Argomento 2 Soluzioni degli esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Argomento 2 Soluzioni degli esercizi"

Transcript

1 Argomento Soluzioni degli esercizi Suggerimenti Esercizio 5 Ladisequazione p x >x èsempreverificata se x <, cioè perx<; nell altro caso, si ottiene il sistema: ½ ½ x x x > (x ) x>x +, che ha soluzioni date da x [, 5 ), le quali, unite x + Ã! alle precedenti, danno le soluzioni della disequazione di partenza, cioè x, + 5 Ladisequazione x <x+è equivalente al sistema x x + x <x +x + dacuisiottiene x x x +x > ½ x x< 7,x> 7 Ã # 7 x, Ladisequazionex x è equivalente ai due sistemi: x / () x< x x x / e () x x ( x) ½ x / Il primo èverificato per x< Il secondo è equivalente al sistema (x ) (x +) Dominio di x :[, + ) Per tali valori anche il secondo membro della disequazione è positivo Sipossonoelevarealquadratoentrambiimembridella disequazione ottenendo la disequazione equivalente 9x +5x +<, che non ha soluzioni reali 5 Dominio: R; radice dispari: eleviamo entrambi i membri alla terza potenza Si ottiene la disequazione equivalente x x x + x x(x +) x 6 Dominio: x In tale intervallo il secondo membro è sempre positivo, quindi la disequazione data è equivalente a: x >x +x + x + x +< Non ci sono soluzioni reali Esercizio Sono tutte disequazioni fratte, in cui compaiono al numeratore e/o al denominatore disequazioni logaritmiche o esponenziali o irrazionali, che risolte danno il segno del numeratore e del denominatore Si utilizza poi il solito schema per le disequazioni fratte Per esempio, risolviamo la disequazione :

2 La disequazione èdefinita per x> ex 6= Lo studio del segno di N comporta la risoluzione di un sistema che tenga conto dell insieme in cui èdefinito il numeratore, cioè N ½ +log (x +) x> ½ x + x> ½ x x> x Studio del segno di D : x > <x< Confrontiamo ora i segni nell insieme dove la disequazione èdefinita, quindi solo per x> ex 6= : / p p p x N D N/D + La disequazione è quindi soddisfatta per x, Esercizio Ricordarsi degli insiemi di definizione! La prima disequazione èverificata per x e per x La seconda èasuavoltaequivalente al sistema: x log x < x> <x<, x > e In conclusione, il sistema èverificato solo da x>e La prima disequazione èverificata per x< La seconda èsempreverificata dove definita, essendo somma di due quantità positive, quindi l unica condizione da porre (e da non dimenticarsi) è: x x, che èverificata per x,x In conclusione, il sistema èverificato per x< Esercizio La disequazione èverificata quando x x; sitraccinoquindiigrafici delle due funzioni, cercando si stabilire dove il grafico di x sta sotto quello della retta di equazione y = x Dal disegno si osserverà che i due grafici si incontrano in un punto, la cui ascissa non è determinabile in modo esatto, ma facilmente stimabile in un valore reale α compreso tra e Per le altre due disequazioni, si applica lo stesso metodo

3 Soluzioni Sol Ex Le radici sono x = ex = Ladisequazioneèverificata per x< eperx> Ladisequazioneèverificata per x Ladisequazioneèverificata x R Ladisequazioneèverificata per x< eperx> 5 5 Ladisequazioneèverificata per x< 6 Ladisequazioneèverificata per x 7 Ladisequazioneèverificata x R 8 Ladisequazioneèverificata x R 9 x 8x +7 = (x 6x +9) = (x ),quantitàcheèsempre La disequazione è verificata per x = La disequazione èverificata per x 9 6 La disequazione èverificata per x La disequazione non èmaiverificata Sol Ex Ladisequazioneèverificata per x Ladisequazioneèverificata per x =, ± Ladisequazioneèverificata x R La disequazione non èmaiverificata 5 Ladisequazioneèverificata per x<eperx>5 6 Ladisequazioneèverificata per x 7 La disequazione èverificata per x< eperx> 8 La disequazione è verificata per x> Sol Ex La disequazione èverificata per 7 x<eperx> Ladisequazioneèverificata per x 7 eper x< 7 La disequazione èverificata per x =eperx Ladisequazioneèverificata per 5 <x eper x<5 5 Ladisequazioneèverificata per <x eper<x 7 6 Ladisequazioneèverificata per x<, per <x<eperx>

4 7 Ladisequazioneèverificata per x< 8 Ladisequazioneèverificata per x<, per <x<eperx>6 9 Ladisequazioneèverificata per x 6eper <x 6 Sol Ex Ilsistemaèverificato per x Ilsistemaèverificato per 5 <x<eperx> Ilsistemaèverificato per x< eperx> Ilsistemaèverificato per <x 5 Ilsistemaèverificato per x, x<eperx>7 6 Ilsistemaèverificato per x = Sol Ex 5 Ladisequazioneèverificata per x< + 5 Ladisequazioneèverificata per + 7 <x Ladisequazioneèverificata per x La disequazione non èmaiverificata 5 Ladisequazioneèverificata per x 6 La disequazione non èmaiverificata 7 Ladisequazioneèverificata per x 8 Ladisequazioneèverificata per x eperx 9 Ladisequazioneèverificata per x< 5 eperx 7 La disequazione èverificata x R La disequazione èverificata per x>6 La disequazione èverificata per x Sol Ex 6 La disequazione èverificata per x>log 5 La disequazione èverificata per x log 8 La disequazione è verificata per x> La disequazione data èequivalentea x+ > x+ > x< log 5 La disequazione data èequivalentea x < x< 6 La disequazione data èequivalentea x+ < 7 x< +log 7 7 La disequazione èverificata per x< eperx> 8 La disequazione èverificata per x +log 6

5 Sol Ex 7 Poniamo x = t, ovviamente t>, otteniamo t<et>, quindi la disequazione èverificata per x<eperx> La disequazione èverificata per <x< La disequazione èverificata per x> Sol Ex 8 La disequazione èverificata per <x< 8 La disequazione èverificata per x> 5 La disequazione èverificata per <x e = e La disequazione data èequivalentea<x < 8 <x< eper<x< 8 5 La disequazione èverificata per <x< e per <x< 6 La disequazione èverificata per x 7 La disequazione èverificata per <x< 8 La disequazione èverificata per <x 9 La disequazione èverificata per <x 5 Sol Ex 9 Poniamo, per x>, log x = t, otteniamo t 5 e t, quindi la disequazione èverificata per <x 5 eperx La disequazione èverificata per <x< La disequazione èverificata per log x =,cioèperx = Sol Ex Su [, π) la disequazione èverificata per x< π 6 eper5π <x<π Su tutto R èverificata 6 nell unione degli intervalli hkπ, π +kπ 5π e +kπ, (k +)π, k Z 6 6 Su [ π, π) la disequazione èverificata per π 6 <x<π Su tutto R èverificata nell unione 6 degli intervalli ³ π 6 +kπ, π +kπ, k Z ³ 6 Su π, π π la disequazione èverificata per <x<π Su tutto R èverificata nell unione ³ π degli intervalli + kπ, π kπ +, k Z Su [, π) ladisequazioneèverificata per x π Su tutto R èverificata nell unione degli intervalli [kπ, (k +)π], k Z 5 Su[, π) ladisequazioneèverificata per π <x<5π Su tutto R èverificata nell unione degli π intervalli +kπ, 5π +kπ, k Z 5

6 ³ 6 Su π, π la disequazione èverificata per π <x<π Su tutto R èverificata nell unione degli intervalli ³ π + kπ, π kπ +, k Z 7 Su[, π) ladisequazioneèverificata per arcsin <x<π arcsin e π <x<π Su tutto R è verificata nell unione degli intervalli arcsin +kπ, (k +)π arcsin e ((k +)π, (k +)π), k Z ³ 8 Su π, π la disequazione èverificata per π <x arctan e arctan x<π Sututto R èverificata nell unione degli intervalli ³ π i + kπ, arctan + kπ e harctan + kπ, π kπ +, k Z 9 Poichèsin x = cos x si ha + cos x< cos x<, quindi la disequazione non èmai verificata Sol Ex La disequazione èverificata per x< La disequazione èverificata per <x< eperx>5 La disequazione èverificata per 7 9 <x Sol Ex Il sistema èverificato per x>e Il sistema èverificato per <x 8 Il sistema èverificato per x< Sol Ex La funzione èdefinita in [ 5, ) (, + ) La funzione èdefinita in ( 5, ] (, + ) La funzione èdefinita in (, ) (, + ) La funzione èdefinita in (, ] (, + ) 5 La funzione èdefinita per x>, con x 6= π + kπ 6 La funzione èdefinita in (, ) (, + ) Sol Ex La funzione è positiva in (, ), + enegativain La funzione è positiva in, enegativain, (, + ) La funzione è positiva in,, + enegativain,,, 6

