Dinamica del fluidi. A. Barbisan - Fluidodinamica 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dinamica del fluidi. A. Barbisan - Fluidodinamica 1"

Transcript

1 Dinamica del fluidi A. Barbisan - Fluidodinamica 1

2 Per descrivere il moto di un fluido ci sono due formalismi equivalenti: Lagrange: si descrive il moto di ogni porzione di fluido z x z y Porzione di fluido di massa m ce al tempo t si trova in (x,y,z). Le sue grandezze si descrivono come f=f(x,y,z,t). Eulero: si descrive ciò ce accade in ogni singolo volumetto attraversato dal fluido (x,y,z,t) y v= v(x,y,z,t) x ρ= ρ(x,y,z,t) A. Barbisan - Fluidodinamica 2

3 Tipi di flusso: Flusso non stazionario: ad ogni punto viene associata una velocità ce dipende esplicitamente dal tempo: v = v (x,y,z,t)) Flusso stazionario: ad ogni punto viene associata una velocità costante: v = v (x,y,z) Flusso rotazionale: ω 0 Flusso irrotazionale: ω=0 Proprietà del fluido: Densità: ρ= ρ(x,y,z,t) in generale varia da punto a punto da istante a istante Fluido incomprimibile: ρ=ρ(x,y,z,t) = ρ o [con ottima approx Liquidi] Viscosità: η= η(x,y,z,t) si manifesta come forza parallela alla velocità e ce dipende da essa. Si oppone allo scorrimento delle diverse parti di fluido una sull altra (forze di taglio presenti in condizioni dinamice) Fluido non viscoso: η=0 [solo in prima approssimazione] A. Barbisan - Fluidodinamica 3

4 Si tratta da qui fino a indicazione contraria di: Flussi stazionari, irrotazionali di fluidi incomprimibili e non viscosi. Linea di flusso z y x Un linea di flusso è tangente punto a punto al vettore velocità in quel punto Con moti stazionari: le linee sono fisse nel tempo e non si incrociano A. Barbisan - Fluidodinamica 4

5 z Si considerano due superfici S1 e S2 a v y S 1 S 2 x A. Barbisan - Fluidodinamica 5

6 z Si considerano due superfici S1 e S2 a v v 1 v 2 y S 1 S 2 x Nel volume delimitato dalle due superfici considerate in un tempo t: S - entra una massa di fluido : m 1 =ρ 1 S 1 v 1 t 1 v 1 t - esce una massa di fluido : m 2 =ρ 2 S 2 v 2 t Dato ce non vi sono sorgenti: S 1 Volume di fluido entrato m 1 m = t t e quindi v 1 t Distanza percorsa da fluido in t ρ 1 S 1 v 1 =ρ 2 S 2 v 2 Equazione di continuità: ρ S v =cost A. Barbisan - Fluidodinamica 6

7 Per un fluido incomprimibile: ρ 1 =ρ 2 =ρ uniforme Non solo: ρ S v =cost Ma ance: S v =cost la portata Q=Sv è costante Se la portata è costante la velocità e inversamente proporzionale alla sezione w v v w > v A. Barbisan - Fluidodinamica 7

8 Si applica il teorema dell energia cinetica: L = E cin Si considera la massa di fluido ce in un tempo t, quando si trova in A,percorre un tratto v A t. Questa massa è compresa tra le superfici S A e S A1 v A t v A S A S A1 Dopo un ulteriore intervallo di tempo t la massa avrà attraversato completamente S A1 A A. Barbisan - Fluidodinamica 8

9 Si applica il teorema dell energia cinetica: L = E cin Si considera la massa di fluido ce in un tempo t, quando si trova in A1, percorre un tratto v A1 t. Questa massa è compresa tra le superfici S A1 e S A2 Dopo un ulteriore intervallo di tempo t la massa avrà attraversato completamente S A2 v A1 t v S A1 A1 S A2 A 1 A. Barbisan - Fluidodinamica 9

10 Si applica il teorema dell energia cinetica: L = E cin Si considera la massa di fluido ce in un tempo t, quando si trova in A,percorre un tratto v A2 t. Questa massa è compresa tra le superfici S A2 e S A3 S A2 v A2 t v A2 Dopo un ulteriore intervallo di tempo t la massa avrà attraversato completamente S A3 A 2 S A3 Dopo ogni ulteriore intervallo di tempo t la massa avrà attraversato completamente la superficie ce la delimitava anteriormente A. Barbisan - Fluidodinamica 10

11 Si applica il teorema dell energia cinetica: L = E cin Si considera la massa di fluido ce in un tempo t, quando si trova in A,percorre un tratto v A3 t. Questa massa è compresa tra le superfici S A3 e S A4 v A3 t S A3 v A3 S A4 Dopo un ulteriore intervallo di tempo t la massa avrà attraversato completamente S A4 A 2 Dopo ogni ulteriore intervallo di tempo t la massa avrà attraversato completamente la superficie ce la delimitava anteriormente A. Barbisan - Fluidodinamica 11

12 Si applica il teorema dell energia cinetica: L = E cin Si considera la massa di fluido ce in un tempo t, quando si trova in A,percorre un tratto v A4 t. v A4 t S A4 v A4 S A5 Questa massa è compresa tra A 4 le superfici S A4 e S A5 Dopo un ulteriore intervallo di tempo t la massa avrà attraversato completamente S A5 Dopo ogni ulteriore intervallo di tempo t la massa avrà attraversato completamente la superficie ce la delimitava anteriormente A. Barbisan - Fluidodinamica 12

13 Si applica il teorema dell energia cinetica: L = E cin Si considera la massa di fluido ce in un tempo t, quando si trova in A,percorre un tratto v A5 t. Questa massa è compresa tra le superfici S A5 e S A6 v A5 t S A5 v A5 A 5 S A6 Dopo un ulteriore intervallo di tempo t la massa avrà attraversato completamente S A6 Dopo ogni ulteriore intervallo di tempo t la massa avrà attraversato completamente la superficie ce la delimitava anteriormente A. Barbisan - Fluidodinamica 13

14 v A6 t Si applica il teorema dell energia cinetica: L = E cin S A6 v A6 Si considera la massa di fluido ce in un tempo t, quando si trova in A,percorre un tratto v A6 t. A 6 S A7 =S B Questa massa è compresa tra le superfici S A6 e S A7 Dopo un ulteriore intervallo di tempo t la massa avrà attraversato completamente S A7 Dopo ogni ulteriore intervallo di tempo t la massa avrà attraversato completamente la superficie ce la delimitava anteriormente A. Barbisan - Fluidodinamica 14

15 Si applica il teorema dell energia cinetica: L = E cin S A7 =S B v B t v A7 =v B S A8 Si considera la massa di fluido ce in un tempo t, quando si trova in A,percorre un tratto v A7 t. Questa massa è compresa tra le superfici S A7 e S A8 A 7 =B Dopo un ulteriore intervallo di tempo t la massa avrà attraversato completamente S A8 Dopo ogni ulteriore intervallo di tempo t la massa avrà attraversato completamente la superficie ce la delimitava anteriormente A. Barbisan - Fluidodinamica 15

16 Sulla massa di fluido considerata, all istante iniziale, agiscono le seguenti forze: F A = P A S A, dovuta al fluido ce precede S A e ce si trova a pressione P A F A1 F A F A1 = - P A1 S A1, dovuta al fluido ce segue S A1 e ce si trova a pressione P A1 S A A S A1 p =mg p=mg=ρgs A v A t, la forza peso F A1 m F A p =mg A. Barbisan - Fluidodinamica 16

17 Tali forze compiono il seguente lavoro: L A =F A v A t= P A S A v A t L A1 =F A1 v A1 t = - P A1 S A1 v A1 t L1=mg v A t cosθ (θ angolo fra v A e p) F A1 F A S A S A1 A p =mg A. Barbisan - Fluidodinamica 17

18 Nell intervallo successivo, sulla massa di fluido considerata agiranno le forze: -F A1 = P A1 S A1, dovuta al fluido ce precede S A e ce si trova a pressione P A v A1 t F A2 = -P A2 S A1, dovuta al fluido ce segue S A1 e ce si trova a pressione P A1 p=mg=ρgs A1 v A1 t, la forza peso S A1 F A2 A 1 S A2 F A1 p =mg Tali forze compiono il seguente lavoro: -L A1 =-F A1 v A1 t= -P A1 S A1 v A t L A2 =F A2 v A2 t = - P A2 S A2 v A2 t Lp=mg v A1 t cosθ 1 (θ 1 angolo fra v A1 e p=mg) A. Barbisan - Fluidodinamica 18

19 Lavoro delle forze agenti tra 0 e t= t L A =F A v A t= P A S A v A t L A1 =F A1 v A1 t = - P A1 S A1 v A1 t L 1 =mg v A t cosθ (θ angolo fra v A e p) Lavoro delle forze agenti tra t= t e t=2 t -L A1 =-F A1 v A1 t= -P A1 S A1 v A t L A2 =F A2 v A2 t = - P A2 S A2 v A2 t L 2 =mg v A1 t cosθ 1 (θ 1 angolo fra v A1 e p) Se si somma il lavoro compiuto dalle diverse forze agenti sulla massa di fluido considerata si ottiene: (L A +L A1 +Lp)+ (-L A1 +L A2 +Lp1)= L A +L A2 +Lp+Lp 1 = = P A S A v A t P A2 S A2 v A2 t-p A. Barbisan - Fluidodinamica 19

20 Si ripete la procedura per ogni intervallo di tempo t. S B v B t v B Si ottiene ce il lavoro complessivamente effettuato dalle forze agenti sulla massa fluida in movimento è dato da: v A t B L= P A S A v A t P B S B v B t mg v A S A A La variazione di energia cinetica è data semplicemente dalla energia cinetica finale (energia cinetica in B), meno l energia cinetica iniziale (energia cinetica in A) della massa di fluido considerata: E c = (1/2) m v B 2 (1/2) m v A 2 A. Barbisan - Fluidodinamica 20

21 v B t S B v B Il teorema dell energia cinetica B L= E c permette di scrivere la relazione: v A t v A S A A P A S A v A t P B S B v B t mg = (1/2) m v B2 (1/2) m v 2 A Dato ce il fluido è incomprimibile: S A v A t=s B v B t =V P A V P B V ρvg = (1/2) ρ V v B2 (1/2) ρ V v 2 A A. Barbisan - Fluidodinamica 21

22 v B t S B P A P B ρ g = (1/2) ρ v B2 (1/2) ρ v A 2 v B P A P B = ρ g +(1/2) ρ v B2 (1/2) ρ v A 2 B v A t v A S A P A + (1/2) ρ v A2 +0 = P B + (1/2) ρ v B2 + ρ g P + (1/2) ρ v 2 + ρ g = cost. A In un tubo di flusso la somma dei tre termini è uguale agli estremi del tubo stesso A. Barbisan - Fluidodinamica 22

23 P A P B = ρ g +(1/2) ρ v B2 (1/2) ρ v A 2 Teor. Bernoulli Casi particolari: v=0 P A P B = ρ g Legge di Stevino v=0 e =0 P A P B = 0 Principio di Pascal =0 P A P B = (1/2) ρ v B2 (1/2) ρ v A 2 Se v B > v A P A > P B P A P C P B v B v A v c v B > v A A. Barbisan - Fluidodinamica 23

24 Po Teorema di Torricelli Velocità di efflusso P + (1/2) ρ v 2 + ρ g = cost. P v o =0 v? P o + ρ g = Po + (1/2) ρ v 2 v = 2g Indipendente da ρ Uguale velocità di un sasso ce cade! A. Barbisan - Fluidodinamica 24

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1 Dinamica del fluidi A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi A. Stefanel - Fluidodinamica 1 Per descrivere il moto di un fluido ci sono due formalismi equivalenti: Lagrange: si descrive il moto

Dettagli

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

Meccanica dei fluidi. Ø definizioni; Ø statica dei fluidi (principio di Archimede); Ø dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. Ø definizioni; Ø statica dei fluidi (principio di Archimede); Ø dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi Ø definizioni; Ø statica dei fluidi (principio di Archimede); Ø dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi FLUIDI LIQUIDI Hanno volume proprio Sono incomprimibili GAS Non hanno volume proprio Sono facilmente comprimibili CARATTERISTICHE COMUNI Non sostengono gli sforzi di taglio (non hanno

Dettagli

Lez 12 09/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 12 09/11/2016. Lezioni in   didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 09//06 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis67/ E. Fiandrini Fis Sper e Appl Did 67 Fluidi in moto Un fluido puo essere messo in movimento (es. acqua che scorre,

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Un fluido è un insieme di molecole tenute insieme da deboli forze di coesione e da forze esercitate dalla parete del contenitore (possono essere sia

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

MECCANICA DEI FLUIDI

MECCANICA DEI FLUIDI MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte

Dettagli

DINAMICA DEI FLUIDI D I LU I G I B O S C A I N O B I B L I O GRAFIA:

DINAMICA DEI FLUIDI D I LU I G I B O S C A I N O B I B L I O GRAFIA: DINAMICA DEI FLUIDI D I LU I G I B O S C A I N O B I B L I O GRAFIA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r P ro b l e m i di f i s i c a t ra t

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Meccanica Dinamica dei fluidi

Meccanica Dinamica dei fluidi Meccanica 6-7 Dinamica dei fluidi Proprietà meccaniche dei fluidi olidi Liquidi Gas orma propria Pressione acqua Assumono la forma dell ambiente che li contiene Volume proprio Incompressibile ρ kg/m 3

Dettagli

STATICA E DINAMICA DEI FLUIDI

STATICA E DINAMICA DEI FLUIDI STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati

Dettagli

4a.Energia di un sistema

4a.Energia di un sistema 4a.Energia di un sistema In questo capitolo non ci concentriamo semplicemente su un corpo schematizzato come un punto materiale ma su una piccola porzione di universo detta sistema. Un sistema può essere:

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

Fluidodinamica. Q=V/Δt=costante

Fluidodinamica. Q=V/Δt=costante Liquido perfetto o ideale: Fluidodinamica Incomprimibile (densità costante sia nel tempo che nello spazio) Assenza di attrito interno (in un liquido reale si conserva la caratteristica dell incompressibilità

Dettagli

Meccanica Meccanica dei fluidi

Meccanica Meccanica dei fluidi Meccanica 8-9 Meccanica dei fluidi olidi Liquidi Gas orma propria Pressione acqua Assumono la forma dell ambiente che li contiene Volume proprio Incomprimibile kg/m 3 3 p Riempie tutto il volume Comprimibile.3

Dettagli

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato Applicazioni Legge di Archimede. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato Prima del posizionamento del corpo: volume

Dettagli

CENNI DI FLUIDODINAMICA

CENNI DI FLUIDODINAMICA CENNI DI FLUIDODINAMICA DOWNLOAD Il pdf di questa lezione (0509a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 09/05/2012 MOTO DEI FLUIDI PERFETTI Il comportamento dei fluidi reali

Dettagli

Meccanica Dinamica del corpo rigido Elementi di fluidodinamica

Meccanica Dinamica del corpo rigido Elementi di fluidodinamica Meccanica 17-18 Dinamica del corpo rigido Elementi di fluidodinamica x Assi principali d inerzia z ω u L O y OQ 1/ Z Q O I OQ X Y Ellissoide d inerizia L I ω u + I ω u + I ω u x x x y y y z z z e scegliamo

Dettagli

Idrodinamica. Equazione di con0nuità Equazione di Bernoulli

Idrodinamica. Equazione di con0nuità Equazione di Bernoulli Idrodinamica Equazione di con0nuità Equazione di Bernoulli Fluidi Ideali Lo studio del moto di un fluido reale sarebbe troppo complesso ed è ancora oggetto di molti studi. Limitiamoci a studiare un liquido

Dettagli

Legge di Stevino ( d.c.)

Legge di Stevino ( d.c.) Legge di Stevino (1548-1620 d.c.) PA =F A /A= (Ah)g/A= hg conosciuta come legge di Stevino che quindi afferma che la pressione esercitata dal liquido su una superficie interna e' proporzionale alla densita'

Dettagli

Cap Fluidi

Cap Fluidi N.Giglietto A.A. 2005/06-15.4 - Legge di Stevino, fluidi a riposo - 1 Cap 15.1-15.2 - Fluidi Un fluido è una sostanza in grado di scorrere: i fluidi prendono la forma dei contenitori nei quali sono confinati.

Dettagli

ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica

ESCLUSIVO USO DIDATTICO INTERNO - CENNI DI DINAMICA DEI FLUIDI Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via Bassi 6, 700 Pavia, Italy - tel. 038/98.7905 girolett@unipv.it - www.unipv.it/webgiro 004 elio giroletti dinamica dei fluidi RISCHI FISICI,

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, è poco comprimibile e molto denso (ha un elevata densità, o massa volumica,

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Programma Parte I Meccanica dei Fluidi Proprietà generali dei Fluidi; Il Principio di Pascal; La legge di Stevino per i liquidi pesanti; Il Principio di Archimede; Il moto dei fluidi; Legge di Bernoulli;

Dettagli

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. UNITÀ 8 LA MECCANICA DEI FLUIDI 1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. 3. La pressione atmosferica. 4. La legge di Stevino. 5. La legge di Pascal. 6. La forza di Archimede.

Dettagli

Lez E. Fiandrini Fis. Sper. e App. Did. 1516

Lez E. Fiandrini Fis. Sper. e App. Did. 1516 Lez 3 5 App. Did. 56 Il principio di Archimede Un oggetto immerso in un fluido riceve una spinta diretta verso l'alto pari alla forza-peso del fluido spostato L acqua che circonda la cavità esercita forze

Dettagli

PROGRAMMA DI FISICA 1 L ANNO SC. 2013/2014 Prof. Tonino Filardi

PROGRAMMA DI FISICA 1 L ANNO SC. 2013/2014 Prof. Tonino Filardi PROGRAMMA DI FISICA 1 L ANNO SC. 2013/2014 Prof. Tonino Filardi INTRODUZIONE AL CORSO DI FISICA Cos è la fisica Il metodo sperimentale Il concetto di grandezza fisica ELEMENTI DI TEORIA DELLA MISURA L

Dettagli

Meccanica dei fluidi (2) Dinamica dei fluidi Lezione 11, 12/11/2018, JW

Meccanica dei fluidi (2) Dinamica dei fluidi Lezione 11, 12/11/2018, JW Meccanica dei fluidi (2) Dinamica dei fluidi Lezione 11, 12/11/2018, JW 14.6-14.9 1 6. Flusso di un fluido e continuità Continuità: Il fluido non si accumula e non sparisce lungo il suo percorso. La quantità

Dettagli

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale)

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale) CINEMATICA Esperienza di Osborne Reynolds (1842-1912) Per basse velocità: moto per filetti viscoso laminare Al crescere velocità: moto di transizione V d V d Per elevate velocità: moto turbolento V d CINEMATICA

Dettagli

x=f(x 0,t) definisce la traiettoria percorsa dalla particella fluida inizialmente posta in X 0

x=f(x 0,t) definisce la traiettoria percorsa dalla particella fluida inizialmente posta in X 0 o Concetti generali o Linee di flusso o Moto stazionario o Liquidi perfetti o Tubi di flusso o Equazioni di continuità o Teorema di Bernoulli o Tubo di Venturi o Tubo di Pitot o Portanza Moto dei fluidi

Dettagli

I fluidi Approfondimento I

I fluidi Approfondimento I I fluidi Approfondimento I statica dei fluidi Legge di Stevino, Principio di Pascal, Principio di Archimede e applicazioni dinamica dei fluidi ideali Flusso di un fluido e continuità Equazione di Bernoulli

Dettagli

IL MOTO DEI FLUIDI. PROGETTO DI FISICA A CURA DELLE ALUNNE: PATERNOSTRO NICOLETTA PERRONE SARA Classe 3 A LICEO SCIENTIFICO MORMANNO A.

IL MOTO DEI FLUIDI. PROGETTO DI FISICA A CURA DELLE ALUNNE: PATERNOSTRO NICOLETTA PERRONE SARA Classe 3 A LICEO SCIENTIFICO MORMANNO A. IL MOTO DEI FLUIDI PROGETTO DI FISICA A CURA DELLE ALUNNE: PATERNOSTRO NICOLETTA PERRONE SARA Classe 3 A LICEO SCIENTIFICO MORMANNO A.S 2015-2016 COSA SONO I FLUIDI? Un fluido è una sostanza che si deforma

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi Meccanica dei Fluidi F.Fabrizi e P. Pennestrì Liceo Scientifico I. Newton - Roma Classe III D 15 marzo 2013 1 Definizione di Fluido Un fluido è un insieme di particelle che interagiscono tra loro con una

Dettagli

PROVA PARZIALE DEL 19 DICEMBRE 2016 modulo I

PROVA PARZIALE DEL 19 DICEMBRE 2016 modulo I PROVA PARZIALE DEL 19 DICEMBRE 016 modulo I January 8, 017 Si prega di svolgere nella maniera più chiara possibile il compito, di scrivere e risolvere le equazioni in gioco riportando tutti i passaggi

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi La lezione di oggi La densità La pressione L equazione di continuità Il teorema di Bernoulli Stenosi e aneurismi ! Densità, pressione! La portata di un condotto! Il teorema di Bernoulli! Applicazioni dell

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1 Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 5: Cinematica dei fluidi Anno Accademico 2008-2009

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 3 Cinematica

Main training FISICA. Lorenzo Manganaro. Lezione 3 Cinematica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 3 Cinematica 1. Introduzione e caratteri generali 2. Moti 1D 1. Moto uniformemente accelerato 2. Moto rettilineo uniforme 3. Moti 2D 1. Moto parabolico

Dettagli

DINAMICA. Forze di massa + Forze di superficie = Forze di inerzia. Forze di massa = ρ fdxdydz. Forze di inerzia = ρ. Adxdydz

DINAMICA. Forze di massa + Forze di superficie = Forze di inerzia. Forze di massa = ρ fdxdydz. Forze di inerzia = ρ. Adxdydz DINMIC Equilibrio idrodinamico Legge di Newton: i F i = m Forze agenti: Forze di massa + Forze di superficie = Forze di inerzia Forze di massa = ρ fdxdydz f = ccelerazione del campo, ovvero forza per unità

Dettagli

Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Titolo: V M. Fig. 4.1 Schematizzazione di una macchina a fluido

Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Titolo: V M. Fig. 4.1 Schematizzazione di una macchina a fluido Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Le equazioni del moto dei fluidi L equazione di continuità o di conservazione della massa V M Ω Ω Fig. 4. Schematizzazione di

Dettagli

Dotto Formazione a tutto tondo. Corso di Fisica

Dotto Formazione a tutto tondo. Corso di Fisica Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 8 Fluidi 2 La densità La densità è il rapporto tra la massa m di una porzione di fluido e il volume V da essa occupato: ρ =

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 25 giugno 2001 Teoria 1. L energia potenziale é la funzione U tale che ovvero F = du dx U = F dx essendo F una forza che

Dettagli

Decima esercitazione

Decima esercitazione Decima esercitazione ) Quali sono le ipotesi su cui si basa la teoria cinetica dei gas? Come viene definita e quanto vale la costante di Boltzman? quale temperatura bisogna portare un gas inizialmente

Dettagli

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Dinamica dei fluidi Universita' di Udine 1 Caratteristiche di un fluido In generale: FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene) liquido volume limitato dalla superficie

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

La corrente di un fluido

La corrente di un fluido La corrente di un fluido 0 La corrente di un fluido è il movimento ordinato di un liquido o di un gas. 0 La portata q è il rapporto tra il volume di fluido V che attraversa una sezione in un tempo t ed

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ).

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ). Impulso e quantità di moto: Lavori e Forze Impulso: l impulso di una forza variabile in un certo intervallo di tempo è definito come l integrale della forza rispetto al tempo nell intervallo considerato:

Dettagli

a. s CLASSE 3C Insegnante G. NICCO Disciplina FISICA

a. s CLASSE 3C Insegnante G. NICCO Disciplina FISICA a. s. 2015-2016 CLASSE 3C Insegnante G. NICCO Disciplina FISICA PROGRAMMA SVOLTO I vettori e le loro operazioni Somma e differenza di vettori. Prodotto vettoriale e prodotto scalare. Seno, coseno e tangente

Dettagli

Laurea triennale in Ingegneria Elettronica Corso di Fisica Generale I

Laurea triennale in Ingegneria Elettronica Corso di Fisica Generale I Università degli Studi di Udine, A.A. 2018/2019 Laurea triennale in Ingegneria Elettronica Corso di Fisica Generale I (Modulo I) Prof.ssa Marina Cobal (Modulo II) Prof.ssa Barbara De Lotto https://thecobal.wordpress.com/fisica-i-ingegneria-elettronica-2017-2018/

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 8: Equazioni fondamentali dell idrodinamica Anno Accademico

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento IDROSTATICA leggi dell'equilibrio IDRODINAMICA leggi del movimento La materia esite in tre stati: SOLIDO volume e forma propri LIQUIDO volume proprio ma non una forma propria (forma del contenitore) AERIFORME

Dettagli

Capitolo 3 Cinematica e Dinamica dei fluidi

Capitolo 3 Cinematica e Dinamica dei fluidi Capitolo 3 Cinematica e Dinamica dei fluidi Cinematica: velocità e accelerazione Campo di velocità: V = V(x,y,z,t) u = u(x,y,z,t) v = v(x,y,z,t) w = w(x,y,z,t) Joseph-Louis Lagrange (Torino, 25 gennaio

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Vessecchia Laura Materia insegnata Fisica Classe Prima E ITIS Previsione numero ore di insegnamento ore complessive di insegnamento 3 ore settimanali di cui in compresenza 1 ora di cui di

Dettagli

PRESSIONE IN UN FLUIDO IN QUIETE

PRESSIONE IN UN FLUIDO IN QUIETE PRESSIONE IN UN FLUIDO IN QUIETE P p 0 Quali e quante pressioni in P? 1) pressione esterna (tipicamente pressione atmosferica) 2) pressione idrostatica Pressione totale = p 0 + dgh LEGGE di STEVINO 156

Dettagli

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T].

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. IDRODINAMICA Portata e velocità media Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. In una corrente d acqua la velocità

Dettagli

Fluidodinamica Computazionale.

Fluidodinamica Computazionale. Fluidodinamica Computazionale carmelo.demaria@centropiaggio.unipi.it Fluidodinamica Computazionale (CFD) CFD è l analisi dei sistemi che involvono movimento di fluidi, scambio di calore ed i fenomeni a

Dettagli

Lezione 9. Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille.

Lezione 9. Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille. Lezione 9 Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille. Moto dei fluidi Studiare il moto di un fluido è un problema complicato, soprattutto

Dettagli

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2 Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A. 2004-2005 Soluzioni proposte per il Foglio di Esercizi n. 2 2.1. Il proiettile ed il sasso cadono lungo y per effetto della accelerazione di gravità

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica Lavoro ed energia cinetica Servono a risolvere problemi che con la Fma sarebbero molto più complicati. Quella dell energia è un idea importante, che troverete utilizzata in contesti diversi. Testo di riferimento:

Dettagli

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento

Cinematica. Velocità. Riferimento Euleriano e Lagrangiano. Accelerazione. Elementi caratteristici del moto. Tipi di movimento Cinematica Velocità Riferimento Euleriano e Lagrangiano Accelerazione Elementi caratteristici del moto Tipi di movimento Testo di riferimento Citrini-Noseda par. 3.1 par. 3.2 par 3.3 fino a linee di fumo

Dettagli

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl Prima verifica F1) Un corpo di massa 200 g si muove lungo l asse x sotto l azione di una forza, parallela all asse x, la cui intensità in funzione di x è data nel grafico B Per quali valori di x l accelerazione

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 7 Fluidostatica e Fluidodinamica

Main training FISICA. Lorenzo Manganaro. Lezione 7 Fluidostatica e Fluidodinamica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 7 Fluidostatica e Fluidodinamica 1. Fluidostatica Pressione e Principio di Pascal Legge di Stevino Legge di Archimede 2. Fluidodinamica Portata

Dettagli

LICEO CLASSICO VITTORIO EMANUELE II

LICEO CLASSICO VITTORIO EMANUELE II LICEO CLASSICO VITTORIO EMANUELE II Via San Sebastiano, 51 NAPOLI Classe 2 Liceo Sezione C P r o f. s s a D a n i e l a S o l P r o g r a m m a d i F i s i c a s v o l t o n e l l a. s. 2 0 1 5 / 2 0 1

Dettagli

Fluidodinamica Computazionale.

Fluidodinamica Computazionale. Fluidodinamica Computazionale carmelo.demaria@centropiaggio.unipi.it Fluidodinamica Computazionale (CFD) CFD è l analisi dei sistemi che involvono movimento di fluidi, scambio di calore ed i fenomeni a

Dettagli

I D R O S T A T I C A

I D R O S T A T I C A I D R O S T A T I C A Caratteristiche stato liquido (descr.) FLUIDI Massa volumica (def. + formula) Volume massico (def. + formula) Peso volumico (def. + formula) Legame massa volumica - peso volumico

Dettagli

Pillole di Fluidodinamica e breve introduzione alla CFD

Pillole di Fluidodinamica e breve introduzione alla CFD Pillole di Fluidodinamica e breve introduzione alla CFD ConoscereLinux - Modena Linux User Group Dr. D. Angeli diego.angeli@unimore.it Sommario 1 Introduzione 2 Equazioni di conservazione 3 CFD e griglie

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

Viscosità e fluido ideale

Viscosità e fluido ideale Viscosità e fluido ideale La iscosità è una grandezza fisica che indica la resistenza di un fluido allo scorrimento. La iscosità si può pensare come una misura della forza che occorre applicare ad uno

Dettagli

Rotazioni. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Rotazioni. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Rotazioni ALTAIR http://metropolis.sci.univr.it Argomenti Propietá di base della rotazione Argomenti Argomenti Propietá di base della rotazione Leggi base del moto Inerzia, molle, smorzatori, leve ed ingranaggi

Dettagli

MODULO BIMESTRALE N.1:Le Grandezze in Fisica

MODULO BIMESTRALE N.1:Le Grandezze in Fisica CLASSE PRIMAFISICA MODULO BIMESTRALE N.1:Le Grandezze in Fisica Conoscere il concetto di grandezza, di misura, di unità di misura, di equivalenza e gli strumenti matematici per valutare le grandezze. ABILITA

Dettagli

Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia Prof. Maria Guerrisi

Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia Prof. Maria Guerrisi Corsi di Laurea dei Tronchi Comuni e 4 Dr. Andrea Malizia Prof. Maria Guerrisi Lezione 7 Viscosità, pressione, vasi comunicanti Barometro di Torricelli Legge di Stevino Principio di Archimede Portata,

Dettagli

Fluido in movimento. Linee di flusso.

Fluido in movimento. Linee di flusso. Fluido in moimento. Linee di flusso. Raresentazione del moto di un fluido. Linea di flusso: linea in ogni unto tangente alla elocità del fluido; indica la direzione del flusso isualizzabili mediante filetti

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 16 Complementi di fluidi

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 16 Complementi di fluidi Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 16 Complementi di fluidi Fabrizio Barbero Dotto Rapid Training 2017 Torino 2 Equazione di continuità Fluido ideale: non viscoso

Dettagli

FISICA (modulo 1) PROVA SCRITTA 08/09/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 08/09/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 08/09/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Nel sistema in figura, i corpi m 1 ed m 2 sono caratterizzati da coefficienti di attrito dinamico

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 15 luglio 2010 1) Una particella di massa m = 100 g viene lanciata da un punto O di un piano orizzontale scabro con velocità v O, paraliela al

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica Dall idrostatica alla idrodinamica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo il valore della pressione atmosferica

Dettagli

MOTO RETTILINEO UNIFORMEMETE ACCELERATO

MOTO RETTILINEO UNIFORMEMETE ACCELERATO MOTO RETTILINEO UNIFORMEMETE ACCELERATO RETTILINEO UNIFORMEMENTE ACCELERATO E la velocita? a MEDIA = a ISTANTANEA Siano t 0 l istante di tempo in cui il corpo inizia ad accelerare v 0 la velocita all istante

Dettagli

CAMPI VETTORIALI (Note)

CAMPI VETTORIALI (Note) CAMPI VETTORIALI (Note) Sia v(x,y,z) il vettore che definisce la grandezza fisica del campo: il problema che ci si pone è di caratterizzare il campo vettoriale sia in termini locali, cioè validi punto

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 12 Corrente elettrica

Main training FISICA. Lorenzo Manganaro. Lezione 12 Corrente elettrica Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 12 Corrente elettrica Lezione 12 Corrente Elettrico 1. Leggi di Ohm 2. Legge di Joule 3. Leggi di Kirchhoff e circuiti Statistica 30 25 20 15 1.

Dettagli

Meccanica dei FLUIDI

Meccanica dei FLUIDI Meccanica dei FLUIDI Densità Portata Pressione Moto stazionario: equazione di continuità Legge di Stevino Pressione idrostatica Spinta di Archimede Teorema di Bernoulli Viscosità Moto laminare: equazione

Dettagli

Lecture 15 Equilibrio radiale Text:

Lecture 15 Equilibrio radiale Text: Lecture 15 Text: Motori Aeronautici Mar. 26, 2015 Mauro Valorani Univeristà La Sapienza 15.279 Agenda 1 2 15.280 Quando le pale presentano un forte sviluppo, si deve studiare il flusso non solo nel piano

Dettagli

CAPITOLO. 1 Gli strumenti di misura Gli errori di misura L incertezza nelle misure La scrittura di una misura 38

CAPITOLO. 1 Gli strumenti di misura Gli errori di misura L incertezza nelle misure La scrittura di una misura 38 Indice LA MATEMATICA PER COMINCIARE 2 LA MISURA DI UNA GRANDEZZA 1 Le proporzioni 1 2 Le percentuali 2 3 Le potenze di 10 3 Proprietà delle potenze 3 4 Seno, coseno e tangente 5 5 I grafici 6 6 La proporzionalità

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Esperienza del viscosimetro a caduta

Esperienza del viscosimetro a caduta Esperienza del viscosimetro a caduta Parte del corso di fisica per CTF dr. Gabriele Sirri sirri@bo.infn.it http://ishtar.df.unibo.it/uni/bo/farmacia/all/navarria/stuff/homepage.htm Esperienza del viscosimetro

Dettagli

PRESSIONE ATMOSFERICA

PRESSIONE ATMOSFERICA PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 197 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli