II prova intermedia (salvo cambiamenti causa aula): Venerdì 18 Gennaio 2013, iscrizione via SIFA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "II prova intermedia (salvo cambiamenti causa aula): Venerdì 18 Gennaio 2013, iscrizione via SIFA"

Transcript

1 II pro intermedi (slo cmbimenti cs l): Venerdì 8 Gennio, iscrizione i SIFA Per registrre oto complessio proe intermedie o Proe esme: Iscriersi ttrerso l SIFA ll ppello Oggi: de risltti di bse per i sistemi lineri, Teorem di Crmer Teorem di Roché-Cpelli

2 Esempio. Si ssegnt n rete idrlic in ci sono indicti i flssi noti e i flssi non noti in ingresso/scit d ogni snodo. Conoscendo lcni flssi è possibile ricostrire gli ltri? (Non scriimo le nità di misr). 5 5 F F F4 F5 F F6 7

3 Sistem linere (de eqzioni in de incognite, Interpretzione geometric: b b rett rett R R Qndo esiste ed è nic l solzione: qndo Le rette NON sono prllele.

4 Possibilità: R rett b R rett b / / Determinnte / /

5 Sistem linere b b Mtrice del sistem A Determinnte del sistem det(a) Abbimo dimostrto che l solzione esiste ed è nic se e solo se det(a)

6 Sistem linere b b Interpreto come combinzione linere b b Trore l solzione: oero Posso esprimere il ettore termine noto come combinzione linere Dei ettori colonn dell mtrice? (b,b )

7 PRODOTTO VETTORIALE: Solo in R Esso è n ettore e si indic con l scrittr: Λ Come si clcol: Modlo: Λ sen θ (re del prllelogrmmo di lti e ) Direzione: perpendicolre l Verso: : come in figr pino di e Λ θ

8 L regol dell mno destr Prim formlzione Si dispone il pollice lngo il primo ettore Si dispone l indice lngo il secondo ettore Il erso del medio indiid il erso del prodotto ettorile Second formlzione Si chide pgno l mno destr mntenendo solleto il pollice Le dit chise pgno deono indicre il erso in ci il primo ettore dee rotre per sorpporsi l secondo in modo che l ngolo θ di rotzione si minore di π Il erso del pollice indiid il erso del prodotto ettorile b b b b Ne sege che il prodotto ettorile non è commttio, m nticommttio: Λ - Λ

9 PRODOTTI Prodotto ettorile tr i ersori principli i j k (ettori di modlo nitrio lngo, y, z) k i Λ j k j Λ i -k j Λ k i k Λ j -i k Λ i j i Λ k -j i j i k j Procedendo nel erso delle frecce, n ertice per il sccessio dà per prodotto il terzo ertice, mentre nel erso contrrio lle frecce ottenimo l opposto del terzo ertice

10 PRODOTTI Prodotto ettorile De ettori non nlli sono prlleli se e solo se Il loro prodotto ettorile è nllo. θ θ π Inftti de ettori prlleli ( (stess direzione) ) formno n ngolo θ di (erso concorde) o di π (erso discorde): In entrmbe i csi sen θ ; qindi il prodotto esterno è nllo in consegenz del so modlo nllo ( Λ sen θ )

11 PRODOTTI Prodotto ettorile in rppresentzione lgebric Il prodotto esterno di de ettori di dte coordinte: V ( ; y ; z ) ; U ( ; y ; z ) si clcol esprimendoli come combinzione linere dei ersori principli i, j, k e pplicndo l proprietà distribti (rmmentndo i prodotti esterni tr i ersori): V Λ U ( i y j z k) Λ ( i y j z k) ) (y z y z ) i (z z ) j ( y - y ) k Es.: V (; -; 4) ; U (; ; -) V Λ U [(-)*(-)[ *4] i [4* (-)*] j [*-*(-)] k i j k

12 V Λ U ( i y j z k) Λ ( i y j z k) ) (y z y z ) i (z z ) j ( y y ) k Dll definizione di determinnte di n mtrice : y y z z i z z j y y k Es.: V (; -; 4) ; U (; ; -) 4 4 i j k

13 PRODOTTO misto Implic tre ettori (d. es.,, w) e si indic con l scrittr: ( Λ) w ed è n nmero (sclre) : il prodotto ettorile di e è s olt moltiplicto sclrmente per w. Geometricmente h il significto del Volme del prllelepipedo che h i tre ettori come spigoli

14 Esempio: Dti tre pnti (,, -), (4,,) e (, -, 5) in n pino, trore l eqzione del pino nell form generle. Solzione: Per scriere l eqzione del pino dobbimo trore n direzione normle l pino stesso. Prim troo de ettori complnri e poi, tilizzndo il prodotto ettorile, possimo identificre n ettore normle. De ettori: d (,, -) (4,, ): (4-, -, ) (,-,4)U d (,, -) (, -, 5): (-, --, 5) (,-,6)V Prodotto ettore: U V i 4 j 7 k 4 j 7 k Eqzione del pino: ( ) 4( y ) 7( z ) 4y 7z o y z

15 Prodotto misto di U (,, ),V(,, ), W (w, w, w ) k j i V U ) ( w ) ( w w V U W Definimo come determinnte dell mtrice ) ( w w w V U W

16 PRODOTTI Prodotto misto Il prodotto misto dà n criterio di Complnrità di tre ettori: Tre ettori non nlli sono complnri se e solo se il loro prodotto misto è nllo. Qindi il determinnte corrispondente, w w w è nllo qndo il prllelepipedo è degenere

17 Se i tre ettori non sono complnri, geometricmente si pò erificre che il sistem linere b b b h n solzione che è nic. Posso rppresentre ogni ettore b come Combinzione linere delle colonne dell Mtrice del sistem.

18 IMPORTANTE Combinzione linere di ettori Dti de o più ettori,, n, se si moltiplic ciscno di essi per n nmero rbitrrio c,c,,c n e poi si sommno i ettori così ottenti, si ottiene n combinzione linere dei ettori dti. w c c c n n

19 Qindi se: w c c c n n (doe c, c,, c n sono nmeri reli) dicimo che il ettore w è n combinzione linere dei ettori,, n. Es.: (,, -5); (,, 4) w (4, 6, -) (,, 4) (5, 6, -6) w è n combinzione linere dei ettori e.

20 n ettori (de o più) (( ; ; ; n ) si dicono linermente dipendenti se ciscno di essi si pò esprimere come combinzione linere degli ltri n- ettori. Ciò eqile dire che l combinzione linere degli n ettori è nll (gle l ettore nllo) per lori dei coefficienti c i non ttti nlli.

21 Se ciscno degli n ettori (( ; ; ; n ) non si pò esprimere come combinzione linere degli ltri, le dire che l combinzione linere degli n ettori è nll (gle l ettore nllo) solo per lori dei coefficienti c i ttti nlli, llor gli n ettori si dicono Esempi: linermente indipendenti.- In R de ettori prlleli sono lin. dipendenti.- In R de ettori non prlleli sono lin. indipendenti..- In R tre ettori complnri sono lin. dipendenti 4.- In R tre ettori non complnri sono lin. indipendenti

22 BASE Un insieme di ettori costitisce n sistem di bse (n bse) per lo spzio R n se è: -Un Un insieme di ettori linermente indipendenti - ogni ettore pò essere espresso come combinzione linere degli n ettori Esempio: in R i ersori i,j,k sono linermente indipendenti e generno Ttto lo spzio.

23 Assegnti tre ettori in R U(,,),V(,, ), W (w, w, w) Qndo sono linermente indipendenti? Se il determinnte w w w È dierso d zero. OSSERVAZIONE. Prtendo dgli esempi ftti possimo ssocire d ogni Mtrice nn (tbell con n righe e n colonne) n lore nmerico detto determinnte dell Mtrice che è legto ll indipendenz/dipendenz linere Delle righe (colonne) dell mtrice. Se è dierso d zero sege che le righe (colonne) sono linermente indipendenti e che il corrispondente sistem linere mmette n solzione che è nic.

24 Dt n Mtrice qdrt A nn n n n n nn Si chim Minore complementre di n elemento ij e lo si indic con M ij, il determinnte dell mtrice ottent cncellndo l rig i e l colonn j dll mtrice A Esempi. A M M M

25 A M ) ( 9 ) 4 5 ( 5 ) 5 (

26 Si chim complemento lgebrico di n elemento ij il nmero A ij (-) ij M ij Not. Si h che (-) ij se (ij) è pri mentre (-) ij - se (ij) è dispri. Teorem di Lplce. Il determinnte di n mtrice qdrt A si ottiene Sommndo i prodotti degli elementi di n qlnqe rig (o colonn) Per i loro complementi lgebrici, det( A ) k Ak k Ak... A kn kn (fissndo n rig) oppre det( A ) k A k k A k... A nk nk (fissndo n colonn)

27 Teorem di Crmer. Il sistem Ab h n ed n sol solzione se e solo se det(a) Esempio A Det(A) A -, il sistem mmette solzione nic.

28 Regol di Crmer se A è n mtrice n n non-singolre, det(a) l nic solzione del sistem Ab è dt d,,,..., ) ; ( n k per b k A A k Doe A(k; B) è l mtrice nn ottent sostitendo ll colonn k-esim di A il ettore b A A Esempio.

29 Eqzioni ettorili e sistemi lineri b b b L eqzione ettorile A b è qindi eqilente n sistem di eqzioni lineri ( di primo grdo ), o semplicemente sistem linere nelle incognite,, (in qesto cso il sistem è qdrto )

30 Eqzioni ettorili e sistemi lineri D qnto isto pre che n sistem linere pò ere: ) Un nic solzione (tern ordint di lori *, *, *, le dire n ettore * ( *; *; *) b) Infinite solzioni c) Nessn solzione

31 Un sistem linere A b pò essere isto come l ricerc di n combinzione linere delle colonne di A (ettori) con ci ottenere Il ettore b (termine noto). I coefficienti dell combinzione linere Sono i lori delle (incognite),,, n Si definisce rngo (crtteristic) di n mtrice A l intero r tle che Esiste n sottomtrice estrtt d A di ordine r con determinnte non nllo e ogni sottomtrice di ordine r estrtt d A h determinnte nllo. Il rngo di A rppresent il mssimo nmero di righe (o di colonne) linermente indipendenti.

32 Dto n sistem linere Ab, con mtrice dei coefficienti A, si B l mtrice complet B(A b) ottent ggingendo d A il ettore dei termini noti. Teorem di Roché-Cpelli. Condizione necessri e sfficiente ffinchè Il sistem bbi solzione è che l mtrice A e l mtrice B bbino lo Stesso rngo. NOTA. Se ho n sistem linere nn, e rngo(a)rngo(b)n l solzione è nic. Se rngo(a)rngo(b)r<n ho n-r solzioni (seleziono n-r ribili come prmetri e risolo il sistem rr)

33 Spzi ettorili strtti

34 Somm e prodotto di n-ple

35 Strttr di R n

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Fisica Generale - Modulo Fisica I Ingegneria Meccanica - Edile - Informatica Esercitazione 1 RAPPRESENTAZIONE E COMPOSIZIONE DI VETTORI

Fisica Generale - Modulo Fisica I Ingegneria Meccanica - Edile - Informatica Esercitazione 1 RAPPRESENTAZIONE E COMPOSIZIONE DI VETTORI RAPPRESENTAZIONE E COMPOSIZIONE DI VETTORI A1. Il ettore h modlo 5, è diretto come l erticle ed è scomposto secondo de direzioni, n formnte n ngolo di 30 con l orizzontle e n ltr formnte n ngolo di 60

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

Chimica fisica dei materiali. Recupero di matematica. Sergio Brutti

Chimica fisica dei materiali. Recupero di matematica. Sergio Brutti Chimi fisi dei mterili Repero di mtemti Sergio Brtti Nmeri omplessi Un nmero omplesso è n espressione mtemti ostitit d 3 elementi ( nmeri reli, e l nità immginri i: i i definiione Re Im Dti de nmeri omplessi:

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n Coniche e qudriche Un qudric è il luogo degli zeri in E n, lo spzio euclideo di dimensione n, di un polinomio di grdo nelle vribili,, n Polinomi proporzionli dnno luogo ll stess qudric Se n = un qudric

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgebric di monomi. Esempio: b ; y y ; b c sono polinomi. I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Vettori Geometrici. Corso di Metodi Numerici per il Design. 30 Settembre 2002 Vettori Geometrici. Corso di Laurea in Disegno Industriale

Vettori Geometrici. Corso di Metodi Numerici per il Design. 30 Settembre 2002 Vettori Geometrici. Corso di Laurea in Disegno Industriale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design 0 Settemre 00 Vettori Geometrici 1 Vettori Geometrici Metodi Mtemtici per il Design Leione pg. 1 1 Segmento orientto P P 1 Direione:

Dettagli

Le grandezze scalari e le grandezze vettoriali

Le grandezze scalari e le grandezze vettoriali . I DEL PINO Le grndezze slri e le grndezze ettorili Esistono grndezze determinte dl nmero he le misr rispetto n prefisst nità, ome per esempio l lnghezz, l re, il olme, il tempo. Qeste grndezze sono dette

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

Definizione opposto: Somma. Definizione vettore 0:

Definizione opposto: Somma. Definizione vettore 0: Somm Operzioni in R n : somm :... n n Definizione ettore : Definizione opposto: :... :... n Rispetto tle operzione R n risult un gruppo elino. Cioè l somm h le seguenti proprietà: S5) Commutti S) Intern

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

Algebra lineare. Capitolo VETTORI

Algebra lineare. Capitolo VETTORI Cpitolo Algebr linere.. VETTORI In generle, nell geometri elementre un segmento AB è introdotto come l prte di rett compres tr i due punti A, B fissti su di ess, senz specificre un ordine tr gli estremi

Dettagli

Vettori. Vettori. Vettori in Matematica. Grandezze Fisiche

Vettori. Vettori. Vettori in Matematica. Grandezze Fisiche Vettori Vettori Reltiità, Energi e miente Fno (PU), Liceo Scientifico Torelli, 4 prile 2 http://www.fondioneocchilini.it Un ettore è n entità mtemtic strtt: Utilit per rppresentre entità fisiche concettlmente

Dettagli

5. Autovalori e autovettori di matrici reali.

5. Autovalori e autovettori di matrici reali. 5 Autovlori e utovettori di mtrici reli Definizione 5 Dt un mtrice A M n si dice utovlore di A un numero rele tle che X per cui n, n, AX = λ X L mtrice X si dice utovettore reltivo ll'utovlore λ λ Vicevers

Dettagli

Richiami sulle matrici (TITOLO)

Richiami sulle matrici (TITOLO) Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione prile Introduzione lle trsformzioni F. Cliò Richimi sulle mtrici (TITOLO) Lezione prile Trsformzioni Mtrici: Definizioni

Dettagli

Geometria Geometria 2 28 giugno 2006

Geometria Geometria 2 28 giugno 2006 Geometri Geometri 8 giugno 6 Nel pino ffine euclideo rele in cui è fissto un sistem di coordinte ortogonli si considerino i punti P; Q; T; i Si scri l euione del fscio Φ di conice tngenti ll sse e pssnti

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova Algebr linere - Appliczioni Antonino Polimeno Diprtimento di Scienze Chimiche Università degli Studi di Pdov 1 Sistemi lineri - 1 Sistem sottodeterminto (n>m), sovrdeterminto (n

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Progetto Lauree Scientifiche Liceo Classico L. Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L. Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Luree Scientifiche Liceo Clssico L. Ariosto, Ferrr Diprtimento di Mtemtic Università di Ferrr 4 Gennio 0 Concetti importnti d (ri)vedere funzione vettore mtrice cenni di clcolo combintorio probbilità:

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

Elementi Finiti SPRING, TRUSS, BEAM

Elementi Finiti SPRING, TRUSS, BEAM Progettione Assistit dl Clcoltore Elementi initi SPRING, TRUSS, BEA Elementi initi SPRING Sono elementi finiti monodimensionli costititi d de nodi di estremità. I risltti che si possono ottenere d elementi

Dettagli

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti Algebr linere Algebr Un lgebr è un sistem di segni in cui sono definite delle operzioni Algebr sclre Algebr dei vettori Algebr mtricile In lgebr mtricile un numero è chimto sclre Vettori Vettori vettore

Dettagli

CAPITOLO 1: MATRICI DETERMINANTI E SISTEMI LINEARI. è chiamata matrice. Possiamo abbreviare la notazione scrivendo ( )

CAPITOLO 1: MATRICI DETERMINANTI E SISTEMI LINEARI. è chiamata matrice. Possiamo abbreviare la notazione scrivendo ( ) CAPIOLO : MARICI DEERMINANI E SISEMI LINEARI MARICI Sino n ed m de nmeri rtenenti d N L tbell di nmeri reli n n A m m m mn A è chimt mtrice Possimo bbreire l notione scriendo ( ) con R i m e j n ij Diremo

Dettagli

Basi di Algebra Lineare. Ivan Zivko

Basi di Algebra Lineare. Ivan Zivko Bsi di Algebr Linere Ivn Zivko Trigonometri Rdinti Nelle scienze l unità di misur più ust per glingoli non sono i grdi, bensì i rdinti. Vle l seguente relzione: 36 o = π rd Per trovre qulsisi ngolo in

Dettagli

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile.

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile. Esercizio (). Il polinomio crtteristico dell mtrice A(t) è p(λ) λ (TrA)λ + deta ovvero p(λ) λ tλ t t il cui discriminnte è 6(t+)t. Sppimo che un mtrice A di ordine due non digonle è digonlizzbile se e

Dettagli

Vettori e coordinate cartesiane

Vettori e coordinate cartesiane ettori e coordinte crtesine ettori nel pino crtesino Aimo già incontrto i ettori e li imo usti per indicre uno spostmento: se un punto si muoe nel pino dll posizione A ll posizione B, lo spostmento AB

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n)

a ij Indice di riga Indice di colonna Def. Matrice Tabella costituita da m righe ed n colonne. Si dice di tipo m x n o (m,n) MTRICI: definizioni Considerimo delle tbelle di numeri, in cui ci si imbtte spesso in molti problemi di mtemtic o di scienze pplicte. Tle tbelle hnno un doppio ordinmento, per righe e per colonne, utilizzeremo

Dettagli

Introduzione alle disequazioni algebriche

Introduzione alle disequazioni algebriche Introduzione lle disequzioni lgebriche Giovnni decide di fre ttività fisic e chiede informzioni due plestre. Un plestr privt chiede un quot d iscrizione nnu di 312, più 2 per ogni ingresso. L plestr comunle

Dettagli

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)?

5. Quanti blocchi ha la forma di Jordan di f(x, y, z, s, t) = (0, y + z, y + z, t, 0)? Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 24/01/2018 cod. 8919280 Nome Cognome Mtricol 1. Il rngo di 1 2 0 0 2 0 è: 2 4 3 ; d 5. 1 2 0 2. Le coordinte di 1, 1, 0 rispetto ll bse di C 3 formt

Dettagli

Ortogonalità di funzioni

Ortogonalità di funzioni Cpitolo 0 Ortogonlità di funzioni 01 Funzioni linermente indipendenti e funzioni ortogonli Si (, b) un intervllo dell sse rele Si dice le n + 1 funzioni φ 0 (x), φ 1 (x),, φ n (x), definite in (, b), sono

Dettagli

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio.

Appunti di Matematica 1 - I polinomi - Polinomi. I vari monomi che compongono il polinomio si chiamano termini del polinomio. ppunti di Mtemtic Polinomi Un polinomio è un somm lgeric di monomi. ; c sono polinomi. ; I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche essere considerto

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Matrici. (Tabelle di elementi disposti su m righe e n colonne) Di particolare interesse le matrici quadrate (m=n): Es. (m=n=3):

Matrici. (Tabelle di elementi disposti su m righe e n colonne) Di particolare interesse le matrici quadrate (m=n): Es. (m=n=3): Mtrici (Tbelle di elementi disposti su m righe e n colonne) Di prticolre interesse le mtrici qudrte (m=n): Es. (m=n=3): V = 11 21 31 12 22 32 13 23 33 Mtrici Un vettore n componenti (coordinte), cioè pprtenente

Dettagli

Rappresentazione geometrica

Rappresentazione geometrica I ettori rappresentati come segmenti orientati (rappresentazione geometrica) Rappresentazione geometrica si intendono con l origine coincidente con l origine del sistema di riferimento (assi coordinati)

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Matematica corso base a.a.2018/19. Elementi di logica Algebra lineare

Matematica corso base a.a.2018/19. Elementi di logica Algebra lineare Mtemtic corso bse..08/9 Elementi di logic Algebr linere OBIETTIVO del corso Acquisire strumenti mtemtici utili per l nlisi e per l soluzione di problemi concreti L mtemtic è un linguggio rigoroso e non

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Università del Sannio

Università del Sannio Università del Snnio Corso di Fisic 1 Leione 2 Vettori Prof.ss Stefni Petrcc Corso di Fisic 1 - Le. 02 - Vettori 1 Definiione dei vettori I vettori rppresentno grndee per le quli il vlore, misurto con

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Introduzione. Punti e vettori. Spazio Vettoriale. Spazio affine. Linea in uno spazio affine

Introduzione. Punti e vettori. Spazio Vettoriale. Spazio affine. Linea in uno spazio affine Introdzione Costrzione di Intercce Lezione 4 Nozioni di geometri er l gric cignoni@iei.i.cnr.it htt://cg.iei.i.cnr.it/~cignoni nti e ettori sono de cose dierse Bsi e sistemi di rierimento coordinte systems

Dettagli

Fisica dello Stato Solido

Fisica dello Stato Solido Fisic dello Stto Solido Lezione n. Reticolo reciproco Corso di Lre Specilistic Ingegneri Elettronic..06-07 Prof. Mr Brzzi Lezione n. - Fisic dello Stto Solido Lre specilistic in Ingegneri Elettronic..06-07

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Emilio F. Orsega. Elementi di ALGEBRA LINEARE

Emilio F. Orsega. Elementi di ALGEBRA LINEARE Emilio F. Orseg Università C Foscri Venezi Elementi di ALGEBRA LINEARE E.F. Orseg Università C Foscri di Venezi Spzi vettorili E.F. Orseg Università C Foscri di Venezi Premess (D: Lezioni di Metodi Mtemtici

Dettagli

Numerica e aritmetica dei calcolatori. Introduzione

Numerica e aritmetica dei calcolatori. Introduzione NUC Cpitolo Ivn Zivko Introduzione Un mtrice si può descrivere come un tbell ordint di elementi, ognuno dei quli h un posizione ben precis. M 4 7 5 8 3 6 9 NUC Docente: Ivn Zivko Introduzione Se il numero

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

g x ax b e g x x e g x x e g ' x e a ax b 2 2x e 2ax 2 a b x a 2b 2ax 2 a b x a 2b a b a b 2a a 2b a b a 2ab b 2a 4ab a b a b 2a f x x x f x x x ; 2 4

g x ax b e g x x e g x x e g ' x e a ax b 2 2x e 2ax 2 a b x a 2b 2ax 2 a b x a 2b a b a b 2a a 2b a b a 2ab b 2a 4ab a b a b 2a f x x x f x x x ; 2 4 Esme di Stto 09 Mtemtic-Fisic Problem Derivimo l funzione d cui x x g x x b e x x xx g ' x e x b x e x b x b g ' x 0 per x b x b 0 b b b b b b b b b x che mmette soluzioni distinte 0. Per l condizione

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:...

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:... Sistemi di equzioni lgebriche lineri Un equzione lgebric linere in n incognite si present nell form: 1 1+ 2 2 +... + n n = b dove ( 1, 2,... n ) rppresentno le incognite, 1, 2,... n sono i coefficienti

Dettagli

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara

Calcolo Vettoriale. Fisica I - Lezione 01. Cristiano Guidorzi Dipartimento di Fisica Universitá di Ferrara Fisic I - Leione 01 Cristino Guidori Diprtimento di Fisic Universitá di Ferrr guidori@fe.infn.it http://www.fe.infn.it/ guidori/ 21 Novembre 2002 Fisic I - A.A. 2002-2003 Leione 01 Definiioni e Notioni

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004 C Fondmenti di Informtic Ingegneri Meccnic, Elettric, Gestionle Pro scritt del 13 Aprile 004 NOME MATRICOLA Esercizio 1 Dto il segente progrmm in lingggio C: #inclde #inclde oid min

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase 1 Compito in Clsse D/PNI Liceo Scientifico Sttle G. Stmpcchi Tricse Tempo di lvoro 75 minuti Argomenti: Clcolo di determinnti del terzo ordine- Risoluzione di sistemi di equzioni di primo grdo di tre equzioni

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

Struttura dello spazio della geometria euclidea e della fisica classica. Spazio affine euclideo

Struttura dello spazio della geometria euclidea e della fisica classica. Spazio affine euclideo Struttur dello spzio dell geometri euclide e dell fisic clssic. Spzio ffine euclideo Descrizione dell struttur del pino E 2 (e dello spzio E 3 ) dell geometri e dell fisic clssic come Spzio Affine Euclideo.

Dettagli

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica:

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica: PROGRESSIONI ) Di un progressione geometric si conosce: 9 9 clcolre l rgione q. Possimo risolvere fcilmente il problem ricordndo l formul ce dà il termine n-esimo di un progressione geometric: n q n Applicimol

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

MATEMATICA MATEMATICA FINANZIARIA

MATEMATICA MATEMATICA FINANZIARIA MATEMATICA e MATEMATICA FINANZIARIA.. 7-8 Corso di lure in Economi Aziendle Fscicolo n. Alger linere delle mtrici Operzioni con le mtrici. Determinnte di un mtrice qudrt Mtrice invers Rngo di un mtrice

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE

FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE FORMULARIO GENERALE DEI CORSI DI ISTITUZIONI DI MATEMATICHE ALGEBRA LINEARE Operzioni tr mtrici Sino A = { ij } e B = {b ij } venti l stess imensione. L loro somm è l mtrice C i cui elementi sono {c ij

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14 Mterile didttico reltivo l corso di Mtemtic corso bse Prof. G. Rotundo..03/4 ATTENZIONE: questo mterile contiene i lucidi utilizzti per le lezioni. NON sostituisce il libro, che deve essere comunque consultto

Dettagli

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita?

Nello studio della meccanica si incontrano due principali categorie di grandezze: scalari e vettori. Cosa distingue queste quantita? Vettori e sclri Nello studio dell meccnic si incontrno due principli ctegorie di grndezze: sclri e vettori. Cos distingue queste quntit? Domenic sono ndto in iciclett per due ore L informzione sul tempo

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Le grandezze scalari e le grandezze vettoriali

Le grandezze scalari e le grandezze vettoriali VETTORI I VETTORI DEL PINO Le grndezze slri e le grndezze ettorili Esistono grndezze determinte dl nmero he le misr rispetto n prefisst nità, ome per esempio l lnghezz, l re, il olme, il tempo Qeste grndezze

Dettagli

l assonometria 04corso tecniche di rappresentazione dello spazio docente Arch. Emilio Di Gristina

l assonometria 04corso tecniche di rappresentazione dello spazio docente Arch. Emilio Di Gristina l ssonometri 04corso tecnice di rppresentione dello spio docente rc. Emilio i Gristin le proieioni ssonometrice - generlità, ssi dell ssonometri e tringolo delle trcce = le scem convenionle ssi grfic digitle

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

Generalità sulle superfici algebriche. Superficie cilindrica

Generalità sulle superfici algebriche. Superficie cilindrica Generlità sulle superfici lgeriche Definizione: Si definisce superficie lgeric di ordine n il luogo geometrico dei punti P dello spzio le cui coordinte crtesine,, z verificno un equzione lgeric di grdo

Dettagli

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z)

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z) Qudriche in E (C) L equione crtesin di un qudric in coordinte non omogenee (,,) Q:, +, +, +, +, +, +,4 + +,4 +,4 + 4,4. in coordinte omogenee (,,, 4 ) Q:, +, +, +, +, +, + +,4 4 + +,4 4 +,4 4 + 4,4 4.

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

- Appunti di Matematica 1 Licei Umanistici - - I polinomi - Polinomi

- Appunti di Matematica 1 Licei Umanistici - - I polinomi - Polinomi Polinomi Un polinomio è un somm lgeric di monomi. Esempio: ; c sono polinomi. ; I vri monomi che compongono il polinomio si chimno termini del polinomio. Un monomio può nche essere considerto come un polinomio

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro vlore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze vettorili Vengono definite dl loro vlore

Dettagli

Elementi di Calcolo Matriciale

Elementi di Calcolo Matriciale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 7 Ottobre Elementi di Clcolo Mtricile F. Cliò Mtrici: Definizioni e Simbologi Lezione 7 Ottobre Elementi di Clcolo Mtricile

Dettagli

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1

; c. ; d nessuna delle precedenti In R 5 [x] distanza tra x e x 2 rispetto al prodotto scalare p, q = 1 Ing. erospzile e meccnic. Geometri e lgebr T. Prov del 08/01/2018 cod. 701385 Nome Cognome Mtricol 1. L conic definit d x 2 + y 2 4xy = 1 è: ellisse iperbole prbol; d un punto. 2. Le coordinte di rispetto

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno Corso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it I erminnti. Il prodotto vettorile. 11 Gennio 2016 Indice 1 Determinnti di mtrici 2 2 2 1.1 Clcolo del erminnte.

Dettagli