Grafici di particolari funzioni lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Grafici di particolari funzioni lineari"

Transcript

1 A Grafici di particoari funzioni ineari Vogiamo tracciare i grafico dea funzione y ˆ jxj. x quando x 0 Sappiamo che jxj significa x quando x < 0 Possiamo aora riscrivere 'equazione di questa funzione in questo modo y ˆ x se x 0 x se x < 0 e disegnare (figura 1) a retta di equazione y ˆ x ne semipiano dee ascisse positive o nue a retta y ˆ x ne semipiano dee ascisse negative. Osserviamo che i grafico trovato si puoá ottenere anche con questa procedura (figura 2) si disegna a retta y ˆ x per intero si esegue una simmetria rispetto a'asse x dea soa parte negativa de grafico (in pratica si esegue un ribatamento dea parte de grafico che si trova sotto 'asse x). Infatti considerare i moduo di una quasiasi espressione significa in pratica far diventare positivo cioá che eá negativo. Figura 2 Figura 1 Figura 3 Questa procedura puoá essere generaizzata a una quaunque funzione di equazione y ˆ f x n si disegna i grafico di f x n si ribatano e parti di grafico che si trovano ne semipiano dee ordinate negative. Costruiamo seguendo questa procedura i grafico di y ˆ j2x 1j (figura 3) disegniamo a retta y ˆ 2x 1 disegniamo a simmetrica rispetto a'asse x dea soa parte negativa. Acune funzioni ineari possono essere definite da espressioni diverse in intervai diversi si para di funzioni ineari a tratti. Consideriamo per esempio a funzione y ˆ x 2 s e x < 1 3 2x se x 1 I piano cartesiano e a retta

2 Essa ha come dominio 'insieme R, ma ha due espressioni distinte a seconda che x sia maggiore o minore di 1. I suo grafico eá quindi formato da (figura 4) queo dea retta y ˆ x 2 disegnata soo per vaori di x piuá piccoi di 1 (in pratica consideriamo soo a semiretta a sinistra de punto di ascissa di 1) queo dea retta y ˆ 3 2x disegnata soo per vaori di x maggiori o uguai a 1 (in pratica consideriamo soo a semiretta a destra de punto di ascissa di 1). Funzioni di questo tipo sono i modeo di moti probemi reai; per esempio i costi dee teefonate, dove si paga in funzione dei minuti di conversazione ed i costo a minuto eá diverso a seconda dea unghezza dea teefonata. Una possibie funzione dei costi in funzione de tempo t potrebbe essere a seguente >< y ˆ 0,5 1 2 t se0< t 5 > 3 t 5 se t > 5 Figura 4 Figura 5 che ha questo significato si paga un costo fisso di 0; 5 euro piuá mezzo euro a minuto per teefonate di a massimo 5 minuti si paga un costo fisso di 3 euro (corrispondente a costo di una teefonata di 5 minuti) piuá 1 euro a minuto per teefonate piuá unghe di 5 minuti. I grafico di questa funzione eá in figura 5 dove su'asse dee ascisse eá rappresentato i tempo t (in minuti). ESERCIZI Comprensione 1 Indica quae tra i seguenti eá i grafico dea funzione y ˆ j1 2xj a. b. c. d. 2 La funzione i cui grafico eá in figura ha equazione a. y ˆ x se x 2 x se x < 2 c. y ˆ x se x 2 2 x se x < 2 b. y ˆ x 1 s e x 2 x 2 s e x < 2 d. y ˆ x 2 s e x 2 x se x < 2 I piano cartesiano e a retta

3 Appicazione Traccia i grafico dee seguenti funzioni. 3 a. y ˆ j4xj b. y ˆ j 2xj c. y ˆ j3xj 4 a. y ˆ j 6xj b. y ˆ 3jxj c. y ˆ 1 3 jxj 5 Disegna i grafici dee seguenti funzioni con i modui. Vogiamo disegnare a curva di equazione y ˆjx 2j. Disegniamo dapprima a retta come se non ci fosse i moduo y ˆ x 2 (prima figura). Eseguiamo una simmetria rispetto a'asse x dea semiretta negativa (seconda figura). I grafico di y ˆjx 2j eá evidenziato in coore rosso. 6 y ˆj2x 3j 7 y ˆj1 xj y ˆj1 3xj 9 y ˆ j2x 5j 10 y ˆ 1 2 x 4 11 y ˆ 3 2 x 1 12 y ˆ 1 3 x y ˆ 6x y ˆ x Disegna i grafici dee seguenti funzioni ineari a tratti. 15 ( 3 x se x < 2 y ˆ 2x 3 2 se x 2 Dobbiamo disegnare a retta di equazione y ˆ 3 x soo ne semipiano a sinistra dea retta x ˆ 2 e a retta di equazione y ˆ 2x 3 2 ne semipiano a destra. 16 y ˆ x 1 s e x < 0 3x 2 s e x 0 1 y ˆ 5 s e x < 0 x 1 s e x 0 1 >< x se x < y ˆ > 1 3 x 2 s e x 1 3 x se0 x < y ˆ 2x 3 s e x y ˆ 2x 2 s e x 4 x 3 s e x > 4 < 2 21 y ˆ 3 x 1 s e x 1 x 2 s e x > 1 I piano cartesiano e a retta

4 < x se x < 0 22 y ˆ x 2 s e 0 x < 1 x se x 1 1 >< 2 x se x < 2 24 y ˆ 2x se 2 x < 2 > 3 4 x 1 s e x 2 < x se x < 0 23 y ˆ 2x se0 x < 3 x 1 s e x 3 1 >< 3 x 1 s e x < 3 25 y ˆ 2 3 x se 3 x < 0 > 6x se x 0 Disegna i grafici dee seguenti funzioni con i modui trasformandoe in funzioni ineari a tratti. 26 Disegnamo ora i grafico dea curva di equazione y ˆ 1 2 x 3. Per a presenza di un termine esterno a moduo, dobbiamo considerare i seguenti casi a. se 1 2 x 0, cioeá se x 0, a curva ha equazione y ˆ 1 2 x 3 b. se 1 2 x < 0, cioeá se x < 0, a curva ha equazione y ˆ 1 2 x 3 L'espressione anaitica dettagiata eá aora 1 >< 2 x 3 s e x 0 y ˆ > 1 2 x 3 s e x < 0 I suo grafico eá queo dea figura a fianco, in cui i ramo di coore verde eá queo dea retta y ˆ 1 2 x 3 vautato soo per x 0, mentre i ramo di coor rosso eá queo dea retta y ˆ 1 x 3 vautato soo per x < Disegna a curva di equazione y ˆjx 1j 2 Distingui i due casi a. se x 1 0, cioeá x 1 a curva ha equazione... b. se x 1 < 0, cioeá x < 1 a curva ha equazione... x 1 La sua espressione anaitica dettagiata eá dunque y ˆ x < 1 2 y ˆj3 2xj 3 29 y ˆ 3 2 x 1 I piano cartesiano e a retta

5 30 y ˆ 1 2 x y ˆ x 1 2 3x 1 32 y ˆjx 2j x 33 y ˆjxj jx 1j 34 y ˆj5 xj 4 35 y ˆjx 3j 2x I piano cartesiano e a retta

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

þ k Þy ¼ ð 1 3k Þx 2 þ 21 k

þ k Þy ¼ ð 1 3k Þx 2 þ 21 k A I fasci di paraboe Come equazione di un fascio di rette è a combinazione ineare di due particoari rette, e sue generatrici, anche un fascio di paraboe è a combinazione ineare di due particoari di esse.

Dettagli

Grafici di funzioni 1 / 13

Grafici di funzioni 1 / 13 Grafici di funzioni 1 / 13 Grafico di una funzione 2 / 13 Siano A,B R. Grafico di una funzione 2 / 13 Siano A,B R. Data una funzione f : A B, il suo grafico é il sottoinsieme Γf di R 2 definito da Γf =

Dettagli

( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la

( ) ( ) ESEMPI. lim. Attribuendo ad x dei valori minori di x 0 (ad es. 0,999,...,0,5) si nota che la . Limiti di una funzione LIMITI DI UNA FUNZIONE Per ottenere un informazione competa su di una funzione occorrerebbe cacoare tutti i vaori dea funzione per ogni vaore di, ma ciò è impossibie perché tai

Dettagli

La scala logaritmica

La scala logaritmica La scaa ogaritmica Obiettivi utiizzare coordinate ogaritmiche e semiogaritmiche 1. COORDINATE LOGARITMICHE Se un numero k eá maggiore di 10, i suo ogaritmo in base 10 eá moto piuá piccoo de numero stesso:

Dettagli

1. LA PARABOLA CON GEOGEBRA

1. LA PARABOLA CON GEOGEBRA 1. LA PARABOLA CON GEOGEBRA Dopo aver avviato i programma, chiudiamo a Vista Agebra, togiamo gi assi cartesiani e a grigia da quea grafica in modo da avorare iniziamente ne piano eucideo. Affrontiamo poi

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Esercizio L1 L2 L3 L4 L5 L6 L7 L8. Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a. Risposta. Risulta immediatamente

Esercizio L1 L2 L3 L4 L5 L6 L7 L8. Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a. Risposta. Risulta immediatamente Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a [1] 4 [2] f (x) [3] 2f (x) [4] 3f (x) [5] 4f (x) Risulta immediatamente f (x 1) f (x) = 4 x+1 4 x = 4 x 4 1 4 x = 4 x (4 1) = 3 4 x = 3f (x). E noto che

Dettagli

Modelli di secondo grado

Modelli di secondo grado MATEMATICAperTUTTI ESERCIZIO SVOLTO Le equazioni di secondo grado incompete. Un equazione di secondo grado si può sempre scrivere nea sua forma normae ax þ bx þ c 0 dove a, b, c sono numeri reai con a

Dettagli

I grafici derivati - Funzioni esponenziali

I grafici derivati - Funzioni esponenziali A I grafici derivati - Funzioni esponenziali A partire dal grafico della funzione y ¼ a possiamo costruire quello di altre funzioni esponenziali applicando opportune isometrie. Di seguito vediamo alcuni

Dettagli

Le affinità. Una affinità è una corrispondenza biunivoca fra i punti di un piano che ha come invarianti l allineamento dei punti e il parallelismo.

Le affinità. Una affinità è una corrispondenza biunivoca fra i punti di un piano che ha come invarianti l allineamento dei punti e il parallelismo. A Le affinità Trasazioni, simmetrie assiai o centrai, omotetie e diatazioni, di cui abbiamo già fatto argo uso neo studio dea geometria anaitica, insieme ad atre trasformazioni quai e rotazioni, sono egate

Dettagli

I grafici derivati e la periodicità

I grafici derivati e la periodicità A I grafici derivati e a periodicità A partire dai grafici dee funzioni goniometriche fondamentai possiamo costruire queo di atre funzioni appicando opportune isometrie. Di seguito vediamo acuni esempi.

Dettagli

GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI

GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI utore: Enrico Manfucci - 0/0/0 GEOMETRI NLITIC ESERCIZI CON SOLUZIONI. Posizionare nel piano cartesiano e calcolare la distanza delle seguenti coppie di punti: a. (, ) e (, ) I due punti hanno la stessa

Dettagli

Correzione del compitino del giorno 13 Dicembre 2012

Correzione del compitino del giorno 13 Dicembre 2012 Correzione del compitino del giorno 3 Dicembre 0 Davide Boscaini Questa è una soluzione del compitino del giorno 8 febbraio 0. Invito chi trovasse eventuali errori a segnalarli presso davide.boscaini@studenti.univr.it.

Dettagli

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari Esercitazione su grafici di funzioni elementari Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 8 Novembre 0. Come tali sono ben lungi dall essere esenti da errori, invito

Dettagli

Definizioni basilari di funzione.

Definizioni basilari di funzione. Definizioni basilari di funzione. Una funzione per definizione e' una legge che ad ogni elemento di un insieme ( detto dominio ed indicato con D) associa un unico elemento di un secondo insieme (il codominio)

Dettagli

LICEO SCIENTIFICO PROBLEMA 1

LICEO SCIENTIFICO PROBLEMA 1 www.matefilia.it LICEO SCIENTIFICO 2015 - PROBLEMA 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) questa equazione equivale a ( ) ( ) quindi

Dettagli

Le equazioni e le disequazioni lineari

Le equazioni e le disequazioni lineari MATEMATICAperTUTTI Le equazioni e e disequazioni ineari Le equazioni ineari ESERCIZIO SVOLTO Le equazioni. Chiamiamo equazione ad una incognita un uguagianza fra due espressioni agebriche di cui ameno

Dettagli

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione

Dettagli

I grafici deducibili. funzione f ðxþ. y ¼jf ðxþj. Si esegue una simmetria rispetto all asse x dell intero grafico

I grafici deducibili. funzione f ðxþ. y ¼jf ðxþj. Si esegue una simmetria rispetto all asse x dell intero grafico A I grafici deducibili A partire dal grafico di una funzione f x e applicando opportune trasformazioni è possibile costruire il grafico delle seguenti funzioni: funzione f x y ¼ fx Si esegue una simmetria

Dettagli

I primi elementi e i triangoli

I primi elementi e i triangoli MATEMATICAperTUTTI I triangoi 1 ESERCIZIO SVOLTO I primo criterio di congruenza. I confronto fra figure geometriche è un operazione che ricorre spesso in geometria, speciamente i confronto fra triangoi.

Dettagli

, per cui le due curve f( x)

, per cui le due curve f( x) DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione

Dettagli

Esercitazione su grafici di funzioni elementari e domini di funzioni

Esercitazione su grafici di funzioni elementari e domini di funzioni Esercitazione su grafici di funzioni elementari e domini di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Ottobre 0. Come tali sono ben lungi dall essere esenti

Dettagli

Risoluzione del problema 2

Risoluzione del problema 2 Esame di Stato Liceo Scientifico Prova di Matematica corso sperimentale PNI - giugno 007 Soluzione del PROBLEMA a cura di Luigi Tomasi (luigitomasi@liberoit) Risoluzione del problema Punto ) Consideriamo

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Coordinate Cartesiane

Coordinate Cartesiane - - Coordinate Cartesiane Su di una retta r consideriamo un punto, detto origine, un verso positivo indicato con una freccia ed un segmento unitario U. In questo caso la retta r dicesi asse delle ascisse

Dettagli

Equilibrio del corpo rigido

Equilibrio del corpo rigido Equiibrio de corpo rigido Probema1 Due sbarrette omogenee AB e BC aventi a stessa unghezza e a stessa massa di 6 kg, vengono sadate ne punto B in modo da formare un angoo di 90. Le due sbarrette così unite

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

Soluzioni degli esercizi proposti venerdi 7-10

Soluzioni degli esercizi proposti venerdi 7-10 Soluzioni degli esercizi proposti venerdi 7-10 Si consideri la funzione f(x) il cui grafico e' dato dal disegno sotto. 1. determinare il dominio e l'immagine 2.determinare gli x tali che f(x) 0 3. determinare

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di aurea in Matematica - Anno Accademico 203/4 FM20 - Fisica Matematica I Secondo appeo scritto [7-2-204]. (0 punti. Si consideri i sistema ineare { ẋ = 3x + ( + αy + ẏ = αx + 2y con α R.. Si discuta

Dettagli

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili

Esempio di risoluzione di struttura iperstatica col metodo misto. Complemento alla lezione 47/50: Telai a nodi mobili Esempio di risouzione di struttura iperstatica co metodo misto ompemento aa ezione 47/50: Teai a nodi mobii La struttura in figura è soggetta ad un cedimento verticae dea cerniera. Tutto i teaio ha sezione

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnoogie Agrarie Corso Integrato: Matematica e Statistica Moduo: Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni) Corso di Laurea in Tutea e Gestione de territorio

Dettagli

8 Valore assoluto. 8.1 Definizione e proprietà

8 Valore assoluto. 8.1 Definizione e proprietà 8 Valore assoluto 8. Definizione e proprietà Si dice valore assoluto o modulo di un numero reale, e si indica con, il numero stesso se questo è positivo o nullo, altrimenti il suo opposto -, in simboli:

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

Le funzioni goniometriche

Le funzioni goniometriche CAPITOLO 1 MATEMATICA PER LA FISICA Le funzioni goniometriche Obiettivi definire e funzioni goniometriche fondamentai in riferimento ai triangoi rettangoi e aa circonferenza goniometrica risovere triangoi

Dettagli

VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni

VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni Problema 1 a) c y f 1 : log 4 VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni 1 log 1 4 0 4 1 Dominio: D ; 4 4 0 4 4 Intersezioni: 0 imp y 0 log 4 0 4 1 A ;0 Segno:

Dettagli

IL PENDOLO REVERSIBILE DI KATER

IL PENDOLO REVERSIBILE DI KATER IL PENDOLO REVERSIBILE DI KATER I periodo dee osciazioni de pendoo sempice è dato daa formua: T 0 = π g Questa reazione è vaida per e piccoe osciazioni, quando, cioè, si può assimiare i seno de'angoo massimo

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

Simmetria e funzioni inverse. Daniela Valenti, Treccani scuola

Simmetria e funzioni inverse. Daniela Valenti, Treccani scuola Simmetria e funzioni inverse Daniela Valenti, Treccani scuola 1 Un primo video per esplorare il tema Simmetrie e funzioni inverse: temi da richiamare e approfondire Ecco un breve video per fissare l attenzione

Dettagli

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco Contesto: Geometria analitica - Attività di recupero PRIMA 0) ti senti preparato sull argomento? si no abbastanza poco La parabola DOPO 0) ti senti preparato sull argomento? si no abbastanza poco 1)In

Dettagli

Luoghi di punti e funzioni non lineari

Luoghi di punti e funzioni non lineari CAPITOLO 3 Luoghi di punti e funzioni non ineari 1. LE FUNZIONI NON LINEARI CON DERIVE Per costruire i grafico di una paraboa o di un'iperboe si usa a stessa procedura usata per a retta: si scrive 'equazione

Dettagli

TRASFORMAZIONI DEL PIANO E GRAFICI

TRASFORMAZIONI DEL PIANO E GRAFICI Trasformazioni del piano e grafici TRASFORMAZIONI DEL PIANO E GRAFICI RICHIAMI DI TEORIA Definizione: consideriamo il piano R munito di un sistema di riferimento cartesiano ortogonale. Una trasformazione

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Scheda 1. Concavo e convesso

Scheda 1. Concavo e convesso Scheda 1 Concavo e convesso Scheda 2 Concavità Fig.1 Concavità rivolta verso l alto Concavità rivolta verso il basso Fig.3 Concavità rivolta verso l alto Fig.2 Concavità rivolta verso il basso Fig.4 Scheda

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

Il sistema di riferimento cartesiano

Il sistema di riferimento cartesiano 1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello

Dettagli

x -x-2 =3 x 2 x-2 lim

x -x-2 =3 x 2 x-2 lim G Limiti G Introduzione Si è visto, cacoando i dominio dee funzioni, che per certi vaori dea non è possibie cacoare i vaore dea Cò che ci si propone in questo capitoo è capire come si comporta a assegnando

Dettagli

Problemi di scelta. y ˆ 5x 800 y ˆ 1500

Problemi di scelta. y ˆ 5x 800 y ˆ 1500 A Probemi di sceta CioÁ che abbiamo studiato a proposito dea retta ci puoá essere di aiuto per risovere probemi in cui si deve fare una sceta tra diverse possibiitaá. Per esempio quando si acquista un'auto

Dettagli

Compito di matematica Classe III ASA 14 maggio 2015

Compito di matematica Classe III ASA 14 maggio 2015 Compito di matematica Classe III ASA 14 maggio 015 1. Data la funzione y = f(x) rappresentata sul piano cartesiano dal grafico sottostante: a) determinare l espressione analitica di f(x) b) disegnare (su

Dettagli

Lezione 2 Equazioni famose

Lezione 2 Equazioni famose Moduo 7 U.D. Lez. Laura Citrini - Matematica de continuo Lezione Equazioni amose Matematica de continuo Moduo 7 - Funzioni di più variabii Unità didattica 4 Equazioni dierenziai Laura Citrini Università

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

M557- Esame di Stato di Istruzione Secondaria Superiore

M557- Esame di Stato di Istruzione Secondaria Superiore Problema Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI3, EA9 SCIENTIFICO Opzione Scienze Applicate

Dettagli

Quali sono i valori di f (3) e f (5)? Motiva la tua risposta. 2. Rappresenta, indicativamente, i grafici delle seguenti funzioni:

Quali sono i valori di f (3) e f (5)? Motiva la tua risposta. 2. Rappresenta, indicativamente, i grafici delle seguenti funzioni: Problema 2 Nella figura 1 è rappresentato il grafico Γ della funzione continua f: [,+ ) R, derivabile in ],+ ), e sono indicate le coordinate di alcuni suoi punti. Figura 1 È noto che Γ è tangente all

Dettagli

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto;

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto; 1 Esercizio (tratto da Probema 8.29 de Mazzodi 2) Un asta di unghezza 1.2 m e massa M 0.5 Kg è incernierata ne suo estremo A ad un perno fisso e può osciare senza attrito in un piano verticae. A istante

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 22 giugno 2017

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 22 giugno 2017 Esame di Stato - Liceo Scientifico Prova scritta di Matematica - giugno 7 Problema Risoluzione con calcolatrice grafica Punto La funzione assegnata oscilla tra - e, è una funzione dispari, periodica di

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

1) Scrivere le espressioni lagrangiane delle energie cinetica e potenziale e usarle per scrivere le equazioni di Lagrange per il sistema.

1) Scrivere le espressioni lagrangiane delle energie cinetica e potenziale e usarle per scrivere le equazioni di Lagrange per il sistema. 7 si può discutere come quea di un pendoo sempice con punto di equiibrio stabie ϕ e α quando δ < e come quea di un pendoo inverso cioè con a gravità verso ato invece che verso i basso e punto di equiibrio

Dettagli

APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE)

APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE) CLASSE ^D D C f APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE) F La funzione seno associa ad un angolo x, misurato in radianti, il suo seno, ovvero

Dettagli

x + 1 x = x2 1 x 2 = 1 1 x 2., l equazione equivale a ln(1 + 3x) < 1 ; 1 + 3x < e ; x < e 1 3

x + 1 x = x2 1 x 2 = 1 1 x 2., l equazione equivale a ln(1 + 3x) < 1 ; 1 + 3x < e ; x < e 1 3 A. Peretti Svolgimento dei temi d esame di Matematica A.A. 08/9 PROVA INTERMEDIA DI MATEMATICA I parte Vicenza, 05//08 Domanda. Trovare quoziente e resto della divisione di 3 + per + Possiamo usare la

Dettagli

xg x x 3 e essendo x positiva per dominio 3 e

xg x x 3 e essendo x positiva per dominio 3 e Problema a) c : y f log VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni log 4 0 4 Dominio: D ; 4 4 0 4 4 Intersezioni: 0 imp y 0 log 4 0 4 A ;0 Segno: f 0, D c : y

Dettagli

ELABORATO 1 TEORIA DEI VETTORI

ELABORATO 1 TEORIA DEI VETTORI ELABOATO 1 TEOIA DEI VETTOI DATI q 1 = 5 kn/m q = 7 kn/m q 3 = 1 kn/m q 4 = 14 kn/m q 5 = 5 kn/m L = 1 m F 1 = 10 kn F = 15 kn M = -35 knm Anaisi dea parte superiore dea struttura Si assegna un sistema

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1 Geometria Analitica Piano Cartesiano Sistema di coordinate su una retta Presa una retta r orientata, su cui sono stati fissati un origine O e un unità di misura, definiamo sistema di coordinate su una

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

LE DISEQUAZIONI IRRAZIONALI RISOLTE CON LA GEOMETRIA ANALITICA. con il conseguente iter risolutivo.

LE DISEQUAZIONI IRRAZIONALI RISOLTE CON LA GEOMETRIA ANALITICA. con il conseguente iter risolutivo. LE DISEQUAZIONI IRRAZIONALI RISOLTE CON LA GEOMETRIA ANALITICA Le disequazioni irrazionali possono essere risolte anche con l ausilio della geometria analitica. Non è necessario, in questo caso, saperle

Dettagli

L iperbole. x 2 = 1. a 2 b 2. Si noti che tale equazione è stata ottenuta rispetto ad un riferimento privilegiato, detto RIFERIMENTO CANONICO.

L iperbole. x 2 = 1. a 2 b 2. Si noti che tale equazione è stata ottenuta rispetto ad un riferimento privilegiato, detto RIFERIMENTO CANONICO. L iperbole Fisso nel piano due punti distinti, F ed F FUOCHI F ed F l insieme: Si dice IPERBOLE di {P R : dist(p ; F ) dist(p ; F ) = a} Se dist(f ; F ) = c, fisso un sistema di assi cartesiano tale che

Dettagli

Le disequazioni CAPITOLO 2 1. LE DISEQUAZIONI CON DERIVE

Le disequazioni CAPITOLO 2 1. LE DISEQUAZIONI CON DERIVE CAPITOLO Le disequazioni 1. LE DISEQUAZIONI CON DERIVE Le disequazioni si risovono con o stesso comando che abbiamo imparato ad usare per risovere e equazioni, sia che si tratti di disequazioni intere

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

trasformazione grafico Cosa si deve fare Esempio goniometrico

trasformazione grafico Cosa si deve fare Esempio goniometrico trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il

Dettagli

Risoluzione di un telaio iperstatico col metodo degli spostamenti. Complemento alla lezione 48/50: Il metodo degli spostamenti

Risoluzione di un telaio iperstatico col metodo degli spostamenti. Complemento alla lezione 48/50: Il metodo degli spostamenti Risouzione di un teaio iperstatico co metodo degi spostamenti ompemento aa ezione 48/50: I metodo degi spostamenti La struttura in figura è soggetta ad una forza concentrata F a metà de traverso. I teaio

Dettagli

FUNZIONI QUADRATICHE

FUNZIONI QUADRATICHE f: R R si dice funzione quadratica se è del tipo f(x) =ax 2 +bx+c, dove a,b,c sono costanti Il grafico di una funzione quadratica è una curva detta parabola Abbiamo incontrato funzioni di questo tipo quando

Dettagli

f(x) ha limite + + ) f(x) ha limite

f(x) ha limite + + ) f(x) ha limite LIMITI Sia f: R R Se per ogni M>0, per quanto grande possiamo sceglierlo, esiste un valore x 0 tale che per ogni x x 0 si ha f(x) M, diremo che la funzione f(x) ha limite + per x che tende (x + ) a + Se

Dettagli

f(x) ha limite + + ) f(x) ha limite

f(x) ha limite + + ) f(x) ha limite LIMITI Sia f: R R Se per ogni M>0, per quanto grande possiamo sceglierlo, esiste un valore x 0 tale che per ogni x x 0 si ha f(x) M, diremo che la funzione f(x) ha limite + per x che tende (x + ) a + Se

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Cominciamo con qualche esempio. I) Rette parallele agli assi cartesiani Consideriamo la retta r in figura: i punti della retta hanno sempre ordinata uguale a 3. P ( ;3) Q

Dettagli

Bergamini Es. Parabola pag. L 236. n y 0 y x=16 8 y y 2

Bergamini Es. Parabola pag. L 236. n y 0 y x=16 8 y y 2 ergamini Es. Parabola pag. L 36 n 14 a. L'equazione può essere scritta: 16 8 x=4 y { 4 y 0 y 4 16 8 x=16 8 y y x= 1 8 y y e quindi rappresenta la metà inferiore di una parabola avente asse di simmetria

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

Le equazioni di alcune superfici dello spazio

Le equazioni di alcune superfici dello spazio A Le equazioni di acune suerfici deo sazio L equazione di una suerficie ciindrica In geometria anaitica si dice suerficie ciindrica una quaunque suerficie ce a come direttrice una curva aartenente ad un

Dettagli

Appunti di Matematica 2 - Il piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale

Appunti di Matematica 2 - Il piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale Il piano cartesiano Sistema di riferimento cartesiano ortogonale Fissare nel piano un sistema di riferimento cartesiano ortogonale significa fissare due rette perpendicolari orientate chiamate asse e asse

Dettagli

Disequazioni di 1 grado

Disequazioni di 1 grado Disequazioni di grado Disuguaglianze numeriche Esempio: < è una disuguaglianza numerica e si legge minore di Nota: posso anche scrivere ( maggiore di ) Esempio: (oppure < ) Proprietà delle disuguaglianze

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

1. Determinare il trinomio invariante del seguente sistema di vettori applicati:

1. Determinare il trinomio invariante del seguente sistema di vettori applicati: Università di Pavia Facotà di Ingegneria Corso di Laurea in Ingegneria Edie/Architettura Correzione prova scritta Esame di Meccanica Razionae 13 febbraio 212 1. Determinare i trinomio invariante de seguente

Dettagli

INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI. ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 -

INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI. ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 - INTERVALLI DI NUMERI SULL ASSE DEI NUMERI REALI ANALISI MATEMATICA_2 INTERVALLIi numerici - 1 - Esiste una corrispondenza biunivoca tra i numeri reali e i punti di una retta: Ad ogni punto P della retta

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

Capitolo IV - Iperbole

Capitolo IV - Iperbole Capitolo IV - Iperbole 1 Proprietà focali dell iperbole Gli argomenti che ora esponiamo sono analoghi a quelli già usati per lo studio dell ellisse (cfr. Cap. III, 1) 1 Teorema. Sia H un iperbole. Nel

Dettagli

Parallelogrammi, trapezi e poligoni regolari

Parallelogrammi, trapezi e poligoni regolari CAPITOLO 5 Paraeogrammi, trapezi e poigoni regoari 1. I PARALLELOGRAMMI CON GEOGEBRA Esercitazione 1. Costruire un paraeogramma dati tre vertici consecutivi Per risovere questo probema usiamo a definizione

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

Grafico della funzione y = sen x

Grafico della funzione y = sen x G Grafico della funzione y = sen x Utilizzare GeoGebra per costruire il grafico della funzione y ¼ sen x a partire dalla sua definizione mediante la circonferenza goniometrica. Come sai, il valore della

Dettagli