Teoria introduttiva e metodi di calcolo dei limiti di funzioni reali di variabile reale. Stefano Mandelli 29 novembre 2009

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria introduttiva e metodi di calcolo dei limiti di funzioni reali di variabile reale. Stefano Mandelli 29 novembre 2009"

Transcript

1 Teoria introduttiva e metodi di calcolo dei iti di funzioni reali di variabile reale Stefano Mandelli 29 novembre

2 1 Introduzione storica Il calcolo infinitesimale, la teoria dei iti e il loro calcolo sono le basi di tutta la matematica. Buona parte dei propblemi che verranno presentati qui di seguito occuparono i matematici (di cui ricordiamo grandi nomi con Leibnitz, Darboux, Weiestrass, Fermat, Pascal e Barrow) fino alla seconda metà del 1600, creando le basi di quella che oggi è conosciuta come matematica settecentesca. La matematica settecentesca, diede poi grandi possibilità di sviluppo sia per quanto riguarda la fisica, sia per quanto riguarda gli aspetti matematici generali. Infatti la matematica dell ottocento e del novecento sono strettamente legate alle basi messe da quella del settecento. Gli argomenti quindi sfociano forse nel punto più alto della matematica, in particolare dell analisi e della geometria differenziale. In analisi la trattazione moderna di Holder, Minkovsky, Sobolev e Swartz del concetto di funzione generalizzata (termine che su alcuni libri di fisica viene più volte usato impropriamente) ha permesso una nuova visione dei problemi legati alle soluzioni delle equazioni differenziali alle derivate parziali dando ipotesi debolissime. 1 Nel campo della gematria differenziale, che trova i suoi maggiori esponenti in Reimann, Ricci, Christofell, Einstain (defunti) mentre in vita abbiamo D. Klemm e S. Hawking, hanno permesso uno sviluppo immenso della teoria della Relatività Generale e quindi costruire modelli matematici sempre più sofisticati per comprendere gli eventi di alcuni oggetti esotici al nostro pensiero come, stelle, buchi neri, galassie attive ecc... Infine concludo questa parentesi storica con la grande teoria unificatrice delle stringhe presentata per la prima volta nel 1970 dai fisici Yoichiro Nambu, Holger Bech Nielsen, e Leonard Susskind i quali presnetano una teoria che seppure non è stata ancora verificata da fatti sperimentali, è di un architettura matematica altamente barocca ed è terreno fertile per lo sviluppo di nuove teorie e metodologie matematiche che vengono via via sviluppate per far fronte ai vari problemi che la fisica delle stinghe presenta. Uno dei più grandi esponenti europei è Dietmar Klemm, e insegna Relatività Generale presso l Università degli Studi di Milano. 1 A differenza del metodo con le serie di Fourier che itava il problema a condizioni estremamente restrittive, come la necessità di convergenza uniforme delle serie ecc... che nell approccio distribuzionale possono essere aggirate. Infatti definendo l operatore differenziale in uno spazio di Sobolev, non risulta essere più chiuso e quindi tutti i teoremi di convergenza che nell approccio di Fourier erano necessari che scambiare integrale e sommatoria, oppure per scambiare derivazione e sommatoria, non sono più necessari. 2