7 Sol Ex x y = x,e= R y = x 6,E= R y = x 5,E= R \{} y = x, E =[, + ) y = 7 x, E = R Sol Ex x y = p x, E = R 5 y = x, E =[, + ) x y = log x,e=(, + ) y =log x,e=(, ) (, + ) - 7

8 Sol Ex dacuisileggeche: a) f è crescente in (, ), + (, + ) b) f è decrescente in (, + ), (, ) c) f èconcavain (, ), ed in, + (, ) ed in (, + ) d) f è convessa in (, + ) (, ) mai e) f è superiormente limitata? Sì No No f) f è inferiormente limitata? No Sì Sì g) f ha massimo? Sì e vale No No h) f ha minimo? No No Sì e vale k) f èiniettiva? No Sì No Sol Ex 8 La funzione riportata in [C] Sol Ex 9 Grafico Funzione A B C D a) Ladisequazione p x < èverificata per <x< b) Ladisequazione x èverificata per x 8

9 Sol Ex x (medio), x (sottile) sin x (medio), x (sottile) - arctan x (medio), x (sottile) La disequazione èverificata per x α (con < α < ) La disequazione èverificata per x<α eperx>β (con π < α < < β < ) La disequazione èverificata per <x<α (con < α < π ) Sol Ex Lafunzioneèdefinita in (, ) (, ] Lafunzioneèdefinita in (, +e ] (, + ) Lafunzioneèdefinita in (, ] Lafunzioneèdefinita in, + Sol Ex La funzione èdefinita in, (, + ), positiva in (, + ) enegativain, La funzione èdefinita in, (, + ), positiva in (, ) e negativa in, (, + ) La funzione èdefinita in (, ) (, + ), positiva in (, + ) enegativain(, ) La funzione èdefinita in (, ), positiva in, enegativain, Sol Ex

10 dacuisileggeche: a) f è iniettiva nel suo campo di esistenza SI NO NO b) f è decrescente in (, ) NO SI SI Sol Ex a) f non è limitata in (, + ); b) f ha massimo () nel suo insieme di definizione; c) f non ha minimo nel suo insieme di definizione; d) f ècrescentein(, ) e decrescente in (, + ); e) f èconcavain(, ); f) f non èconcavain(, + ) Sol Ex a) f ècrescentein(, + ) e decrescente in (, ) ed in (, ); b) f è convesssa in (, ) ed in (, ) econcavain(, + ); c) f non ha nè massimo nè minimo assoluti nel suo insieme di definizione Sol Ex a) f è limitata nel suo insieme di definizione; b) l estremo superiore in (, ) coincide con il massimo e vale ; c) l estremo inferiore in (, + ) vale (nonè il minimo!)

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Argomento 1 Soluzioni degli esercizi

Argomento 1 Soluzioni degli esercizi Argomento Soluzioni degli esercizi SUGGERIMENTI ESERCIZIO.8 L esercizio si risolve più facilmente tracciando il grafico della funzione, che coincide nell intervallo (, ] con un arco di parabola, nell intervallo

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 7 Tema A Cognome e Nome Matr... Disegnare un grafico approssimativo della funzione f() log( ). Indicare sul grafico

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Svolgimento degli esercizi del Capitolo 1

Svolgimento degli esercizi del Capitolo 1 Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 7 Novembre Disequazioni irrazionali

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 7 Novembre Disequazioni irrazionali Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 7 Novembre 016 Disequazioni irrazionali Risolvere le seguenti disequazioni 1 3x + 1 < x + 7 La disequazione é equivalente al seguente

Dettagli

Argomento2 Iparte Funzioni elementari e disequazioni

Argomento2 Iparte Funzioni elementari e disequazioni Argomento Iparte Funzioni elementari e disequazioni In questa lezione richiameremo alcune fra le più comuni funzioni di variabile reale, mettendone in evidenza le principali proprietà. Esamineremo in particolare

Dettagli

Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 2018 SOLUZIONI

Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 2018 SOLUZIONI Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 018 SOLUZIONI Esercizio 1.a 1 x + 1 x 1 + 1 x+ < 0 sommiamo le frazioni e otteniamo 3x +x x(x 1)(x+) < 0. Studiamo il segno di numeratore

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Risoluzione del compito n. 2 (Febbraio 2014/1)

Risoluzione del compito n. 2 (Febbraio 2014/1) Risoluzione del compito n. Febbraio 04/ PROBLEMA Determinate le soluzioni z C del sistema { z + zz z = 4i z =5 3Iz. Dato che nella seconda equazione compare esplicitamente Iz, sembra inevitabile porre

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

Argomento 7 - Studi di funzioni Soluzioni Esercizi

Argomento 7 - Studi di funzioni Soluzioni Esercizi Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

1 Funzioni algebriche fratte

1 Funzioni algebriche fratte 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione) La funzione è del tipo y = f(x) g(x) con f(x) e g(x) polinomi reali in x. Per determinare il dominio D della funzione

Dettagli

3 5 x 25 5 x = 1 5 x (3 25) = x = 1. 5 x = x 8x 8 = 0 2 x (23 ) x. = x (2x ) 3. = x (2 x ) 3 = 0.

3 5 x 25 5 x = 1 5 x (3 25) = x = 1. 5 x = x 8x 8 = 0 2 x (23 ) x. = x (2x ) 3. = x (2 x ) 3 = 0. Anno Scolastico 014/15 - Classe 3B Soluzioni della verifica di matematica del 9 Maggio 015 Risolvere le seguenti equazioni esponenziali o logaritmiche. Dove è necessario, scrivere le condizioni di esistenza

Dettagli

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 014/015 Esercizi sulle funzioni Esercizio 1. Determinare il dominio delle seguenti funzioni: + ; : + ; : + 1 ; : 1 ; : [, + [ 1 ; :

Dettagli

Risoluzione del compito n. 7 (Settembre 2018/2)

Risoluzione del compito n. 7 (Settembre 2018/2) Risoluzione del compito n. 7 (Settembre 08/ PROBLEMA Determinate le soluzioni (z, w, con z, w C,delsistema i z =(+iw i iw =( i z 3 4 i. Moltiplicando la prima equazione per i questa diventa z =( iw e sostituendo

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

Risolvere le seguenti disequazioni

Risolvere le seguenti disequazioni Risolvere le seguenti disequazioni 1. x 4x x 4 > 0 Innanzi tutto il denominatore deve essere non nullo, quindi l insieme di definizione (o campo d esistenza) è x ±. Se decomponiamo sia numeratore che denominatore,

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

RISOLUZIONE ESERCIZI su INSIEMI NUMERICI. = 5 2 ; π = 9 2 ; ) Scrivere in forma diversa i seguenti numeri reali (a,b,c IR e a,b,c > 0):

RISOLUZIONE ESERCIZI su INSIEMI NUMERICI. = 5 2 ; π = 9 2 ; ) Scrivere in forma diversa i seguenti numeri reali (a,b,c IR e a,b,c > 0): RISOLUZIONE ESERCIZI su INSIEMI NUMERICI 1) In ordine crescente: 1/7 < 5/8 < 10 1 < 0,13 < 0,1 3 = /15 < 5/8 = 10/16 < 1/7 < < 0,0031 10 3 < 3,1 = 157/50 < π. ) In ordine crescente: 0/9 < 16/17 = 3/3

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Equazioni e disequazioni. In questa parte ricordiamo per completezza le prime nozioni e i primi principi sulle equazioni e disequazioni: sono le stesse nozioni e principi

Dettagli

Parte I. Matematica per le Applicazioni Economiche

Parte I. Matematica per le Applicazioni Economiche Parte I Matematica per le Applicazioni Economiche Capitolo 1 Disequazioni 1.1. Definizioni Una disequazione è una disuguaglianza fra due espressioni contenenti una o più incognite. Nel caso di una sola

Dettagli

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15.

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15. Esercizi proposti di goniometria 1. Un settore circolare, in un cerchio di raggio 14 cm, ha area uguale a 42π cm 2. Determina la misura in gradi, primi e secondi dell angolo al centro corrispondente. 2.

Dettagli

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r.

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r. Testo 1 ESONERO I 1) Calcolare le seguenti espressioni log 3 135 log 3 5 = log 5 1 125 + log 4 256 = 2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

, α N, quando f è una delle seguenti

, α N, quando f è una delle seguenti . Determinare lim 0 + α f, α R, e lim 0 α f funzioni: f = ln 8 cos4+, f = ln f = sin sine., α N, quando f è una delle seguenti, f = ln ln, sin sin. Calcolare la derivata della funzione f definita da f

Dettagli

Derivabilità, invertibilità e studi di funzione

Derivabilità, invertibilità e studi di funzione Derivabilità, invertibilità e studi di funzione. Studiare la continuità e la derivabilità delle funzioni elencate in tutto il loro dominio di definizione e calcolare la derivata nei punti in cui la funzione

Dettagli

Istituzioni di matematica

Istituzioni di matematica Istituzioni di matematica TUTORATO 1 - Soluzioni Mercoledì 1 novembre 018 Esercizio 1. Studiare la seguente funzione e tracciarne il graco f(x) = x + 1 + 5 x D = {x R : x 0} = R \ {0} - La funzione non

Dettagli

Ripasso delle matematiche elementari: esercizi proposti

Ripasso delle matematiche elementari: esercizi proposti Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

7. Le funzioni elementari: esercizi

7. Le funzioni elementari: esercizi 7. Le funzioni elementari: esercizi Esercizio 7.7. Risolvere le disequazioni. 8 log (3x + ) log 4(3x + );. log x + log / x > 4; 3. log x + log x log(3x); 4. log 7 3 x log 9 x 3 > 5 9 ; 5. log 3 x + + log

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI

ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 18 Dicembre 2012 Esercizio

Dettagli

Esercizi sulle disequazioni a cura del Dott. Simone Vazzoler

Esercizi sulle disequazioni a cura del Dott. Simone Vazzoler Esercizi sulle disequazioni a cura del Dott. Simone Vazzoler 1 ottobre 009 1 Valore assoluto Esercizio 1.1. < 1 x + 1 Svolgimento: Abbiamo i due sistemi: (i) x + 1 0 x + 1 < 1 x + 1 (ii) x + 1 < 1 Le soluzioni

Dettagli

Verica di Matematica su dominio e segno di una funzione [TEST 1]

Verica di Matematica su dominio e segno di una funzione [TEST 1] Verica di Matematica su dominio e segno di una funzione [TEST 1] 1. Esporre le principali caratteristiche della funzione logaritmica dopo averla denita. y = log a x 2. Spiegare come si calcola il dominio

Dettagli

15. Funzioni continue: esercizi

15. Funzioni continue: esercizi 15. Funzioni continue: esercizi Esercizio 15.7. Data la funzione f : R f(r) con legge α se 0 f() = β 2 se > 0, 1. dire se per α = β = 1 la funzione è invertibile e, in caso affermativo, determinare dominio,

Dettagli

CLASSIFICAZIONE DELLE FUNZIONI - TEORIA

CLASSIFICAZIONE DELLE FUNZIONI - TEORIA CLASSIFICAZIONE DELLE FUNZIONI - TEORIA Razionali Intere Fratte 9 9 6 Intere Algebriche indice pari Fratte Irrazionali Intere Funzioni indice dispari Fratte log( 1 logaritmiche ) Goniometriche sen cos

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 03 a.a

Analisi Matematica per Bio-Informatici Esercitazione 03 a.a Analisi Matematica per Bio-Informatici Esercitazione a.a. 7-8 Dott. Simone Zuccher 6 Novembre 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI EQUAZIONI IRRAZIONALI Una equazione si definisce irrazionale quando

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA f = 2 arctan 2) log e 2 αx α sin x + 2x + x 6 + x + n n 2 log n xe x dx al variare di a R x a e x dx Tempo: due ore e mezza Viene corretto solo ciò che è scritto sul foglio intestato È vietato tenere

Dettagli

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0 Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) > 0 f(x) = 0 f(x) < 0 Limiti significativi per f: Equazione degli asintoti

Dettagli

Esempi di funzione...

Esempi di funzione... Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

ESERCIZI RECUPERO OFA. > 0 sono:

ESERCIZI RECUPERO OFA. > 0 sono: ESERCIZI RECUPERO OFA Le soluzioni della disequazione log (x x) 0 a) ], 1[ ], + [ ; b) [, 0[ ], 4] ; c) ], ] [4, + [ ; d) [ 1, 0[ ], ]. sono: 4 x Le soluzioni della disequazione 4x + 1 4 x > 0 sono: a)

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica Pisa, 0 giugno 019 e 1 se 0 Domanda 1 La funzione f : R R definita da 1 se = 0 A) ha minimo ma non ha massimo ) ha massimo ma non

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1.

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1. Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi NOTA: PER FARE PIÚ ALLA SVELTA NON HO SCRITTO TUTTI I DETTAGLI DELLE SOLUZIONI. HO CERCATO DI SPIEGARE LE IDEE PRINCIPALI.

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

SOLUZIONE. SI SI È l esercizio del libro pag. 110 n. 7 c. x y = 1 NO Una funzione è tale se ad ogni elemento x A corrisponde uno e un

SOLUZIONE. SI SI È l esercizio del libro pag. 110 n. 7 c. x y = 1 NO Una funzione è tale se ad ogni elemento x A corrisponde uno e un Macerata 0 novembre 04 classe M TEST DI MATEMATICA SOLUZIONE ) Scrivendo o NO nella casella vuota stabilisci se le equazioni indicate rappresentano delle funzioni f : A y B? a b y = 4y = 0 È l esercizio

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 24 luglio 2018

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 24 luglio 2018 Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA Prova scritta del 4 luglio 08 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 5)

Dettagli

FUNZIONI. Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme.

FUNZIONI. Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme. 1 FUNZIONI Per introdurre correttamente il significato di funzione è necessario fare una breve panoramica sulla definizione di insieme. Insiemi Un insieme è un raggruppamento di oggetti di qualsiasi natura.

Dettagli

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia lettere E-Z, a.a. 216 217, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 4 Andrea Susa PROPRIETÀ GENERALI DISEQUAZIONI 1 Proprietà disuguaglianze Siano,,, allora valgono le seguenti proprietà se

Dettagli

Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO

Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO RICORDA: Nelle disequazioni di primo grado a>b o a

Dettagli

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09 UNIVERSITA DEL SALENTO Prova scritta di ANALISI MATEMATICA I 19/01/09 1 Determinare sup/inf max/min) e insieme dei punti di accumulazione del seguente insieme: E = {x R e x 5e x + 6) arctan x 1 x) < 1}

Dettagli

Argomento 1 - Esercizi

Argomento 1 - Esercizi - Esercizi Avvertenza: alcuni esercizi, denotati con *, possono presentare qualche difficoltà per i principianti. ESERCIZIO. Eseguire il seguente prodotto di numeri reali: 7 5 5+ 7 ESERCIZIO. Confrontare

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018 Università di Pisa - orso di Laurea in Informatica nalisi Matematica Pisa, settembre 208 ( cos x sin se x 0 Domanda Sia f : R R definita da f(x = x 0 se x = 0. non esiste la derivata di f in x = 0 f (0

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata Classe TERZA A inf. MATEMATICA attività di rinforzo anno 011/1 Nella verifica di settembre dovrai dimostrare di riconoscere l'equazione della retta, della circonferenza, della parabola con asse parallelo

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Prerequisiti. A(x) B(x).

Prerequisiti. A(x) B(x). Prerequisiti 4 Equazioni e disequazioni irrazionali Proprietà: la casistica delle equazioni e disequazioni irrazionali è ilitata, potendosi presentare un qualsivoglia numero di radici in ogni membro Noi

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli