Statistica multivariata con R

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistica multivariata con R"

Transcript

1 Statistica multivariata con R Sergio Polini 4 novembre 2009 Indice 1 Prime sintesi dei dati Tabelle di contingenza Matrici di percentuali Matrice degli scarti Matrice degli scarti standardizzati Matrice di codevianza Matrice di covarianza Matrice di correlazione Varianza totale Varianza generalizzata di Wilks Analisi delle componenti principali Il punto di vista geometrico Segnale e rumore Variabili omogenee La prima componente Le componenti successive Variabili eterogenee Scelta e valutazione delle componenti principali La matrice Factor Pattern Scelta delle componenti Valutazione delle variabili Valutazione delle unità statistiche Valutazione congiunta Indici di contribuzione relativa L ACP con R La funzione ACP() La funzione prcomp() La funzione princomp() Appendici Notazioni di calcolo differenziale Scomposizione ai valori singolari Scomposizione di matrici standardizzate Scomposizione di matrici centrate Il codice delle funzioni ACP() e acp.*() La funzione ACP() La funzione acp.screeplot() La funzione acp.corrplot() La funzione acp.unitplot()

2 1 Prime sintesi dei dati Data una matrice X n,k, contenente la rilevazione delle modalità di k caratteri su n unità statistiche, le prime sintesi consistono o nella costruzione di una tabella di contingenza, o nella costruzione di altre matrici contenenti trasformazioni dei dati. 1.1 Tabelle di contingenza Nel caso alcuni dei k caratteri siano qualitativi, si possono distinguere due casi: a) se le modalità di un carattere sono solo due, si attua la codifica binaria assegnando 0 ad una modalità è 1 all altra; b) se le modalità sono più di due, si attua la codifica disgiuntiva completa, che consiste nello scomporre il carattere in tanti caratteri con le due modalità sì/no, quindi 1/0, quante sono le modalità originarie; ad esempio: Regione N C C S N diventa: N ord Centro Sud Può tuttavia convenire la codifica disgiuntiva completa anche nel caso di un carattere con due sole modalità, scomponendolo in due caratteri con modalità sì/no. Così facendo, infatti, si trattano nello stesso modo i caratteri con due o più di due modalità e, anche se aumenta il numero dei caratteri, si perviene facilmente ad una tabella di contingenza. Ad esempio, se si rilevano su n unità statistiche due caratteri qualitativi, il primo con due modalità ed il secondo con tre, con la codifica disgiuntiva completa si arriva a due matrici le cui colonne contengono solo 0 e 1: X 1 n,2 non è altro che il prodotto: X 1 X 2 = A 2,n n,3 2,3 Infatti, ipotizzando un caso in cui n sia pari a 5: X 1 5, = e X 3 n,3 X 2 5,3. La relativa tabella di contingenza = Il prodotto X 1 X 2 è: 2,5 5, ( ) = ( 1 0 )

3 cdc <- function(x, names=null) { if (!is.vector(x)) stop(" x deve essere un vettore") if (!is.factor(x)) x <- factor(x) n <- length(levels(x)) m <- NULL for (i in 1:n) { yes <- levels(x)[i] v <- as.numeric(x == yes) if (is.null(m)) { m <- v } else { m <- cbind(m,v) } } if (is.null(names)) { colnames(m) <- levels(x) } else { colnames(m) <- names } m } Figura 1. Funzione R per la codifica disgiuntiva completa di un carattere. Si vede che l elemento a 11 della matrice prodotto è 1 perché nell esecuzione del prodotto righe per colonne capita una sola volta che si abbia un risultato non nullo (solo i primi elementi della prima riga di X 1 e della prima colonna di X 2 sono entrambi pari a 1), l elemento a 12 è 0 perché non capita mai, l elemento a 1,3 è 2 perché capita due volte (il secondo ed il quarto elemento sia della prima riga di X 1 che della terza colonna di X 2). Gli elementi della matrice prodotto sono quindi frequenze congiunte. R calcola le tabelle di contingenza con la funzione table(), ma, se si volesse comunque procedere alla codifica disgiuntiva completa per i singoli caratteri, si potrebbe utilizzare una funzione cdc() come quella riportata nella figura 1 che, dato in input un carattere (un vector o un factor), restituisce una matrice le cui colonne, contenenti solo 0 e 1, sono le modalità del carattere. Il parametro opzionale names consente di attribuire espressamente nomi ai nuovi caratteri così ottenuti: > regioni <- c("n","c","c","s","n") > cdc(regioni) C N S [1,] [2,] [3,] [4,]

4 [5,] Esempio 1.1. Il comunicato ISTAT sulle forze di lavoro al 2 trimestre riporta, tra l altro, i dati destagionalizzati relativi alla ripartizione di occupati e persone in cerca di occupazione nel nord, nel centro e nel sud d Italia. I dati possono essere immessi in R come segue: > occupati <- factor(c(rep(1,11996),rep(0,612),rep(1,4853),rep(0,353), + rep(1,6318),rep(0,874))) > regioni <- factor(c(rep("n",12608),rep("c",5206),rep("s",7192))) Si assegnano così al vettore occupati, nell ordine, occupati (modalità 1) e persone in cerca di lavoro (modalità 0) nel nord, occupati e persone in cerca di lavoro nel centro, occupati e persone in cerca di lavoro nel sud; al vettore regioni le forze di lavoro, rispettivamente, del nord, del centro e del sud. La funzione table() consente di costruire subito una tabella di contingenza: > table(occupati, regioni) regioni occupati C N S Si può ottenere lo stesso risultato con la codifica disgiuntiva completa. Nel caso del carattere regioni, le colonne della matrice ottenuta con cdc() avranno come nomi le modalità ( C, N e S ); nel caso del carattere occupati, essendo le modalità 0/1, conviene assegnare espressamente i nomi di colonna, indicando come primo nome quello per la colonna relativa allo stato 0 (in questo caso si potrebbe usare D per disoccupato, ovvero persona in cerca di occupazione) e come secondo quello per l altra (in questo caso O per occupato): > X1 <- cdc(occupati, names=c("d","o")) > X2 <- cdc(regioni) La tabella di contingenza può ora essere ottenuta col prodotto: che in R si esegue con: > t(x1) %*% X2 C N S D O X 1 X 2 = A 2,n n,3 2,3 (t(x1) rende la trasposta di X1, l operatore %*% esegue il prodotto righe per colonne di matrici). Va notato che si può procedere alla codifica disgiuntiva completa anche nel caso di dati quantitativi, dopo averli raggruppari in classi. In questo caso, una colonna verrà trasformata in tante colonne quante sono le classi. 1 4

5 1.2 Matrici di percentuali Le matrici di percentuali sono matrici in cui l originaria matrice dei dati X n,k viene trasformata sostituendo i suoi elementi x ij con percentuali rispetto ad un totale: a) matrice di percentuali sul totale, t P n,k : se le colonne sono omogenee (stesso carattere, stessa unità di misura), si sostituiscono i singoli dati con le loro percentuali sull ammontare totale del carattere: t p ij = x ij ni=1 kj=1 x ij 100 t P n,k = 100 ni=1 kj=1 x ij X n,k si tratta quindi di moltiplicare la matrice dei dati per la costante 100 ammontare totale in R, se X è la matrice dei dati, il comando sum(x) restituisce il totale dei suoi elementi, quindi è sufficiente: P.tot <- X / sum(x) * 100 b) matrici di percentuali per riga, r P n,k : se le colonne sono omogenee, come sopra, si sostituiscono i singoli dati con le loro percentuali sui totali di riga: r p ij = x ij kj=1 x ij 100 r P n,k = r D n,n X n,k 100 dove r D è una matrice diagonale n n avente come elementi non nulli gli n reciproci dei totali di riga; 2 infatti premoltiplicando una matrice per una matrice diagonale si ottiene una matrice in ciascuna riga della quale compaiono i prodotti dei corrispondenti elementi della stessa riga della matrice data per l unico elemento non nullo della stessa riga della matrice diagonale; in R le matrici diagonali si ottengono con la funzione diag() in vari modi, anche semplicemente passando il vettore degli elementi della diagonale principale, che in questo caso saranno i reciproci delle somme per riga della matrice dei dati: P.row <- ( diag(1/rowsums(x)) %*% X) * 100 c) matrici di percentuali per colonna, c P: i singoli dati vengono sostituiti con le loro n,k percentuali sui totali di colonna (non è quindi necessario che le colonne siano tra loro omogenee): c p ij = x ij ni=1 x ij 100 c P = 100 X cd n,k n,k k,k dove c D è una matrice diagonale k k avente come elementi non nulli i k reciproci dei totali di colonna; 3 infatti postmoltiplicando una matrice per una matrice diagonale si ottiene una matrice in ciascuna colonna della quale compaiono i prodotti dei corrispondenti elementi della stessa colonna della matrice data per l unico elemento non nullo della stessa colonna della matrice diagonale; in R: 2 Può essere anche intesa come l inversa di una matrice diagonale avente come elementi non nulli i totali di riga. 3 Può essere anche intesa come l inversa di una matrice diagonale avente come elementi non nulli i totali di colonna. 5

6 P.col <- (X %*% diag(1/colsums(x))) * 100 Esempio 1.2. Costruiamo una matrice X prendendo dalla contabilità nazionale i dati in milioni di euro relativi a produzione ai prezzi base, importazioni cif, imposte nette e margini distributivi (tre caratteri quantitativi omogenei) relativi alle unità statistiche costituite dai tre settori agricoltura, industria e servizi: 4 > Rpa <- matrix(c(47133, , , 9258, , 40804, , , ), nrow=3) > rownames(rpa) <- c("agricoltura", "Industria", "Servizi") > colnames(rpa) <- c("produzione pb", "Import. cif", "Imposte e margini") > Rpa Produzione pb Import. cif Imposte e margini Agricoltura Industria Servizi Per ricavare la matrice delle percentuali sull ammontare totale (che è il totale delle risorse ai prezzi di acquisto): > P.tot <- Rpa / sum(rpa) * 100 > P.tot Produzione pb Import. cif Imposte e margini Agricoltura Industria Servizi Matrice degli scarti In una matrice degli scarti, S n,k, i dati della matrice dei dati vengono sostituiti con i loro scarti dalle medie di colonna: 5 s ij = x ij x j S = X 1 n x n,k n,k n,1 1,k dove 1 n è un vettore colonna contenente tutti 1 e x è un vettore riga contenente le medie di colonna; il loro prodotto è una matrice n k in cui la riga i-esima contiene le medie delle k colonne. Ad esempio: 1 x 1 x 2 x 3 1 ) x (x 1 1 x 2 x 3 = 1 x 2 x 3 x 1 x 2 x 3 1 x 1 x 2 x 3 Si deve notare che la matrice degli scarti opera una semplice traslazione: la nuvola dei punti di R k, vettori i cui componenti sono le modalità dei caratteri quantitativi, viene 4 Tabella 4.2, pag. 9; da notare che i totali non sembrano esatti (ci sono alcune differenze sull ultima cifra) in quanto i dati sono arrotondati. 5 Nel teso di Zani-Cerioli la matrice degli scarti è indicata con X. 6