3 2 Topologia della retta R Dato un generico spazio X definire una topologia su X vuol dire: -) Definire una nozione di misura; -) Definire una nozione di convergenza; -) Dare conseguentemente, una definizione di insieme aperto per quanto riguarda il nostro studio, a noi interessa definire sulla retta reale intervalli aperti ed intervalli chiusi. La metrica adottata è quella euclidea questo vuol dire che se x 1 e x 2 sono due punti dell asse reale allora la distanza tra i punti è definita come: Quindi abbiamo una prima definizione: d(x 1, x 2 ) = x 1 x 2 (1) Def1: La metrica adottata nel nostro spazio (R, d) è quella euclidea. Definire una metrica vuol dire definire una distanza che ha da intendersi come: a, b R = d(a, b) = a b (2) Def2: Dato lo spazio (R, d). Sia X (R, d) definisco x 0 punto interno ad X se: ε > 0 : (x ε, x + ε) sia tutto contentuo in X (3) Def3: Dato lo spazio (R, d). Sia X (R, d) definisco x 0 punto accumulazione di X se: ε > 0 : (x ε, x + ε) X (4) Def4: Dato lo spazio (R, d). Sia X (R, d) dico che X è un insieme aperto se è tutto costituito da punti interni Def5: Dato lo spazio (R, d). Sia X (R, d) dico che X è un insieme chiuso se è tutto costituito da punti di accumulazione Convergeza e definizone di ite di una funzione Come già accennato in precedenza definire una topologia su uno spazio vuol dire anche definire una convergenza delle serie. Qui di seguito verranno presentate 2 definizioni di convergenza. La prima, generalissima per spazi topologici generici, la seconda invece relativa solo allo spzio (R, d), in forma metrica. Def6: Siano due spazi topologici generici (X, d) e (Y, d). sia f una funzione definita nel seguente modo: f : X Y. Successivamente possiamo definire unaclasse di aperti U su X e una classe di aperti V in Y. Se: 2 ε > 0 δ > 0 : x U ε (x 0 ) = f(x) V δ (f(x 0 )) (5) 2 con U ε(x 0 ) intendo dire, L intorno sferico APERTO! U di raggio epsilon centrato nel punto x 0 3

4 allora dico che la funzione f in x 0 ammette ite, ed è f(x 0 ) La definizione di ite di una funzione, intensa come una generica mappa da uno spazio metrico topologico X ad uno spazio metrico topologico Y, è quella più generale che si incontra nella matematica moderna. Per completezza è stato presentato però a noi interessanno particolarmente le definizioni metriche cioè coem e in che modo la Def6: può essere riproposta in forma semplice ed intuitiva alla retta reale R. Definizioni metriche Le definizioni che seguono sono tutte pensate nello spazio (R, d) e considerando una funzione f definita come f : R R. Def7: ite Finito per x : Sia f : R R dico che al tendere di x a infinito la funzione ha ite finito L se: ESISTE un intorno 3 di infinito (quando dico infinito senza specificare se è più o meno infinito allora intendo generelarmente entrambi i casi) tale che per ogni x appartenente all intorno ho che L f(x) < ε Formalmente scrivo: cioè f(x) = L (6) x ε > 0 M : x : x > M = L f(x) < ε (7) Def8: ite Finito per x x 0 : Sia f : R R dico che al tendere di x a x 0 la funzione ha ite finito L se: ESISTE un intorno di x 0 cioè x x x 0 < δ con δ > 0 tale che per ogni x appartenente all intorno ho che L f(x) < ε con ε piccolo in modo arbitrario Formalmente scrivo: cioè f(x) = L (8) ε > 0 δ : x x x 0 < δ = L f(x) < ε (9) Def9: ite Infinito per x x 0 : Sia f : R R dico che al tendere di x a x 0 la funzione ha ite infinito ( ) se: ESISTE un intorno di x 0 cioè x x x 0 < δ con δ > 0 tale che per ogni x appartenente all intorno ho che f(x) > M con M grande in modo arbitrario Formalmente scrivo: cioè f(x) = (10) M > 0 δ : x x x 0 < δ = f(x) > M (11) 3 intorno di + = (M, + ) con M grande a piacere; intorno di = (, M) con M grande a piacere; intorno del punto x 0 = (x 0 ε, x 0 + ε) con ε piccolo a piacere; 4

5 Def10: ite Infinito per x x : Sia f : R R dico che al tendere di x a la funzione ha ite infinito ( ) se: ESISTE un intorno di INFINITO cioè x > P con P > 0 grande a piacere, tale che per ogni x appartenente all intorno ho che f(x) > M con M grande in modo arbitrario Formalmente scrivo: cioè 3 Primi teoremi f(x) = (12) M > 0 P : x : x > P = f(x) > M (13) Avendo dato tante definizioni ora possiamo applicarle per poter dimostrare alcuni teoremi particolarmente interessanti. Th1:UNICITA DEL LIMITE Sia data una funzione f : R R. per x x 0, la funzione ammette ite finito L, allora questo è unico. Se La dimostrazione del teorema viene condotta per assurdo, quindi per assurdo supponiamo che: f(x) = L 1 ma anche che f(x) = L 2 (14) supponiamo L 1 L 2 e che L 1 < L 2. Applicando le definizioni ottengo che: ε < f(x) L 1 < ε (15) ε < f(x) L 2 < ε (16) L 1 ε < L 2 ε < f(x) f(x) < ε + L 1 < ε + L 2 (17) L 1 ε < ε + L 2 (18) ma in questo modo ottengo : ε > L1 L2 2 quindi ho una itazione sul valore di Epsilon!!!! Per la definizione 8 Epsilon deve essere arbitario quindi abbiamo raggiunto un assurdo rispetto alle definizioni iniziale. Quindi f quando ammette ite, questo è unico. q.e.d. 5

6 Th2: Del confronto (o delle due Carabiniere)Siano date tre funzioni f(x),g(x) e h(x) con la condizione tale che x [a, b] si ha che f(x) h(x) g(x) allora se: x 0 [a, b] f(x) = L g(x) = L = h(x) = L (19) quindi se le due funzioni, superiore ed inferiore (f e g) al tendere di x ad un x 0 in un certo intervallo chiuso [a, b] allora siamo crti che anche h(x) al tendere di x a x 0 nell intervallo [a, b] tende allo stesso ite L a cui tendono sia la f che g La dimostrazione è molto semplice e si svolge semplicemente utilizzando la definiozne 8 e l ipotesi f(x) h(x) g(x) infatti dire che la f ammette ite L vuol dire che al tendere di x a x 0 vale la definizone: L ε < f(x) < L + ε (20) ma ora uso l ipotesi per cui: f(x) h(x) g(x) quindi L ε < f(x) h(x) g(x) < L + ε (21) semplificando la catena di disugualianze ho come risultato: L ε < h(x) < L + ε (22) che è la definizione di ite per la funzione h(x) quindi: q.e.d 4 Calcolo dei Limiti h(x) = L (23) La teoria svolta fin ora permette di avere un idea chiara della topologia che è alla base del concetto di convergenza del ite di funzione o di una successione. Ora però è necessario passare dall aspetto teorico all aspetto calcolativo. In questa sezione delle dispense verrà esposta la metodologia standard per le classi quinte di liceo, per apprendere il calcolo numerico dei iti. L algebra degli infiniti E chiaro che le scritture che verranno ora presentate non hanno un rigoroso senso formale autosostenuto, ma bisogna considerarle come delle scritture di passaggio al ite. Quindi, tenendo pesente questo formalismo allora possimo dire: + + = + ; = (24) + = Caso di indecisione!! (25) Questo è un caso di indecisione perchè il risultato non è scontato, dipende dalla potenza degli infiniti che entrano nel calcolo. Se il primo infinito ha una 6

7 potenza superiore rispetto al secondo, allora in risultato sarà se invece il secondo infinito ha una potenza maggiore allora il risultato sarà +. k R ; K 0 + = + ; K 0 = ; K = 0 ; K + = 0+ (26) 0 = indecisione!! ; = indecisione!! 0 (27) = indecisione!! ; 0 = indecisione!! 0 (28) altre forme di indecisione riguardano anche le scritture: Un altro caso di indecisione che si inconra, nel modo specifico quando si tratta di determinare il numero e di nepero, è la seguente: 1 = indecisione!!! (29) Per i casi di indecisione (27) e (28) (si noti che i casi di indecisione (27) possono essere ricondotti con passaggi algebrici ai casi di indecisione (28) ) è interessante enunciare un teorema molti interessante. L utilità di questo teorema non è tanto calcolativa, infatti solitamente applicare questo teorema ai iti che presentano casi di indecisione del tipo (27) - (28) non sempre porta a risolvere l indecisione, e in molti casi complica di parecchio i conti. Nonostante tutto questo teorema trova un applicazione calcolativa nei iti con le funzioni integrali in cui la sua applicazione semplifica di parecchio le cose. Detto questo enunciamolo: Th3 Teorema di De L Hospital:Siano f(x) e g(x) due funzioni reali di variabile reale tali che siano derivabili in [a, b] allora se g(x) 0, g (x) 0 e f(x) il ite x x0 g(x) presenta un caso di indecisione del tipo (27) o (28) allora vale che: f(x) g(x) = f (x) g (x) (30) quindi il ite del rapporto, converge allo stesso ite del rapporto delle derivate. 4.1 Limiti Notevoli I iti notevoli, o meglio noti come sviluppi notevoli del prim ordine sono utilissimi per risolvere alcuni iti molto semplici in cui il confronto tra infinitesimi è legato al prim ordine. Qui di seguito presentiamo quelli utili per svolgere i conti dandone una giustificazione che NON coinvolga gli sviluppi in serie di potenze di McLaurin. 7

8 Funzioni trigonometriche: ϑ = 1 ; sin nϑ mϑ = n m (31) Considro la circonferenza goniometrica, allora da semplici osservazioni geometriche posso dire che: < Rϑ < tan ϑ ma R = 1 è la crf di raggio unitario (32) divido tutto per posso farlo in quanto io considero solo un semipiano aperto (poi estendo a tutto il piano sfruttando la disparità della fuznione seno) inverto la monotonia: 1 < ϑ < 1 cos ϑ (33) cos ϑ < ϑ < 1 (34) sono nella condizione del teorema del confronto! infatti ho che f(x) < h(x) < g(x) la f(x) = cos ϑ e la g(x) = 1. La f(x) per ϑ 0 tende banalmente a 1, la g(x) è identicamente sempre 1, quindi anche la h(x) tenderà a 1 al tendere di ϑ 0 1 cos ϑ = 0 (35) ϑ 1 cos ϑ 1 + cos ϑ ϑ 1 + cos ϑ = sin 2 ϑ ϑ usando il ite notevole di (sin x)/x ho che ϑ cos ϑ = ϑ 1 + cos ϑ (36) 0 al tendere di x 0 (37) 1 + cos ϑ 1 cos ϑ ϑ 2 = 1 2 (38) 1 cos ϑ 1 + cos ϑ ϑ cos ϑ = sin 2 ϑ ϑ cos ϑ = ϑ ϑ cos ϑ (39) al tendere di x a zero possiamo usare ancora i ite notevole di (sin x)/x e quindi rimane solo: cos ϑ = 1 2 che non presenta più un caso di indecisione e tende a 1 2 (40) 8

9 ( x = e (41) x x) ( 1 + a ) b x = e ab x x (42) x 0 (1 + ax)b 1 x = e ab (43) ln(1 + x) = 1 (44) ln(1 + x) = ln(1 + x) 1 x = ln e = 1 (45) x 0 log a (1 + x) = log a e (46) log a (1 + x) = log a (1 + x) 1 x = loga e (47) x 0 a x 1 = ln a (48) Effettuo la sostituizione: z = a x 1 = x = log a (z + 1) z 0 z log a (z + 1) = z 0 1 log a (z+1) z l ultimo passaggio è un semplice cambiamento di base. = 1 = ln a (49) log a e sinh x = 1 (50) cosh x cosh x = + ; = (51) x 0 + x x 0 x 9

10 (1 + x) α 1 = α (52) (facoltativa) Qui di seguito presentiamo la dimostrazione del ite notevole con uno sviluppo di Taylor. La formula del polinomio di Taylor è definita in questo modo: Sia data una f : (a, b) R se la f è derivabile infinite volte in x 0 (a, b) allora nel punto x 0 lo sviluppo in serie di taylor esiste e converge puntualmente alla funzione f. La forma del polinomio di taylor è la seguente: f(x) x0 = + k=0 f (k) (x 0 )(x x 0 ) k k! (53) quindi riprendendo il ite notevole io ho a che fare con questa funzione (1+x) α 1 x. A me interessa sapere con che grado di infinitesimo si avvicina a zero (perchè il mio ite dev essere calcolato per x 0). Per mettere in luce questo comportamento sviluppo in serie di Taylor questo termine: quindi rimettendo tutto nel ite: (1 + x) α = 1 + αx + α2 2! x2 + o(x 2 ) (54) 1 + αx + o(x) 1 αx = = α (55) 10

~ Copyright Ripetizionando - All rights reserved ~ I LIMITI

~ Copyright Ripetizionando - All rights reserved ~  I LIMITI I LIMITI Cenni storici Il concetto di ite era già presente in modo intuitivo nell'antichità, per esempio da Archimede, ed è stato utilizzato, anche se non in modo rigoroso, a partire dalla fine del XVII

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 Il simbolo o piccolo Siano f (x) e g(x) funzioni infinitesime per x x 0 e consideriamo f (x) il lim

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Copyright c 2007 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Teoremi

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia Corso di Laurea in Matematica Geometria 2 Esercizi di preparazione allo scritto a.a. 2015-16 Esercizio 1. Dimostrare che Topologia 1. d(x, y) = max 1 i n x i y i definisce una distanza su R n. 2. d(x,

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali)

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali) a Prova parziale di Analisi Matematica I () ) Data la funzione f ( ) = tg + ln( cos ) a) determinare il campo di esistenza, b) calcolare il limite lim f ( ) π ) Definizione di limite finito: lim f ( )

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

8. Il teorema dei due carabinieri

8. Il teorema dei due carabinieri 8. Il teorema dei due carabinieri Teorema del confronto (o dei due carabinieri) Consideriamo due funzioni f( ), g( ) per le quali risulti, in un punto di accumulazione per i loro domini : f ( ) g( ) Se

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di TEOREMI DEL CALCOLO DIFFERENZIALE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Teorema di Estremi locali Richiamiamo la

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

LIMITI. 1. Definizione di limite.

LIMITI. 1. Definizione di limite. LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi

Dettagli

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti.

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Capitolo 7 Limiti di funzioni Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Ricordiamo che un asintoto verticale = a si presenta

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim AMA Ing.Edile - Prof. Colombo Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it Limiti - Soluzioni. Esercizio 5.2. ii) Dire che x 5 x + x = +, vuol dire che preso M > 0 sufficientemente

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti

6. LIMITI. Definizione - Funzioni continue - Calcolo dei limiti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 6. LIMITI Definizione - Funzioni continue - Calcolo dei limiti A. A. 2014-2015 L.Doretti 1 IDEA INTUITIVA DI LIMITE I Caso: comportamento di una

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

Infiniti e Infinitesimi

Infiniti e Infinitesimi Infiniti e Infinitesimi Infiniti e Infinitesimi Def. Una funzione f() si dice infinitesima per (o per ), punto di accumulazione per il dominio di f(), se: f ( ) ( oppure f ( ) ) Infiniti e Infinitesimi

Dettagli

ANALISI 1 1 QUINTA LEZIONE

ANALISI 1 1 QUINTA LEZIONE ANALISI 1 1 QUINTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 LIMITI DI FUNZIONI c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 Intorni Def. Siano 0 R e r R +. Chiamiamo intorno di centro 0 e raggio r l intervallo aperto e limitato

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Il concetto di derivata e le regole di derivazione

Il concetto di derivata e le regole di derivazione Il concetto di derivata e le regole di derivazione Il concetto fondamentale del calcolo differenziale è quello di derivata formulato alla fine del XVII secolo da Pierre de Fermat che se ne servì per determinare

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A SOLUZIONI COMPITO del /0/0 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A Esercizio Osserviamo che la serie proposta è a termini di segno

Dettagli

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A

ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A. 2016-17 Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO COD. Progr.Prev. PAGINA: 1 PROGRAMMA CONSUNTIVO A.S. 2014/2015 SCUOLA Civico Liceo Linguistico A. Manzoni DOCENTE: Roberto Galimberti MATERIA: Matematica Classe 5 a Sezione F CONTENUTI DISCIPLINARI SVOLTI

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Esercizi riguardanti limiti di successioni e di funzioni

Esercizi riguardanti limiti di successioni e di funzioni Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Un paio di esempi su serie e successioni di funzioni

Un paio di esempi su serie e successioni di funzioni Un paio di esempi su serie e successioni di funzioni 29 novembre 2010 1 Successione di funzioni Ricordiamo innanzitutto un po di definizioni. Definizione 1. Una successione di funzioni è una corrispondenza

Dettagli

Lezione 3 (2/10/2014)

Lezione 3 (2/10/2014) Lezione 3 (2/10/2014) Esercizi svolti a lezione Esercizio 1. Tracciando un grafico approssimativo, discutere qualitativamente l esistenza di radici reali dei seguenti polinomi, al variare del parametro

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni.

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Università di Pisa. Prima prova scritta di Analisi Matematica I. Soluzioni. Esercizio. Si consideri la successione c n ) n N definita dalla

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

1 Limiti e continuità per funzioni di una variabile

1 Limiti e continuità per funzioni di una variabile 1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA Pag. 1 di 5 ANNO SCOLASTICO 2014-15 DIPARTIMENTO DI Matematica INDIRIZZO Liceo scientifico CLASSE BIENNIO TRIENNIO DOCENTI: De Masi, Zaganelli, Dalmonte, Fidanza. NUCLEI FONDAMENTALI DI CONOSCENZE I QUADRIMESTRE

Dettagli

Approssimazione di Stirling

Approssimazione di Stirling Approssimazione di Stirling Marcello Colozzo - http://www.extrabyte.info 1 Rappresentazione integrale della funzione gamma Ricordiamo il teorema: Teorema 1 Sia ψ (t) la funzione complessa della variabile

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 15/04/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 15/04/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 5/04/03 D.BARTOLUCCI, D.GUIDO. Integrali Impropri Esercizio. (CRITERIO DEL CONFRONTO). Dimostrare che se f : (a, b] R e g(x) : (a, b] R sono integrabili

Dettagli

I NUMERI. Si dice "radice quadrata" di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a.

I NUMERI. Si dice radice quadrata di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a. Questa dispensa rappresenta una breve introduzione ai numeri reali e alla loro Topologia, minimo necessario per affrontare serenamente lo studio dell ANALISI MATEMATICA. Inoltre non si ha la pretesa che

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p.

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p. Calcolo Differenziale Corsi di Laurea in Tecniche di Radiologia ecc... A.A. 2010-2011 - Analisi Matematica - Calcolo Differenziale - p. 1/33 Velocità istantanea Percorriamo il tratto di strada tra Udine

Dettagli

PROGRAMMAZIONE PREVENTIVA a.s

PROGRAMMAZIONE PREVENTIVA a.s PROGRAMMAZIONE PREVENTIVA a.s. 2009-2010 Insegnante Classe Materia preventivo Battistella Fulvia 5ST matematica 132 titolo set ott nov dic gen feb mar apr mag giu prev 5.1 TRIGONOMETRIA x x x 20 5.2 CALCOLO

Dettagli

Esercizi sulle trasformate di Fourier

Esercizi sulle trasformate di Fourier Esercizi sulle trasformate di Fourier Corso di Fisica Matematica, a.a. 3-4 Dipartimento di Matematica, Università di Milano 8 Novembre 3 Questi esercizi richiederanno il calcolo di integrali a volte non

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli