Equilibrio economico generale e benessere

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equilibrio economico generale e benessere"

Transcript

1 Scambio Equilibrio economico generale e benessere Equilibrio economico generale e benessere (KR 12 + NS 8) Dipartimento di Economia Politica Università di Milano Bicocca

2 Outline Scambio 1 Scambio 2 3 4

3 Outline Scambio 1 Scambio 2 3 4

4 Outline Scambio 1 Scambio 2 3 4

5 Outline Scambio 1 Scambio 2 3 4

6 Scambio Premesse Sino ad ora abbiamo analizzato situazioni di equilibrio parziale, vale a dire l equilibrio nei singoli mercati. Vogliamo ora occuparci dell equilibrio generale, vale a dire dell equilibrio di tutti i mercati contemporaneamente.

7 Outline Scambio 1 Scambio 2 3 4

8 Scambio Scambio Non c è produzione, gli individui hanno dotazioni fisse di beni. Occorre determinare solamente le quantità da scambiare. Scatola di Edgeworth: diagramma in cui sono riportate dotazioni e preferenze degli individui.

9

10

11 Scambio Scambio Vogliamo individuare l allocazione di equilibrio generale. Questa è data da un rapporto dei prezzi tale che: 1 Dato questo rapporto di prezzi, i due consumatori massimizzano l utilità 2 La quantità offerta coincide con la quantità domandata

12

13

14 Scambio Scambio Una coppia di panieri di consumo X A, X B ove X A = (xa 1, x A 2) e X B = (xb 1, x B 2 ) è detta allocazione. In generale, una allocazione è Pareto efficiente se non si può aumentare la soddisfazione di un agente senza diminuire quella di un altro.

15

16 Scambio Efficienza nel consumo Nella scatola di Edgeworth le allocazioni Pareto efficienti nel consumo sono rappresentate dei punti in cui le curve di indifferenza sono tangenti. L insieme dei punti di tangenza delle curve di indifferenza ovvero l insieme dei punti pareto efficienti nel consumo è detto curva dei contratti. Ovvero i contratti finali derivanti dallo scambio devono trovarsi lungo tale curva. Se non lo fossero non sarebbero contratti finali.

17

18

19 Scambio Equilibrio L equilibrio si realizza quando la quantità totale di ciascun bene che ogni scambista è disposto ad acquistare è uguale alla quantità totale disponibile. Se ognuno sceglie in modo ottimale, il MRS tra i due beni deve essere uguale al rapporto tra i prezzi. Ma questo deve essere valido per tutti: MRS A = MRS B = p x /p y (1)

20 Outline Scambio 1 Scambio 2 3 4

21

22 Scambio Efficienza nella produzione Per analogia con il concetto di efficienza nel consumo, possiamo definire una allocazione efficiente nella produzione [grafico]: una allocazione tale per cui per aumentare la produzione di un bene bisogna ridurre la produzione di una altro bene. TRS A = TRS B = w 1 /w 2 (2)

23

24 Scambio Saggio marginale di trasformazione All insieme delle allocazioni efficienti nella produzione corrisponde la curva delle produzioni possibili, che indica la quantità massima producibile di un bene, data la quantità dell altro bene.

25

26 Scambio Saggio marginale di trasformazione La pendenza della curva delle produzioni possibili è il saggio marginale di trasformazione ( MRT 1,2 ) : il saggio al quale l economia può trasformare un bene in un altro (il numero di unità di un bene a cui si deve rinunciare per produrre una unità in più dell altro bene). Si noti che il saggio marginale di trasformazione è pari al rapporto tra i costi marginali: MRT 1,2 = MC 1 MC 2 (3)

27 Outline Scambio 1 Scambio 2 3 4

28 Scambio Efficienza Una allocazione è Pareto efficiente se non è possibile aumentare il benessere di un individuo senza ridurre quello di un altro. Affinché una allocazione sia Pareto efficiente, deve essere sia efficiente nel consumo che efficiente nella produzione. Inoltre, deve essere efficiente nell allocazione: MRT 1,2 = MRS 1,2 (4)

29 Scambio Efficienza In definitiva, partendo da qualsiasi punto lungo la curva delle produzioni possibili e costruendo una scatola di Edgeworth relativa al consumo, una allocazione è Pareto efficiente se: 1 Le quantità totali consumate dei due beni si trovano sulla curva delle produzioni possibili 2 L allocazione delle quantità totali tra i due consumatori si trova lungo la curva dei contratti 3 Il MRS di ciascun consumatore è uguale al saggio marginale di trasformazione (MRT)

30

31 Scambio Efficienza Si noti che le allocazioni Pareto efficienti sono potenzialmente infinite: 1 possono esserci altri punti lungo la curva dei contratti nei quali MRS = MRT ; 2 partendo da un altro punto lungo la curva delle produzioni possibili avremmo potuto individuare altre allocazioni pareto efficienti. La frontiera delle utilità possibili è il luogo di tutti i punti Pareto efficienti.

32

33 Outline Scambio 1 Scambio 2 3 4

34 Scambio Primo Teorema dell economia del benessere Quanto è probabile che una economia reale determini una allocazione delle risorse pareto-efficiente? Primo teorema dell economia del benessere: se sia i produttori che i consumatori sono price-taker, e se per ogni bene esiste un mercato, l allocazione di equilibrio delle risorse sarà Pareto efficiente. In altre parole, ogni equilibrio concorrenziale è Pareto efficiente.

35 Scambio Secondo Teorema dell economia del benessere Secondo Teorema dell economia del benessere: se le curve di indifferenza e gli isoquanti sono convessi, per ogni allocazione Pareto efficiente esistono un insieme dei prezzi e una distribuzione delle dotazioni iniziali che consentono di raggiungere tale allocazione come un equilibrio economico generale concorrenziale.

36 Scambio Dimostrazione e implicazioni Dimostrazione intuitiva Implicazioni: 1 Il primo teorema stabilisce che, date le dotazioni iniziali, se lasciamo gli agenti comportarsi secondo le regole del mercato l esito sarà una allocazione pareto efficiente. 2 Il secondo teorema permette di separare il problema della distribuzione da quello dell efficienza: qualsiasi allocazione Pareto efficiente può essere realizzata come equilibrio di mercato previa una redistribuzione delle allocazioni iniziali.

37 Scambio Osservazioni La teoria del second best. Sovrappiù totale.

38 Scambio Osservazioni Fallimenti del mercato: 1 Potere di mercato. 2 Assenza di mercati. 3 Beni pubblici. Equità.

Equilibrio generale ed efficienza dei mercati (Frank, Capitolo 15)

Equilibrio generale ed efficienza dei mercati (Frank, Capitolo 15) Equilibrio generale ed efficienza dei mercati (Frank, Capitolo 15) EQUILIBRIO ECONOMICO GENERALE Esistono molteplici relazioni tra mercati Per comprendere il funzionamento dell economia è quindi indispensabile

Dettagli

L impresa che non fa il prezzo

L impresa che non fa il prezzo L offerta nei mercati dei prodotti L impresa che non fa il prezzo L impresa che non fa il prezzo (KR 10 + NS 6) Dipartimento di Economia Politica Università di Milano Bicocca Outline L offerta nei mercati

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 6: Equilibrio economico generale (part 2) David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

L Economia del Benessere

L Economia del Benessere L Economia del Benessere L'Economia del Benessere è la branca normativa della Scienza Economica. In quest'area della ricerca vengono studiate e definite delle regole (o dei metodi) per poter classificare,

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

Lezione 13- I due teoremi fondamentali dell economia del benessere e il second best

Lezione 13- I due teoremi fondamentali dell economia del benessere e il second best Lezione 13- I due teoremi fondamentali dell economia del benessere e il second best La mano invisibile e i due teoremi fondamentali dell economia del benessere Nel 1776 Adam Smith nella Ricchezza delle

Dettagli

Determinare il livello produttivo che consente di rendere minimo il costo medio, nonché il suo valore corrispondente.

Determinare il livello produttivo che consente di rendere minimo il costo medio, nonché il suo valore corrispondente. ESERCIZI SVOLTI SU COMPORTAMENTO DELL IMPRESA di G.Garofalo 1. Nota la funzione di costo totale CT = 1 + 3 + 70 Determinare le funzioni di costo: - fisso e medio fisso - variabile e medio variabile - medio

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Effetto reddito ed effetto sostituzione.

Effetto reddito ed effetto sostituzione. . Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene

Dettagli

Funzione del benessere sociale e trade-off equità ed efficienza

Funzione del benessere sociale e trade-off equità ed efficienza Funzione del benessere sociale e trade-off equità ed efficienza Economia Pubblica lezione 3 1 Esistono infinite allocazioni Pareto-efficienti: Frontiera del Benessere (FB) o grande frontiera dell utilità

Dettagli

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 12 Il monopolio IL MONOPOLIO Il monopolio è una forma di mercato in cui un unico venditore offre un bene che non ha stretti sostituti, ad una moltitudine di consumatori La differenza fondamentale

Dettagli

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche (versione provvisoria) Marisa Faggini Università di Salerno mfaggini@unisa.it I beni pubblici rappresentano un esempio

Dettagli

Economia del Lavoro 2010

Economia del Lavoro 2010 Economia del Lavoro 2010 Capitolo 1-3 Offerta di lavoro -Le preferenze del lavoratore 1 Offerta di lavoro Le preferenze del lavoratore Il comportamento dell offerta di lavoro è analizzato dagli economisti

Dettagli

TEORIA DEL CONSUMATORE

TEORIA DEL CONSUMATORE TEORIA DEL CONSUMATORE Premessa: La moderna teoria economica del comportamento del consumatore è intimamente legata alla teoria marginalista neo-classica, essendo fra l'altro da essa storicamente derivata.

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 10 Costi. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 10 Costi COSTI Per poter realizzare la produzione l impresa sostiene dei costi Si tratta di scegliere la combinazione ottimale dei fattori produttivi per l impresa È bene ricordare che la categoria

Dettagli

1 Il criterio Paretiano e la "Nuova economia del Benessere"

1 Il criterio Paretiano e la Nuova economia del Benessere 1 Il criterio Paretiano e la "Nuova economia del Benessere" 1.1 L aggregazione di preferenze ordinali inconfrontabili e il criterio di Pareto L aggregazione delle preferenze individuali è problematica

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

Capitolo 6. La produzione. A.A. 2013-2014 Microeconomia - Cap. 6 1. Questo file (con nome cap_06.pdf)

Capitolo 6. La produzione. A.A. 2013-2014 Microeconomia - Cap. 6 1. Questo file (con nome cap_06.pdf) Capitolo 6 La produzione A.A. 2013-2014 Microeconomia - Cap. 6 1 Questo file (con nome cap_06.pdf) può essere scaricato da siti e file elearning.moodle2.unito.it/esomas/course/ view.php?id=215 abbreviato

Dettagli

Capitolo 7. F. Barigozzi Microeconomia CLEC 1

Capitolo 7. F. Barigozzi Microeconomia CLEC 1 Capitolo 7 Continuiamo ad acquisire gli strumenti che ci permetteranno di studiare la scelta ottimale dell impresa. In questo capitolo vengono trattati i costi dell impresa. Usando la funzione di produzione

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Dispensa per le lezioni di microeconomia. Marco Missaglia

Dispensa per le lezioni di microeconomia. Marco Missaglia Dispensa per le lezioni di microeconomia Marco Missaglia 1 Introduzione In questa dispensa si tratteranno alcune questioni legate ai mercati, alla loro efficienza e ai loro fallimenti. Prima di tutto cercheremo

Dettagli

IL MONOPOLIO NATURALE E LA GESTIONE DEI SERVIZI PUBBLICI LOCALI

IL MONOPOLIO NATURALE E LA GESTIONE DEI SERVIZI PUBBLICI LOCALI IL MONOPOLIO NATURALE E LA GESTIONE DEI SERVIZI PUBBLICI LOCALI SOMMARIO 1. COS E IL MONOPOLIO NATURALE 2. LE DIVERSE OPZIONI DI GESTIONE a) gestione diretta b) regolamentazione c) gara d appalto 3. I

Dettagli

Lezione XII: La differenziazione del prodotto

Lezione XII: La differenziazione del prodotto Lezione XII: La differenziazione del prodotto Ci sono mercati che per la natura del loro prodotto, la numerosità dei soggetti coinvolti su entrambi i lati del mercato (e in particolare, la bassa concentrazione

Dettagli

Dietro la curva di domanda: Q d =Q d (P) Ovvero: Come ci comportiamo? E perché? (Capitolo 3 del libro di testo di micro)

Dietro la curva di domanda: Q d =Q d (P) Ovvero: Come ci comportiamo? E perché? (Capitolo 3 del libro di testo di micro) Dietro la curva di domanda: Q d =Q d (P) Ovvero: Come ci comportiamo? E perché? (Capitolo 3 del libro di testo di micro) Mio Prologo Ripeto i concetti della prima lezione: Nessun uomo dovrebbe essere un'isola:

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Effetti delle imposte nel mercato internazionale dei capitali. Economia dei tributi_polin 1

Effetti delle imposte nel mercato internazionale dei capitali. Economia dei tributi_polin 1 Effetti delle imposte nel mercato internazionale dei capitali Economia dei tributi_polin 1 Allocazione internazionale del capitale Si possono definire due principi di neutralità della tassazione del capitale

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)). Calcolo differenziale Il teorema di Rolle TEOREMA DI ROLLE Ipotesi f continua su [a, b] f derivabile per lo meno su (a,b) f(a) = f(b) Tesi Esiste almeno un punto c in (a, b) tale che Giustificazione con

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

28/04/2014 CAPITOLO 10. Mercati concorrenziali: applicazioni

28/04/2014 CAPITOLO 10. Mercati concorrenziali: applicazioni CAPITOLO 10 Mercati concorrenziali: applicazioni 1 1 L efficienza economica in un mercato concorrenziale 2 2 L efficienza economica in un mercato concorrenziale In corrispondenza dell equilibrio perfettamente

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Le metodologie alternative al VAN

Le metodologie alternative al VAN Teoria della Finanza Aziendale Le metodologie alternative al VAN 6 1-2 Argomenti Il VAN e le possibili alternative Il Payback Period Il rendimento medio contabile Il TIR Valutazione in presenza di vincoli

Dettagli

PLANIMETRIA E PROFILO INSIEME

PLANIMETRIA E PROFILO INSIEME PLANIMETRIA E PROFILO INSIEME planimetria profili 11 RELAZIONE TRA PLANIMETRIA E PROFILO La correlazione tra andamento planimetrico e altimetrico è molto stretta; variazioni del primo incidono subito sul

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

I costi nel breve periodo

I costi nel breve periodo I costi di produzione e la funzione di offerta Breve e lungo periodo Il breve periodo è quell orizzonte temporale nel quale l impresa può variare solo parzialmente l impiego degli input esempio: l impresa

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Programma di Compliance Antitrust. Allegato B al Modello di Organizzazione, Gestione e Controllo ex D. LGS. 231/2001

Programma di Compliance Antitrust. Allegato B al Modello di Organizzazione, Gestione e Controllo ex D. LGS. 231/2001 Programma di Compliance Antitrust Allegato B al Modello di Organizzazione, Gestione e Controllo ex D. LGS. 231/2001 Approvato dal Consiglio di Amministrazione in data 19 febbraio 2015 Rev 0 del 19 febbraio

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Capitolo 10. Analisi degli investimenti in beni strumentali

Capitolo 10. Analisi degli investimenti in beni strumentali Capitolo 10 Analisi degli investimenti in beni strumentali 1 I criteri tradizionali di valutazione degli investimenti 1. Il tempo di recupero (payback period) 2. Il payback period attualizzato 3. Il rendimento

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Che cos è la Qualità?

Che cos è la Qualità? Che cos è la Qualità? Politecnico di Milano Dipartimento di Elettrotecnica 1 La Qualità - Cos è - La qualità del prodotto e del servizio - L evoluzione del concetto di qualità - La misura della qualità

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello

FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello FUNZIONI DI DUE VARIABILI: graöci 3D e curve di livello Una funzione di due variabili Ë una funzione in cui per ottenere un valore numerico bisogna speciöcare il valore di 2 variabili x e y, non pi di

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Rexroth Pneumatics. Cilindro senz asta Cilindri senza stelo. Pressione di esercizio min/max Temperatura ambiente min./max.

Rexroth Pneumatics. Cilindro senz asta Cilindri senza stelo. Pressione di esercizio min/max Temperatura ambiente min./max. Rexroth Pneumatics 1 Pressione di esercizio min/max 2 bar / 8 bar Temperatura ambiente min./max. -10 C / +60 C Fluido Aria compressa Dimensione max. particella 5 µm contenuto di olio dell aria compressa

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

DISPENSA DI OTTIMIZZAZIONE MATEMATICA PER L ECONOMIA. Francesco Rania 1

DISPENSA DI OTTIMIZZAZIONE MATEMATICA PER L ECONOMIA. Francesco Rania 1 DISPENSA DI OTTIMIZZAZIONE MATEMATICA PER L ECONOMIA A.A. 20/2 Francesco Rania Indice. Introduzione all Ottimizzazione.. Massimi e minimi di una funzione scalare reale 2.2. Definizione del Problema 2.3.

Dettagli

Business Process Management

Business Process Management Corso di Certificazione in Business Process Management Progetto Didattico 2015 con la supervisione scientifica del Dipartimento di Informatica Università degli Studi di Torino Responsabile scientifico

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Il Market Coupling tra Italia e Slovenia Fabrizio Carboni Direzione Mercati

Il Market Coupling tra Italia e Slovenia Fabrizio Carboni Direzione Mercati Il Market Coupling tra Italia e Slovenia Fabrizio Carboni Direzione Mercati Roma, 2 dicembre 2010 2 Market Coupling: il contesto regolatorio Il terzo pacchetto dell energia (REGOLAMENTO (CE) n. 714/2009)

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Beni pubblici e analisi costi benefici

Beni pubblici e analisi costi benefici Beni pubblici e analisi costi benefici Arch. Laura Gabrielli Valutazione economica del progetto a.a. 2005/06 Economia pubblica L Economia pubblica è quella branca della scienza economica che spiega come

Dettagli

Cos è e come compilare la bibliografia di una tesi/tesina

Cos è e come compilare la bibliografia di una tesi/tesina Cos è e come compilare la bibliografia di una tesi/tesina (adattatto da: http://it.wikipedia.org/wiki/bibliografia, ultimo accesso: 16/9/2013) Caterina Ferrario, 16/9/2013 1. Definizione: Per bibliografia

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Economia Internazionale e Politiche Commerciali a.a. 2012/13. ESERCIZIO n. 1

Economia Internazionale e Politiche Commerciali a.a. 2012/13. ESERCIZIO n. 1 Economia Internazionale e Politiche Commerciali a.a. 2012/13 ESERCIZIO n. 1 [Krugman, Obstfeld e Melitz, Capitolo 3: Problemi n. 1, 2, 3, 4, 5 e 9 (pp. 66 67)] SOLUZIONE 1. Il paese H ha a disposizione

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

L attività di ricerca e sviluppo nell organizzazione aziendale

L attività di ricerca e sviluppo nell organizzazione aziendale CAPITOLO PRIMO L attività di ricerca e sviluppo nell organizzazione aziendale SOMMARIO * : 1. Il ruolo dell innovazione tecnologica 2. L attività di ricerca e sviluppo: contenuti 3. L area funzionale della

Dettagli

10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole in un Paese grande 4

10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole in un Paese grande 4 I SUSSIDI ALLE ESPORTAZIONI NELL AGRICOLTURA E NEI SETTORI AD ALTA TECNOLOGIA 10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Guida rapida. Cos è GeoGebra? Notizie in pillole

Guida rapida. Cos è GeoGebra? Notizie in pillole Guida rapida Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Riunisce geometria, algebra, tabelle,

Dettagli

Le imprese nell economia. esportazioni, multinazionali. Capitolo 8. adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania)

Le imprese nell economia. esportazioni, multinazionali. Capitolo 8. adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) Capitolo 8 Le imprese nell economia globale: esportazioni, outsourcing e multinazionali [a.a. 2012/13] adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) 8-1 Struttura della

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p Caitolo Ventitrè Offerta dell industria Offerta dell industria concorrenziale Come si combinano le decisioni di offerta di molte imrese singole in un industria concorrenziale er costituire l offerta di

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Utilizzazioni e assegnazioni provvisorie del personale docente, educativo ed ATA per il 2011/2012

Utilizzazioni e assegnazioni provvisorie del personale docente, educativo ed ATA per il 2011/2012 Di cosa si tratta Si tratta della possibilità che ha il personale della scuola di poter partecipare alla "mobilità annuale", e cioè di poter prestare servizio, per un anno, in una scuola diversa da quella

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Direttive per l azione amministrativa e la gestione della misura 133 Attività. di informazione e promozione del PSR 2007/2013.

Direttive per l azione amministrativa e la gestione della misura 133 Attività. di informazione e promozione del PSR 2007/2013. REGIONE AUTONOMA DELLA LA SARDEGNA L Assessore Direttive per l azione amministrativa e la gestione della misura 133 Attività di informazione e promozione del PSR 2007/2013. Dotazione finanziaria Il fabbisogno

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli