1.5. ISTOGRAMMA 17. Figura 1.3: Istogramma ottenuto mediante campionamento da VA Gaussiana (η x =0, σ 2 X =1).

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1.5. ISTOGRAMMA 17. Figura 1.3: Istogramma ottenuto mediante campionamento da VA Gaussiana (η x =0, σ 2 X =1)."

Transcript

1 .5. ISTOGRAMMA 7.5 Istogramma A partire dalle considerazioni svolte nel paragrafo precedente, posto x m = min(x,,x N e x M = max(x,,x N, possiamo ottenere una stima della densità di probabilità p (x suddividendo la dinamica D = x M x m osservata sul campione in K intervalli I k,k =,,K, ciascuno d'ampiezza k. La stima della p (x si ottiene dividendo per k il rapporto di frequenza µ k /N, i.e. µ k ˆp (x = = ˆP k N k k Tale stima prende il nome di istogramma. Tutte le considerazioni svolte in precedenza circa l accuratezza del rapporto di frequenza come stimatore della probabilità si riportano sull istogramma. In particolare, continuano a valere le (. e (.3, con l accortezza di sostituire P con P k = P {x I k }. Quando k è abbastanza piccolo da considerare la p (x approssimativamente costante in I k, possiamo porre P k k p (x k, dove x k denota l ascissa centrale dell intervallo I k. L andamento tipico di un istogramma è riportato in Fig..3. Figura.3: Istogramma ottenuto mediante campionamento da VA Gaussiana (η x =, σ =..6 Il metodo MonteCarlo Quanto esposto nel par..3 può essere esteso al valore atteso di una generica funzione g(, i.e. p. lim N Av(N {g (x n } =E{g(x} = g(x p (x dx (.4 La (.4 costituisce il fondamento del cosiddetto metodo MonteCarlo.5 per la valutazione d'integrali del tipo g(x p (x dx (.5 ove nell integrando si possa evidenziare.6 una funzione positiva p (x, normalizzata in area, che giochi il ruolo di densità di probabilità. Generati, allora, un numero N sufficientemente grande di determinazioni della VA x, il metodo MonteCarlo approssima l integrale (.5 come segue: g(x p (x dx Av (N {g (x n } (.6.5 Il nome MonteCarlo ricorda il principato sede del Casinò più famoso del mondo..6 Possiamo sempre scrivere con p (x densità di probabilità scelta opportunamente. f(x dx = f(x p(x dx p (x

2 8 CAPITOLO. STATISTICA MATEMATICA L accuratezza dell approssimazione è valutabile mediante i momenti fino al secondo ordine dell errore ossia e(n =Av (N {g (x n } E {g(x} η E (N =E{e(N} dove, normalmente, risulta σ E(N =Var{e(N} = m E(N η E(N η E (N =+o ( (N σ E(N =C σ,g Var {g(x} N ( + o (N N con C σ,g opportuna costante positiva dipendente da g(. Qualora non si abbia a disposizione la possibilità di effettuare N prove del fenomeno aleatorio al quale è associato la VA x, è possibile ricorrere alla simulazione al calcolatore basata su tecniche di generazione di numeri pseudo-aleatori..6. Generazione di Numeri Pseudo-Aleatori Uniformemente Distribuiti Una tecnica di generazione di numeri pseudo-aleatori.7 con distribuzione uniforme tra e m si basa sulla valutazione ricorsiva della seguente equazione non-lineare u[n] =(a u[n ] + c modm (.7 inizializzata con un certo valore (seme u[], con a, c, m costanti opportune. La (.7 descrive il meccanismo cosiddetto di generazione congruenziale lineare. Per avere numeri distribuiti uniformemente tra e basta dividere u[n] per m. Due esempi di terne (a, c, m sono riportate nella Tab... Con tali valori, la generazione (.7 si può implementare con interi a 3bit, i.e. il tipo primitivo long int di molti compilatori C/C++. CERN Minimal Standard RNG a c m 3 3 Tabella.: Parametri usati nella generazione congruenziale lineare di numeri pseudo-aleatori. Ulteriori dettagli si trovano in [3]. Altri metodi di generazione, anche più efficienti, sono possibili, e sono oggetto di continua evoluzione e raffinamento. Si consiglia al lettore interessato di ricercare le ultime novità direttamente sulla Nei testi anglosassoni s'incontra la locuzione Random Number Generation (RNG.

3 .6. IL METODO MONTECARLO 9.6. Generazione di Numeri Pseudo-Aleatori mediante Trasformazioni Nonlineari Una popolare tecnica di generazione di numeri pseudo-aleatori con misura di probabilità assegnata si basa sull impiego di trasformazioni nonlineari, opportunamente disegnate per lo scopo d interesse. Il trasferimento della misura di probabilità sotto una trasformazione nonlineare di variabili aleatorie è descritto in Appendice ai parr.b.. e B Trasformazioni Nonlineari di Numeri Pseudo-Uniformi La (B..3 esprime l equilibrio tra le misure di probabilità delle variabili aleatorie u e x legate dalla trasformazione invertibile x = g(u, i.e. u = γ(x. Consideriamo il caso notevole di variabile aleatoria u a distribuzione uniforme nell intervallo (,, funzione γ( monotona crescente, con condizioni al contorno γ( =e γ(+ =. In queste condizioni, poichè risulta p U (γ(x =, eγ (x, la (B..3 assume la forma seguente: p (x =γ (x (.8 Trasformazione Nonlineare di Variabile Aleatoria a Distribuzione Uniforme Nel caso particolare di variabile aleatoria u a distribuzione uniforme nell intervallo (,, la variabile aleatoria x = g(u è descritta dalla seguente densità di probabilità: p (x =γ (x = g (γ(x (.9 La nonlinearità g(, attraverso la sua derivata, controlla completamente la densità di probabilità dopo la trasformazione. Il disegno della nonlinearità g( si esegue integrando la (.9. In realtà, otteniamo più semplicemente la funzione inversa γ(, di cui ricordiamo la condizione al contorno γ( =: γ(x = x p (ξ dξ = D (x essendo D (x la funzione di distribuzione della variabile aleatoria x. Dunque, la nonlinearità cercata è: g(u =D (u La Fig..4 illustra sommariamente quanto esposto; in essa abbiamo riportato la variabile aleatoria uniforme u sull asse verticale, e la variabile aleatoria trasformata x sull asse orizzontale, in modo tale la funzione di distribuzione D (x appaia nel maniera usuale. Resta quindi dimostrata la seguente: Proposizione. Sia x una variabile aleatoria con funzione di distribuzione D (x e densità di probabilità p (x = D (x / x, e sia u una variabile aleatoria uniformemente distribuita tra e. Allora, la variabile aleatoria x si ottiene dalla variabile aleatoria u mediante la seguente trasformazione nonlineare: x = D (u (. Quindi, numeri pseudo-aleatori con distribuzione di probabilità diversa da quella uniforme possono essere ottenuti mediante la trasformazione nonlineare (..

4 CAPITOLO. STATISTICA MATEMATICA u ( x u uniforme in (, x g( u d.d. p. dopo la trasformazione (analisi: p ( x '( x x sintesi della trasformazione inversa: ( x z p ( d D x ( - risultato della sintesi: gu ( D ( x Figura.4: Sintesi della nonlinearità che ottiene una variabile aleatoria x con misura di probabilità assegnata p (x a partire da una variabile aleatoria u a distribuzione uniforme. Esempio: distribuzione di probabilità Rayleigh Sia r una variabile aleatoria con la seguente distribuzione di probabilità Rayleigh p R (r =r exp ( r u(r Calcoliamo la funzione di distribuzione: r r D R (r = λ exp ( λ / dλ = e ρ dρ = e ρ = / r / e r (r e la sua inversa D R (u = log( u. Quindi, per u variabile aleatoria uniformemente distribuita tra e, la variabile aleatoria Rayleigh si ottiene mediante la trasformazione nonlineare r = log( u Esempio: distribuzione di probabilità normale In questo caso, la trasformazione nonlineare si applica a una coppia di variabili aleatorie. Il caso generale è descritto in Appendice al par.b..3. Qui consideriamo due variabili aleatorie, x N(,, ex N(,, statisticamente indipendenti, i.e.: p, (x,x = ( π exp x + x e la traformazione in coordinate polari, i.e.: r = x + x Le relazioni inverse sono semplici da scrivere: ϕ =arctan x x x = r cos ϕ x = r sin ϕ

5 .6. IL METODO MONTECARLO e dalla (B.. otteniamo essendo J lo Jacobiano della trasformazione, i.e.: Infine scriviamo J(r, ϕ = det x (r, ϕ r x (r, ϕ r p R,Φ (r, ϕ = π }{{} p Φ (ϕ p R,Φ (r, ϕ =p, (x (r, ϕ,x (r, ϕ J(r, ϕ } {{ } π exp( r / x (r, ϕ ϕ x (r, ϕ ϕ cos ϕ = det sin ϕ ( r r sin ϕ = r ( cos ϕ +sin ϕ = r r cos ϕ r exp = p Φ (ϕ p R (r (r ; ϕ π (. } {{ } p R (r Ispezionando la (., riconosciamo anche che le variabili aleatorie r e ϕ sono anch esse statisticamente indipendenti, con distribuzioni marginali p Φ (ϕ = ( ϕ π π p R (r =r exp ( r (r Allora, per generare una coppia di numeri pseudi-normali, si può operare la seguente sequenza di passi. Metodo di Box-Mueller per la Generazione Numeri Pseudo-Gaussiani. si generano due numeri u e u, pseudo-indipendenti statisticamente, e pseudo-uniformi tra e ;. si genera il numero ϕ pseudo-uniforme tra e π mediante la trasformazione ϕ =π u ; 3. si genera il numero r pseudo-rayleigh mediante la trasformazione nonlineare r = log( u ; 4. si generano i numeri x e x pseudo-normali, con media nulla e varianza unitaria, mediante le trasformazioni nonlineari x = r cos ϕ ; x = r sin ϕ.

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[ Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari Osservazione: Se ( x, ) \{(0,0)} esiste (evidentemente) una sola coppia ( ρ, θ) [ 0,[ tale che x. imane in tal modo

Dettagli

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue Esercizi del Corso di Statistica Parte I - Variabili Aleatorie Continue 1. Costruire la variabile uniforme U sull intervallo [a, b], con a IR e b IR. 2. Sia X una variabile aleatoria tale che: 0 x < 1

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Cenno sui metodi Monte Carlo

Cenno sui metodi Monte Carlo Cenno sui metodi Monte Carlo I metodi probabilistici hanno una lunga storia ma solo dopo il 1944 è iniziato un loro studio sistematico che ha portato a notevoli sviluppi. Attualmente è stato valutato che

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

1 Modelli di variabili aleatorie continue

1 Modelli di variabili aleatorie continue Modelli di variabili aleatorie continue. Variabili aleatorie continue uniformi (o rettangolari) Una v.a. X è detta uniforme (o rettangolare) sull intervallo [a, b] se la sua densità è data da se x [a,

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Fondamenti di Elaborazione di Immagini Estrazione dei Bordi e Segmentazione. Raffaele Cappelli raffaele.cappelli@unibo.it

Fondamenti di Elaborazione di Immagini Estrazione dei Bordi e Segmentazione. Raffaele Cappelli raffaele.cappelli@unibo.it Fondamenti di Elaborazione di Immagini Estrazione dei Bordi e Segmentazione Raffaele Cappelli raffaele.cappelli@unibo.it Contenuti Estrazione dei bordi Calcolo del gradiente Operatori di Roberts Operatori

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 1 giugno 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 1 giugno 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del giugno 202 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

Un seminario sull analisi statistica di formiche virtuali

Un seminario sull analisi statistica di formiche virtuali Un seminario sull analisi statistica di formiche virtuali Dr. Andrea Fontana Universita di Pavia http://www.pv.infn.it/~fontana/formiche Numeri casuali Tests di casualita Distribuzione uniforme in C e

Dettagli

Coppie di variabili aleatorie. In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia.

Coppie di variabili aleatorie. In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia. Capitolo 6 Coppie di variabili aleatorie In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia di variabili aleatorie: si mostra in particolare che in questo caso

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004 Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 8.30 Esame di ANALISI MATEMATICA I - 11 Febbraio 2011, ore 830 A ESERCIZIO 1 (8 punti) Data la funzione = 1 + sin x 2 2 x (a) determinare lo sviluppo di MacLaurin al terzo ordine della funzione ; (b) determinare

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009. Metodo Monte Carlo

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009. Metodo Monte Carlo S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 008/009 Metodo Monte Carlo Laboratorio di Didattica della Matematica Applicata 1 L. Parisi A. Stabile

Dettagli

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e " i k x u k ψ x + a = e " i k x + a u k x + a = e " i k a e " i k x u k

d 2 dx ψ + 2 m E V x ψ = 0 V x = V x + a. ψ(x+a) = Q ψ(x). ψ x = e  i k x u k ψ x + a = e  i k x + a u k x + a = e  i k a e  i k x u k Teorema di Bloch Introduzione (vedi anche Ascroft, dove c è un approccio alternativo) Cominciamo col considerare un solido unidimensionale. Il modello è quello di una particella (l elettrone) in un potenziale

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013 Tempo massimo 2 ore. Consegnare solamente la bella copia. Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 212/213 12 febbraio 213 1. Disegnare il grafico della funzione: [1

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST 1 Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: analisi

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

Metodi Monte Carlo in Finanza

Metodi Monte Carlo in Finanza Metodi Monte Carlo in Finanza Lucia Caramellino Indice 1 Metodi Monte Carlo: generalità Simulazione di un moto Browniano e di un moto Browniano geometrico 3 3 Metodi numerici Monte Carlo per la finanza

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità...

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità... Indice 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo............................. 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità.............. 5 i Capitolo 1 Introduzione

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

2.4.1 Generazione di numeri pseudocasuali con distribuzione uniforme

2.4.1 Generazione di numeri pseudocasuali con distribuzione uniforme GENERAZIONE DI OSSERVAZIONI CASUALI 157 2.4 GENERAZIONE DI OSSERVAZIONI CASUALI Una volta determinate le distribuzioni di input, la simulazione dovrà generare durante ogni esecuzione osservazioni casuali

Dettagli

Generazione di numeri casuali. Daniela Picin

Generazione di numeri casuali. Daniela Picin Daniela Picin Testi di consultazione Gentle I.E. Random Number Generation and Monte Carlo Methods, 2nd ed. Springer Verlag, 2005 Raj Jain - The Art of Computer Systems Performance Analysis: Techniques

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Descrittori per i contorni: lunghezza, orientazione, del segmento congiungente punti estremi, numero di concavità

Descrittori per i contorni: lunghezza, orientazione, del segmento congiungente punti estremi, numero di concavità Texture analysis Introduzione Una regione di una immagine può essere rappresentata mediante le sue caratteristiche esterne i contorni Descrittori per i contorni: lunghezza, orientazione, del segmento congiungente

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

Variabili Casuali Continue e Distribuzione Normale

Variabili Casuali Continue e Distribuzione Normale Variabili Casuali Continue e Distribuzione Normale Nel Capitolo 5 si è definita variabile casuale continua una variabile casuale che può assumere tutti valori compresi fra gli estremi di un intervallo

Dettagli

Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2

Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2 Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2 [1] Metodo di Bisezione gli estremi a e b di un intervallo reale trovi uno zero della funzione f(x) nell intervallo [a, b] usando il metodo

Dettagli

La dissomiglianza tra due distribuzioni normali

La dissomiglianza tra due distribuzioni normali Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): 43-50 Editore CLEUP, Padova - ISBN: 978-88-6129-833-0 La dissomiglianza tra due distribuzioni

Dettagli

RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI

RICERCA OPERATIVA RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI RICERCA OPERATIVA RICERCA OPERATIVA (PROBLEMI DI SCELTA) Il termine RICERCA OPERATIVA sembra sia stato usato per la prima volta nel 1939, ma già precedentemente alcuni scienziati si erano occupati di problemi

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2.

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2. Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi (1) (2) (3) (4) f (x) = log ( ) x + 2 x 1 f (x) = x exp( x 3 ) ( f (x) = arctan x ) x 1

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 1

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 1 Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. Università di Padova - Lauree in Fisica ed Astronomia - A.A. 8/9 venerdì 8 maggio 9 Questi esercizi sono proposti come preparazione

Dettagli

Motore ad induzione Controllo ad Orientamento di Campo (FOC) Controllo non interagente

Motore ad induzione Controllo ad Orientamento di Campo (FOC) Controllo non interagente Motore ad induzione Controllo ad Orientamento di Campo (FOC) Controllo non interagente P. Valigi Ottimizzazione e Controllo 12 Marzo 214 Il modello Motore ad induzione: uno statore, in genere avvolto,

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Funzioni e loro invertibilità

Funzioni e loro invertibilità Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014

Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Indice 1 Esponenziali 1 1.1 Funzioni esponenziali con dominio Z.......................

Dettagli

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2

SOLUZIONE DEL PROBLEMA 2 CORSO DI ORDINAMENTO 2013. 8 4 + x 2, con dominio R (infatti x2 + 4 0 per ogni. 8 4 + ( x) = 8. 4 + x 2 SOLUZIONE DEL PROBLEMA CORSO DI ORDINAMENTO. Studiamo la funzione f(x) = x R). Notiamo che f( x) = 4 + x, con dominio R (infatti x + 4 per ogni 4 + ( x) = 4 + x = f(x), cioè la funzione è pari e il grafico

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Generalità sull energia eolica

Generalità sull energia eolica Generalità sull energia eolica Una turbina eolica converte l energia cinetica della massa d aria in movimento ad una data velocità in energia meccanica di rotazione. Per la produzione di energia elettrica

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Capitolo 16 Esercizi sugli integrali doppi

Capitolo 16 Esercizi sugli integrali doppi Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI

Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI Capitolo 5 RESTAURO E RICOSTRUZIONE DI IMMAGINI La differenza tra il restauro e il miglioramento (enhancement) delle immagini è che il miglioramento è un processo soggettivo, mentre il restauro è un processo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli