ax R A H B1. R Ay V B1 A M zioni interne efinizione Se interrompimo l continuità di un st, dell ule sono note le zioni e le rezioni, per l euilirio, nell sezione effettut, doimo introdurre 3 zioni interne,,, uguli e contrrie sui

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE

MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE UNIVERSITÀ DEGLI STUDI DI BERGAMO MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE Sistem Internzionle di unità di misur (S.I.) Il Sistem Internzionle di unità

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Complementi 13 - L'approccio alla Prandtl

Complementi 13 - L'approccio alla Prandtl Complementi 13 - L'pproccio ll Prndtl [Ultimrevisione: revisione:18 18febbrio febbrio2009] Un interessnte ppliczione dell teori delle funzioni di tensione e' l'pproccio proposto d L. Prndtl l problem dell

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W:

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W: Vengono riportte nel seguito lcune tbelle per il clcolo dei fttori di intensità delle tensioni in modo I utili per eseguire gli esercizi di quest lezione, trtte, con il permesso dell editore, dl testo:

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

1 Lavoro sperimentale (di Claudia Sortino)

1 Lavoro sperimentale (di Claudia Sortino) 1 Lvoro sperimentle (di Cludi Sortino) Prtendo d un nlisi epistemologic del prolem, ho preprto un test che ho successivmente proposto due quinte clssi di un istituto industrile. QUESTIONARIO SULL INTEGRAZIONE

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Clcolo Numerico con elementi di progrmmzione (A.A. 2014-2015) Appunti delle lezioni sull qudrtur numeric Integrzione numeric Problem: pprossimre numericmente integrli definiti I(f) = f(x) dx L intervllo

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

Daniela Lera A.A

Daniela Lera A.A Dniel Ler Università degli Studi di Cgliri Diprtimento di Mtemtic e Informtic A.A. 2016-2017 Formule Gussine Formule di qudrtur Gussine In tli formule l posizione dei nodi non è prefisst, come vviene in

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

(n r numero di registro) n r numero di registro =17

(n r numero di registro) n r numero di registro =17 Clcolo dell riprtizione dell portnz tr superficie lre e impennggio orizzontle di cod per lcun punti crtteristici del digrmm d inviluppo in diverse condizioni di peso. Punti: A- C- D- E- F- G- K- H- C -

Dettagli

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE LEZIONI N 26, 27 E 28 STUDIO SISTEATICO DELLE GIUNZIONI BULLONATE Adottimo un criterio di clssificzione bsto sulle crtteristiche di sollecitzioni trsmesse dlle ste collegte. Per qunto rigurd le unioni

Dettagli

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica:

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica: PROGRESSIONI ) Di un progressione geometric si conosce: 9 9 clcolre l rgione q. Possimo risolvere fcilmente il problem ricordndo l formul ce dà il termine n-esimo di un progressione geometric: n q n Applicimol

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Introduzione alle disequazioni algebriche

Introduzione alle disequazioni algebriche Introduzione lle disequzioni lgebriche Giovnni decide di fre ttività fisic e chiede informzioni due plestre. Un plestr privt chiede un quot d iscrizione nnu di 312, più 2 per ogni ingresso. L plestr comunle

Dettagli

Esercitazione 10. Prima parte I = f(x) dx. J k = σ k (x)dx. La scelta è ragionevole. Infatti, utilizzando la base canonica di S(τ) si ha:

Esercitazione 10. Prima parte I = f(x) dx. J k = σ k (x)dx. La scelta è ragionevole. Infatti, utilizzando la base canonica di S(τ) si ha: Esercitzione 10 Istruzioni trttte: interp1. Nell prim prte di quest esercitzione discuteremo due ppliczioni dell ricostruzione con funzioni continue lineri trtti: l pprossimzione numeric di un integrle

Dettagli

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2 858874 - ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M-2527 - ELETTRONICA 2 M-2529 - BIOFISICA APPLICATA M-2528 - INFORMATICA 2 Lezione n. 2i Derivt Integrle Numeri complessi Fsore Rppresentzione

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica Lbortorio di Mtemtic Computzionle A.A. 2008-2009 1 Integrzione numeric Lb. 11 Integrzione numeric Un metodo di integrzione numerico consiste in un formul esplicit che permett di pprossimre il vlore di

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando per a/w= 14.6/50= 0.29, si ottiene Procedendo, si ricava:

ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando per a/w= 14.6/50= 0.29, si ottiene Procedendo, si ricava: ESERCIZIO 1 Un pistr di lrghezz totle 100 mm e spessore 5 mm, con cricc centrle pssnte (ig. 1), è soggett d un orz di trzione P=50 kn. 1) Determinre le condizioni di cedimento dell pistr. ) Determinre

Dettagli