7 spostata in modo che il suo baricentro coincida con l origine del sistema di coordinate, ma la variabilità rimane immutata. Con R si potrebbero facilmente costruire i vettori 1 n e x ed il prodotto 1 n x, ad esempio, se n è il numero di righe della matrice di dati X > u <- rep(1,n) > x.mean <- colmeans(x) > u %*% t(x-mean) ma si può usare anche la funzione sweep() che toglie valori (in inglese to sweep vuol dire spazzare via ) dalle righe o dalle colonne di matrice; il suo secondo argomento è 1 nel primo caso, 2 nel secondo. In particolare, se X è un dataframe la funzione mean() fornisce un vettore delle medie di colonna, se invece X è una matrice si usa colmeans(), che può peraltro essere usato anche con i dataframe. Quindi, per ottenere a X una matrice degli scarti dalla media: > x.mean <- colmeans(x) > sweep(x, 2, x.mean) Esempio 1.3. Il testo di Zani-Cerioli 6 contiene diverse matrici di dati. La tabella 1.1, a pag. 8, contiene la matrice dei dati relativi a 25 modelli di home theatre per i quali si sono rilevati sette caratteri; vi sono tre caratteri quantitativi: 1) PREZZO (in euro); 2) POTENZA (in watt); 3) CASSE (numero); e quattro caratteri qualitativi in codifica binaria: 4) DVDREC (presente la funzione recorder per i DVD); 5) WIRELESS (possibili collegamenti senza fili); 6) DVX (capacità di leggere i DVX); 7) RDS (presenza di Radio Data System). I dati si possono caricare in R come dataframe col comando: 7 > H <- read.csv("tab0101.csv", row.names=1) > H PREZZO POTENZA CASSE DVDREC WIREL DVX RDS Akai Hitachi K Sony RH Yamaha YHT Per ottenere la matrice degli scarti limitatamente alle prime tre colonne: 6 Sergio Zani e Andrea Cerioli, Analisi dei dati e data mining per le decisioni aziendali, Giuffré, Milano, La tabella 1.1 può essere scaricata da tab0101.csv. 7

8 > h.mean <- colmeans(h[,1:3]) > h.mean PREZZO POTENZA CASSE > sweep(h[,1:3], 2, h.mean) PREZZO POTENZA CASSE Akai Hitachi K Sony RH Yamaha YHT Matrice degli scarti standardizzati In una matrice degli scarti standardizzati, Z n,k, ciascun dato è sostituito dal rapporto tra il suo scarto dalla media di colonna e lo scostamento quadratico medio di colonna: z ij = s ij σ j Z = S σd n,k n,k k,k dove S è la matrice degli scarti e σ D è una matrice diagonale k k i cui elementi non nulli sono i reciproci degli scostamenti quadratici medi di colonna. In R, se X è la matrice dei dati: > S <- sweep(x, 2, colmeans(x)) > D <- diag(1/sd(x)) > Z <- S %*% D Si deve notare che la matrice degli scarti standardizzati non opera una semplice traslazione dei dati, come la matrice degli scarti dalle medie di colonna, ma deforma la nuvola dei punti; diminuisce infatti la variabilità dei caratteri con σ > 1, aumenta quella dei caratteri con σ < 1. Esempio 1.4. Nell esempio 1.3 H è un dataframe; per usare il prodotto righe per colonne di matrici si può convertire H in matrice, oppure si può convertire la sola matrice degli scarti; limitandosi alle prime tre colonne (quelle relative ai caratteri quantitativi): > S <- as.matrix(sweep(h[,1:3], 2, colmeans(h[,1:3]))) > D <- diag(1/sd(h[,1:3])) > Z <- S %*% D > colnames(z) <- colnames(h[,1:3]) > Z PREZZO POTENZA CASSE Akai Hitachi K Sony RH Yamaha YHT

9 var2 <- function(x, def = NROW(x), w = NULL) { if (!is.vector(x)) stop(" x deve essere un vettore") if (is.null(w)) v <- sum((x-mean(x))^2) / def else { n <- length(x) if (length(w)!= n) stop(" x e w devono avere uguale lunghezza") if (any(w < 0) (s <- sum(w)) == 0) stop("i pesi devono essere non negativi e non tutti nulli") w <- w / s w.mean <- weighted.mean(x, w) v <- sum((x-w.mean)^2*w) } v } Figura 2. Funzione R per il calcolo della varianza con un prefissato numero di gradi di libertà oppure su dati ponderati. I risultati possono essere confrontati con quelli riportati dallo Zani-Cerioli nella tabella 1.4, a pag. 21. In R la funzione sd() ritorna la radice quadrata della varianza come calcolata con var(), la quale a sua volta ritorna la somma dei quadrati degli scarti dalla media divisa per n 1 (i gradi di libertà nel caso più frequente). A volte risulta necessario sia dividere per un diverso numero di gradi di libertà, sia usare gli scarti da medie ponderate; può quindi essere opportuno definire funzioni più generali. La funzione var2() (figura 2) calcola la varianza di un vettore di dati; per default, calcola la somma dei quadrati degli scarti dalla media aritmetica divisa per n, ma si può dividere per il numero di gradi di libertà che interessa usando il parametro def (degrees of freedom). Si può anche indicare un vettore di pesi e, in questo caso, si procede in modo diverso. La varianza usata nella statistica descrittiva è definita da: Var(x) = n i=1 1 n (x i x) 2 Si calcola quindi la somma dei quadrati degli scarti dalla media aritmetica e ogni quadrato è diviso per n, cioè moltiplicato per il peso 1/n, uguale per tutti. La somma degli n pesi è ovviamente uguale ad 1. Usando un vettore di pesi la cui somma sia sempre 1, si ottiene: n Var(x, p) = (x i x) 2 p i i=1 dove p i è il peso, compreso tra 0 e 1, dell elemento x i. 9

10 sd2 <- function(x, def = NROW(x), w = NULL) { if (is.matrix(x)) apply(x, 2, sd2, def = def, w = w) else if (is.vector(x)) sqrt(var2(x, def = def, w = w)) else if (is.data.frame(x)) sapply(x, sd2, def = def, w = w) else sqrt(var2(as.vector(x), def = def, w = w)) } Figura 3. Funzione R per il calcolo dello scarto quadratico medio con un prefissato numero di gradi di libertà oppure su dati ponderati. Usando la funzione var2() si può passare un vettore di pesi non normalizzati; in questo caso, i pesi vengono automaticamente divisi per il loro totale. È solo necessario che i pesi siano non negativi e non tutti nulli. Da notare che la funzione var() di R opera anche su matrici, restituendo in tal caso la matrice di covarianza, mentre var2() opera solo su vettori (per la matrice di covarianza v. sez. 1.6). La funzione sd2() (figura 3) è modellata sulla sd() di R: 8 usa la funzione per il calcolo della varianza, ma può essere usata su matrici o dataframe e, in questi casi, fornisce un vettore degli scarti di colonna. Esempio 1.5. La tabella 1.5 dello Zani-Cerioli contiene alcuni dati e indicatori economici relativi a 14 settori industriali. Negli esempi del testo viene eliminata la sesta riga, relativa alle raffinerie, per i motivi spiegati a pag. 24; possiamo quindi procedere così: 9 > X <- read.csv("tab0105.csv", row.names=1) > X <- X[c(1:5,7:14),] I caratteri rilevati sono: 1) addetti: numero di imprenditori, coadiuvanti e dipendenti; 2) fatturato: il fatturato in milioni di euro; 3) valoreagg: il valore aggiunto in milioni di euro; 4) vafatt: percentale del valore aggiunto sul fatturato; 5) vaad: il valore aggiunto per addetto in migliaia di euro; 6) coslav: il costo del lavoro per dipendente in migliaia di euro; 7) retrib: la retribuzione lorda per dipendente in migliaia di euro; 8) invest: gli investimenti per addetto in migliaia di euro. Possiamo ottenere le medie degli indicatori (i caratteri dal 4 all 8 ) con: 8 Per vedere il sorgente di una funzione di R basta digitarne il nome non seguito da parentesi e dare invio. 9 La tabella è scaricabile da 10

11 > mean(x[,4:8]) vafatt vaad coslav retrib invest ma anche le medie ponderate con gli addetti o con il valore aggiunto, ricorrendo alla funzione sapply(): > sapply(x[,4:8], weighted.mean, w = X$addetti) vafatt vaad coslav retrib invest > sapply(x[,4:8], weighted.mean, w = X$valoreagg) vafatt vaad coslav retrib invest Possiamo inoltre ottenere gli scarti quadratici medi campionari, usando sd(): > sd(x[,4:8]) vafatt vaad coslav retrib invest ma anche quelli dei dati ponderati con gli addetti o con il valore aggiunto: > sd2(x[,4:8], w = X$addetti) vafatt vaad coslav retrib invest > sd2(x[,4:8], w = X$valoreagg) vafatt vaad coslav retrib invest I risultati così ottenuti possono essere confrontati con quelli riportati nella tabella 1.6 dello Zani-Cerioli (pag. 26); non sono esattamente uguali per i primi due indicatori (vafatt e vaad) perché i dati riportati nella tabella 1.5 del testo sono arrotondati. La funzione sd2() può essere usata per ottenere una matrice degli scarti standardizzati in cui gli scarti siano calcolati dividendo per n invece che per n 1. Esempio 1.6. Tornando ai dati relativi a 25 modelli di home theatre (esempi 1.3 e 1.4): > S <- sweep(h[,1:3], 2, colmeans(h[,1:3])) > D <- diag(1/sd2(h[,1:3])) > Z <- as.matrix(s) %*% D > colnames(z) <- colnames(h[,1:3]) > Z PREZZO POTENZA CASSE Akai Hitachi K Sony RH Yamaha YHT

12 Si può notare che i dati differiscono da quelli ottenuti nell esempio 1.4 di un fattore 1 / 1 25 =, che rappresenta la differenza tra la divisione della varianza prima per n = 25, poi per n 1 = 24; ad esempio, il valore standardizzato del prezzo dell Akai 4200 era , ora è e si ha: = Matrice di codevianza La matrice di codevianza, T k,k, detta anche matrice di devianza-codevianza, è una matrice quadrata simmetrica che ha sulla diagonale principale la devianza di ciascuna colonna della matrice dei dati e altrove la codevianza tra la i-esima e la j-esima colonna. Poiché la devianza non è altro che la somma dei quadrati degli scarti dalla media, mentre la codevianza non è altro che la somma dei prodotti degli scarti di due variabili dalle rispettive medie: Cod(X i, X j ) = Dev(X i ) = Cod(X i, X i ) = n (x hi x i )(x hj x j ) = nσ ij h=1 n h=1 (x hi x i ) 2 = nσ 2 i La matrice di codevianza si ottiene dalla matrice degli scarti: t ij = Cod(x i, x j ) T k,k = S k,n S n,k Con R, se X è una matrice di dati: > S <- sweep(x, 2, colmeans(x) > T <- t(s) %*% S Dato che la devianza è sempre non negativa (è un quadrato), la matrice T come anche le matrici di covarianza e di correlazione è quadrata, simmetrica, con elementi tutti non negativi sulla diagonale principale ed inoltre semidefinita positiva. Esempio 1.7. Usando ancora il dataframe H dei 25 modelli di home theatre: > S <- as.matrix(sweep(h[,1:3], 2, colmeans(h[,1:3]))) > T <- t(s) %*% S > T PREZZO POTENZA CASSE PREZZO POTENZA CASSE

13 varcov <- function(x, def = nrow(x), w = rep(1/nrow(x), nrow(x)), center = TRUE) { m <- cov.wt(x, wt = w, center = center) m <- m$cov m * (nrow(x)-1) / def } Figura 4. Funzione R per il calcolo della matrice di covarianza con il desiderato numero di gradi di libertà ed eventualmente su dati ponderati. 1.6 Matrice di covarianza La matrice di covarianza, Σ k,k, detta anche matrice di varianza-covarianza, si ottiene semplicemente dividendo per n, o per n 1, la matrice di codevianza; ad esempio, dividendo per n: Σ = 1 k,k n T = 1 k,k n S S k,n n,k Dividere per n equivale ad assegnare a tutte le unità statistiche un peso pari a 1 n e poi dividere per la somma dei pesi. Capita spesso, in realtà, di assegnare pesi diversi alle unità statistiche; in questi casi, la matrice di covarianza si ottiene con: Σ = S P S k,k k,n n,nn,k dove P n,n è una matrice diagonale contenente i pesi (la cui somma deve essere pari a 1). In R le funzioni var() e cov(), quando si passa loro una matrice o un dataframe, restituiscono entrambe la matrice di covarianza, dividendo per n 1 la matrice di devianza. Esiste inoltre una funzione cov.wt() che fornisce una matrice di covarianza ponderata, in cui si divide comunque per n 1; i pesi sono, per default, pari a 1/n. La funzione cov.wt() consente anche di ottenere una matrice di covarianza centrata; si può infatti usare il parametro center: a) se center = TRUE (default), i dati sono centrati sulla loro media (ponderata, se si passano anche i pesi); b) se center = FALSE, i dati sono centrati sullo 0; c) se center è un vettore (che deve essere di lunghezza uguale al numero delle colonne della matrice o del dataframe), i dati di ciascuna colonna sono centrati sul corrispondente valore del vettore. Esempio 1.8. Usando ancora i dati dei 25 modelli di home theatre (v. esempio 1.3), la matrice di covarianza tra prezzo e potenza in watt può essere ottenuta con: > n <- nrow(h) > varcov(h[,1:2], def = n-1) PREZZO POTENZA PREZZO POTENZA

14 se si desidera una matrice calcolata su n 1 gradi di libertà, 10 oppure, se si preferiscono n gradi di libertà, con: > varcov(h[,1:2]) PREZZO POTENZA PREZZO POTENZA Si verifica subito che i valori ottenuti in quest ultimo modo sono uguali a quelli ottenuti con def = n-1 (ri)moltiplicati per n 1 e divisi per n: 1.7 Matrice di correlazione /25 = La matrice di correlazione, R k,k, è una matrice quadrata simmetrica che ha sulla diagonale principale tutti 1 (coefficienti di correlazione delle colonne con se stesse) e altrove i coefficienti di correlazione tra la i-esima e la j-esima colonna della matrice dei dati. Si può ottenere in due modi: a) dividendo ciascun elemento a ij della matrice di covarianza per σ i σ j : R k,k = σ D k,k Σ k,k σ D k,k dove σ D è una matrice diagonale con i reciproci degli scarti quadratici medi delle colonne della matrice dei dati; b) calcolando la matrice di covarianza a partire dalla matrice degli scarti standardizzati: Quindi: R = 1 σ D S S σ D = 1 k,n k,k n k,k k,n n,k k,k n Z Z n,k S σ D 1 n S S X Σ σ D Σ σ D Z R 1 n Z Z In R si può ottenere la matrice di correlazione con la funzione cor(), ma anche con cov.wt(..., cor = TRUE). La funzione cov.wt() non restituisce infatti un unico valore, ma una lista contenente la matrice di covarianza $cov, i centri delle colonne $center, il numero delle unità statistiche $n.obs ed anche, se cor = TRUE, la matrice di correlazione $cor. Si può quindi pensare ad una semplice funzione cor2() (figura 5) che chiami cov.wt() per poter ponderare i dati, ma poi restituisca solo la matrice di correlazione. Esempio 1.9. Usando i dati relativi a 13 settori industriali dell esempio 1.5, si possono calcolare come segue le matrici di correlazione dei dati semplici oppure ponderati con gli addetti o con il valore aggiunto: Cfr. la tabella 2.1 dello Zani-Cerioli, pag I risultati possono essere confrontati con la tabella 2.3 dello Zani-Cerioli, pag. 44. Vi sono alcune differenze perché i dati della tabella 1.5 del testo sono arrotondati. 14

15 cor2 <- function(x, w = rep(1/nrow(x), nrow(x)), center = TRUE) { m <- cov.wt(x, wt = w, center = center, cor = TRUE) m <- m$cor m } Figura 5. Funzione R per il calcolo della matrice di correlazione di dati eventualmente ponderati. > cor2(x[,4:8]) vafatt vaad coslav retrib invest vafatt vaad coslav retrib invest > cor2(x[,4:8], w = X$addetti) vafatt vaad coslav retrib invest vafatt vaad coslav retrib invest > cor2(x[,4:8], w = X$valoreagg) vafatt vaad coslav retrib invest vafatt vaad coslav retrib invest Varianza totale La varianza totale, Var T, non è altro che la somma delle varianze delle colonne della matrice dei dati, quindi la traccia della matrice di covarianza: Da notare che: Var T = tr(σ) a) ha senso solo se le colonne interessate sono espresse nella stessa unità di misura; b) tiene conto solo della variabilità univariata. In R esiste una funzione trace(), che però ha tutt altro scopo (v. la relativa pagina della guida). Calcolare la traccia di una matrice X è sostanzialmente semplice, in quanto basta sommare gli elementi che hanno l indice di riga, row(x), e quello di colonna, col(x), uguali: > sum(x[row(x)==col(x)] 15

16 totvar <- function(x, def = nrow(x), w = rep(1/nrow(x), nrow(x)), center = TRUE) { if (sum(t(x) == x) == length(x)) # simmetrica t <- sum(x[row(x)==col(x)]) else { m <- varcov(x, def = def, w = w, center = center) t <- sum(m[row(m)==col(m)]) } t } Figura 6. Funzione R per il calcolo della varianza totale. Si può comunque pensare ad una funzione totvar() (figura 6) che calcoli la traccia di una matrice di covarianza sia a partire da questa, se disponibile, sia a partire da una matrice di dati o da un dataframe. Per distinguere tra i due casi, la funzione assume che la matrice passata sia una matrice di covarianza se risulta simmetrica. Esempio Nell esempio 1.8 avevamo calcolato la matrice di covarianza tra prezzo e potenza dei 25 modelli di home theatre prima con n 1 poi con n gradi di libertà. Per calcolare le rispettive varianze totali, usando prima la matrice di covarianza, poi il dataframe: > M <- varcov(h[,1:2], def = 24) > totvar(m) [1] > totvar(h[,1:2]) [1] Varianza generalizzata di Wilks La varianza generalizzata di Wilks è una misura di variabilità multidimensionale che tiene conto di tutti gli elementi della matrice di convarianza, in quanto ne è il determinante: Var G = Σ In valore assoluto la varianza generalizzata varia da 0 (almeno una variabile è perfettamente correlata con un altra) ad un massimo pari al prodotto delle varianze delle k colonne. Si dimostra, inoltre, che il rapporto tra la varianza generalizzata ed il suo massimo è uguale al determinante della matrice di correlazione. Si può quindi definire una varianza generalizzata relativa: Da notare che: V R = Σ kj=1 σ 2 j = R a) il determinante tende a diminuire all aumentare di k, quindi si possono confrontare le varianze generalizzate (assolute o relative) di diverse matrici di dati solo se queste presentano lo stesso numero di caratteri; 16

17 b) la matrice di correlazione contiene solo le correlazioni a coppie; pertanto, non consente di individuare né di escludere relazioni lineari del tipo X 1 = ax 2 + bx 3. In R il determinante di una matrice si calcola col comando det(), quindi: > M <- varcov(h[,1:2], def = 24) > det(m) # varianza generalizzata [1] > R <- cor2(h[,1:2]) > det(r) # varianza generalizzata relativa [1] Analisi delle componenti principali L analisi delle componenti principali (ACP; in inglese PCA, Principal Components Analysis) consente di sostituire ad una matrice di dati X n,k, contenente k variabili quantitative, una nuova matrice Y n,p contenente p k variabili tra loro incorrelate (ortogonali) ed elencate in ordine decrescente di variabilità. 2.1 Il punto di vista geometrico Obiettivo dell ACP è l individuazione di un sottospazio su cui sia possibile proiettare lo spazio delle osservazioni in modo da mantenerne quanto più possibile la variabilità. Per intendere cosa ciò vuol dire, si può immaginare di disporre dei valori di 2 variabili quantitative osservati su n unità statistiche: se non c è correlazione tra le due variabili, il relativo scatter plot appare come una nuvola di punti racchiusa in una circonferenza; se invece c è correlazione, la nuvola di punti appare racchiusa in un ellisse. In quest ultimo caso, gli assi dell ellisse passano entrambi per il punto le cui coordinate sono le medie delle due variabili. Soprattutto, l asse maggiore ha la direzione dell autovettore relativo all autovalore maggiore della matrice di covarianza, l asse minore quella dell altro autovettore. Le lunghezze degli assi, inoltre, sono proporzionali alle radici quadrate dei relativi autovalori. Esempio 2.1. Il file T3_7_SONS.DAT 12 contiene, tra l altro, le misure della lunghezza (V1) e della larghezza (V2) della testa del primo figlio adulto di 25 famiglie. Caricati i dati in un dataframe: > dat <- read.table("t3_7_sons.dat") > dat <- dat[,1:2] # per considerare solo V1 e V2 si può apprezzare visivamente la correlazione tra le due variabili con il comando plot(). Per semplificare la rappresentazione grafica conviene tracciare gli scarti delle variabili dalle rispettive medie: > plot(dat$v1-mean(dat$v1), dat$v2-mean(dat$v2), + xlim=range(-30,30), ylim=range(-30,30)) 12 Scaricabile da 17

18 Per tracciare l ellisse si può usare la funzione ellipse(), contenuta nella omonima libreria, che richiede come parametro una matrice di covarianza (o di correlazione): > library(ellipse) > S <- cov(dat) > lines(ellipse(s)) Gli autovalori (eigenvalues in inglese) e gli autovalori (eigenvectors) di una matrice si trovano con la funzione eigen(): > eig <- eigen(s) > eig $values [1] $vectors [,1] [,2] [1,] [2,] Aggiungendo gli autovettori al grafico (con lunghezze proporzionali alle radici quadrate dei relativi autovalori): lambda <- eig$values a1 <- eig$vectors[,1] a2 <- eig$vectors[,2] arrows(0, 0, sqrt(lambda[1])*a1[1], sqrt(lambda[1])*a1[2], length=0.1) arrows(0, 0, sqrt(lambda[2])*a2[1], sqrt(lambda[2])*a2[2], length=0.1) si ottiene il grafico riprodotto nella figura 7. Nel caso di tre variabili si ottiene un ellissoide. Se la nuvola di punti tridimensionale riempie l ellissoide, risulta difficile prescindere da uno dei suoi tre assi; se invece la nuvola è sì racchiusa nell ellissoide, ma ha la forma di un osso di seppia, si possono considerare solo i due assi lungo i quali si estende maggiormente ottenendo comunque una buona approssimazione della variabilità osservata; si può cioè approssimare l ellissoide considerando l ellisse proiettata sul piano individuato dai suoi due assi maggiori. Analogamente nel caso di più variabili. L analisi delle componenti principali, quindi, consiste nel tentativo di proiettare la nuvola di punti dello spazio originario in uno spazio di dimensione minore, individuato dagli assi lungo i quali l (iper)ellissoide si estende maggiormente. Tali assi, come si è visto nel caso di due variabili, hanno la direzione degli autovettori della matrice di covarianza e lunghezza proporzionale alla radice quadrata dei relativi autovalori Segnale e rumore Si tratta di capire perché, nel caso di due dimensioni, l asse maggiore dell ellisse ha la direzione dell autovettore relativo all autovalore maggiore della matrice di covarianza e perché i due assi hanno lunghezza proporzionale alla radice quadrata degli autovalori. 18

19 dat$v2 mean(dat$v2) dat$v1 mean(dat$v1) Figura 7. Una nuvola di punti a forma di ellisse i cui assi sono paralleli agli autovettori della matrice di covarianza e di lunghezza proporzionale alla radice quadrata dei relativi autovalori. Si può pensare alla nuvola di punti come ad un insieme di osservazioni che ci si aspetta lungo l asse delle ascisse V1, il segnale, accompagnate da un rumore rappresentato dalle ordinate dei punti, V2. La variabilità lungo l asse delle ascisse è la variabilità del segnale, cioè del fenomeno che si intende rilevare, e può essere misurata dalla varianza σv 2 1 ; la variabilità lungo l asse delle ordinate è invece quella del rumore, σ2 V 2. Il rumore è tanto più fastidioso quanto più è correlato, positivamente o negativamente, al segnale, cioè quanto maggiore in valore assoluto è la covarianza tra segnale e rumore, σ V 1,V 2. Per isolare quanto più possibile il segnale dal rumore, quindi, si tratta di passare dallo spazio generato dai vettori (1, 0) e (0, 1) elementi della base canonica dello spazio rappresentato dal piano cartesiano su cui è tracciato il grafico della figura 7 ad uno spazio generato da due vettori che rappresentino uno il segnale, l altro il rumore, e abbiano covarianza nulla. Si tratta quindi di passare dalla matrice di covarianza di V1 e V2, Σ, ad una matrice di covarianza tra Y1 (segnale) e Y2 (rumore) che abbia nulli tutti gli elementi non siti sulla diagonale principale: [ ] [ ] σ 2 V 1 σ V 1,V 2 σ 2 σ V 2,V 1 σv 2 Y σy 2 2 L algebra lineare insegna che ciò significa diagonalizzare Σ, quindi trovare una matrice Λ simile a Σ che sia una matrice diagonale avente gli autovalori di Σ sulla diagonale principale. In questo modo: a) mentre Σ rappresenta le covarianze tra le rilevazioni effettuate nello spazio generato dai 19

20 vettori (1, 0) e (0, 1), la matrice diagonale Λ rappresenta le covarianze tra le rilevazioni come risulterebbero se effettuate nello spazio generato dagli autovettori di Σ; b) dato che Σ è una matrice simmetrica, i suoi due autovalori sono reali e i due autovettori sono tra loro ortogonali, quindi la loro covarianza è nulla 2.2 Variabili omogenee L ACP opera sempre su matrici centrate. Se le variabili originarie sotto tutte espresse (o esprimibili) nella stessa unità di misura, si usa la matrice degli scarti S n,k La prima componente La prima componente Y 1 viene espressa come combinazione lineare delle k variabili con coefficienti i k elementi di un vettore a 1, quindi come prodotto tra la matrice dei dati e tale vettore: Y 1 = S a 1 n,1 n,k k,1 con l obiettivo di massimizzare la varianza σy 2 1 della componente Y 1, sottoposto al vincolo di normalizzazione a 1 = a 1 a 1 = k i=1 a 2 i1 = 1. Il problema di massimizzazione si risolve impiegando un moltiplicatore di Lagrange λ. Poiché: 13 k k σy 2 1 = Var(Sa 1 ) = a i1 a j1 σ ij = a 1Σa 1 si ha (cfr. Appendice 3.1): i=1 j=1 L = σ 2 Y 1 + λ(1 a 1a 1 ) = a 1Σa 1 + λ(1 a 1a 1 ) L a 1 = 2Σa 1 2λa 1 = 0 (Σ λi k )a 1 = 0 dove I k è la matrice identità di ordine k. Ne segue che trovare i λ che soddisfano la condizione di massimizzazione vincolata equivale a trovare gli autovalori della matrice di covarianza Σ k,k. Essendo la matrice di covarianza simmetrica, con traccia non negativa e semidefinita positiva, tutti gli autovalori sono reali e non negativi L i-esimo elemento di Y 1 è una combinazione lineare degli i-esimi elementi delle colonne di S con coefficienti gli elementi di a 1, quindi il prodotto della i-esima riga di S per a 1: y i1 = a 11s i1 + a 21s i2 + + a k1 s ik = S (i) 1,k Tenendo conto del fatto che la media di ciascuna colonna di Y è 0, in quanto combinazione lineare delle colonne di S che hanno a loro volta media nulla, la varianza di Y 1 è: σ 2 Y 1 = 1 n n yi1 2 = 1 n i=1 n i=1 a 1 1,k S (i) k,1 S (i) 1,k a 1 = 1 k,1 n a 1 S 1,k k,n a 1 k,1 S a 1 = a 1 Σ a 1 n,k k,1 k,k k,1 14 Più precisamente, gli autovalori sono reali perché Σ è una matrice simmetrica; inoltre, per la definizione di autovalore e autovettore, se λ è un autovalore di Σ e v è un relativo autovettore, si 20

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione

Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Analisi delle Corrispondenze Multiple Prof. Roberto Fantaccione Consideriamo il nostro dataset formato da 468 individui e 1 variabili nominali costituite dalle seguenti modalità : colonna D: Age of client

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento

errore I = numero soggetti (I = 4) K = numero livelli tratt. (K = 3) popolazione varianza dovuta ai soggetti trattamento Analisi della varianza a una via a misure ripetute (Anova con 1 fattore within) modello strutturale dell'analisi della varianza a misure ripetute con 1 fattore: y = μ ik 0 +π i +α k + ik ε ik interazione

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO IL CRITERIO DI AGGIUDICAZIONE DELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Dicembre 2011 IL CRITERIO DI AGGIUDICAZIONE

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Riccardo Ricci Università di Firenze, Facoltà di Psicologia Corso di Laurea in Scienze e Tecniche di Psicologia del Lavoro e delle Organizzazioni Anno Accademico 2002-2003 1 maggio

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

Determinante e inversa di una matrice

Determinante e inversa di una matrice CPITOLO 6 Determinante e inversa di una matrice Esercizio 6.. Calcolare il determinante delle seguenti matrici: 3 3 = B = 0 3 7 C = 0 D = 0 F = 0 0 3 4 0 3 4 3 Esercizio 6.. Calcolare il determinante delle

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Appunti sull uso di matlab - I

Appunti sull uso di matlab - I Appunti sull uso di matlab - I. Inizializazione di vettori.. Inizializazione di matrici.. Usare gli indici per richiamare gli elementi di un vettore o una matrice.. Richiedere le dimensioni di una matrice

Dettagli

STUDIO DI SETTORE SM43U

STUDIO DI SETTORE SM43U ALLEGATO 3 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SM43U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli