Laboratorio di dati e sistemi multimediali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio di dati e sistemi multimediali"

Transcript

1 Laboratorio di dati e sistemi multimediali Scienze e tecnologie Multimediale Prof. Christian Micheloni

2 Relazioni tra dati Si consideri un insieme di elementi generico O = o 1,, o n Potrebbe essere imossibile fornire una raresentazione a feature degli oggetti o k, k = 1,, n Al contrario è ossibile fornire una relazione tra coie di oggetti n n r 11 r 1n r = r n1 r nn R r ij si riferisce al grado di similarità, dissimilarità, comatibilità, imcomatibilità, distanza ecc.. Tra l oggetto o i e o j Laboratorio di dati e sistemi multimediali 2

3 Funzioni di Dissimilarità Una funzione d è detta di dissimilarità in R se er ogni x, y R d x, y = d y, x d x, y = 0 x = y d x, z d x, y + d y, z Da cui segue che d x, y 0 Laboratorio di dati e sistemi multimediali 3

4 Norma: Funzione di dissimilarità Una funzione : R R + è una norma se x = 0 x = 0,, 0 a x = a x a R, x R x y x + y x, y R Hyerbolic norm x h = x(i) Laboratorio di dati e sistemi multimediali 4

5 Norma rodotto scalare Una classe di norme molto oolare è quella basata sul rodotto scalare definita come x A = xax t A R La norma iù conosciuta è la norma euclidea x A = xax t A = Laboratorio di dati e sistemi multimediali 5

6 Lebesgue La norma di Lebesque è definita come x α = α x i α City Block x 1 = x(i) Euclidea x 2 = 2 x i 2 Laboratorio di dati e sistemi multimediali 6

7 Dissimilarità di Hamming La distana di Hamming è definita come d H x, y = ρ(x i, y(i) Dove ρ x, y = 1 se x = y 0 altrimenti Laboratorio di dati e sistemi multimediali 7

8 Misure di similarità Una funzione è detta essere una misura di similarità R se er ogni x, y R s x, y = s y, x s x, y s x, x s x, z s x, y + s y, z s x, y 0 Laboratorio di dati e sistemi multimediali 8

9 Dualità Similarità- Dissimilarità Qualsiasi funzione di dissimilarità uò essere utilizzata er definire una corrisondente funzione di similarità e vice versa s x, y = d x, y Laboratorio di dati e sistemi multimediali 9

10 PROBLEMA???? Funzioni di similarità Coseno s x, y = x i y(i) x i 2 y i 2 Overla Dice s x, y = s x, y = min x i y(i) x i 2, x i y(i) x i 2 + y i 2 y i 2 Laboratorio di dati e sistemi multimediali 10

11 Esercizio 1 Si scrivano delle funzioni in Matlab/Octave che calcolano le seguenti distanze Euclidea City Block Hamming Si utilizzino tali funzioni er calcolare la distanza tra i seguenti vettori (0,1,0,1,0,1,0,1) (1,0,1,0,1,0,1,0) (1,1,1,1,1,1,1,1) (0,0,0,0,0,0,0,0) (0,0,0,0,0,1,0,1) (1,0,1,0,0,0,0,0) Laboratorio di dati e sistemi multimediali 11

12 Esercizio 2 Quale delle seguenti funzioni è di similarità o di dissimilarità 1. f x, y = 1 se x = y 0 altrimenti 2. f x, y = x y T x x T y y^t Laboratorio di dati e sistemi multimediali 12

13 Correlazione La correlazione quantifica la relazione tra diverse feature Identifica candidati di interesse Correlazione lineare Semlice, robusta e efficiente da calcolare Identifica solo diendenze lineari Correlazione non lineare Identificano diendenze non lineari Richiedono la definizioni di arametri Laboratorio di dati e sistemi multimediali 13

14 Correlazione Laboratorio di dati e sistemi multimediali 14

15 Correlazione Lineare Quantifica la relazione lineare tra diverse feature o misure. Dato un data set esresso da n vettori X R la covarianza C è calcolata come c ij = 1 n 1 n k=1(x k, i x(i))(x k, j x j ) = COV(x i, x j ) cij>>0 forse diendenza ositiva tra i e j cij<<0 forte diendenza negativa tra i e j cij==0 diendenza debole tra i e j Laboratorio di dati e sistemi multimediali 15

16 Indice di correlazione lineare L indice di correlazione lineare esrime la eventuale relazione di linearità tra due variabili aleatorie s ij = COV x i, x j VAR x i VAR x j s ij = n k=1(x k, i n ( k=1 (x k, i x(i))(x k, j x(i)) 2 x k, j x j ) x j 2 Laboratorio di dati e sistemi multimediali 16

17 Esercizio Scrivere una funzione matlab er il calcolo della covarianza tra due vettori Scrivere una funzione matlab er il calcolo dell indice di correlazione tra due vettori Scrivere una funzione matlab er il calcolo della matrice di covarianza del dataset IRIS Scrivere una funzione matlab er il calcolo dell indice di correlazione del dataset IRIS Laboratorio di dati e sistemi multimediali 17

Appunti a cura di Roberto Bringheli e Carmelo Zucco Pagina 16 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE SOTTRAZIONE DEL COSENO

Appunti a cura di Roberto Bringheli e Carmelo Zucco Pagina 16 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE SOTTRAZIONE DEL COSENO Pagina 6 FORMULE DI ADDIZIONE DI SENO, COSENO E TANGENTE Esistono metodi er determinare le formule di addizione e sottrazione: il metodo vettoriale e quello algebrico, er semlicità ci limiteremo a determinare

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao)

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao) Trigonometria (tratto dal sito Comito in classe di Matematica di Gilberto Mao) Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al

Dettagli

Esercizi SINTESI E RIEPILOGO. Parole chiave. Formule e proprietà importanti. Tema B. In più: esercizi interattivi

Esercizi SINTESI E RIEPILOGO. Parole chiave. Formule e proprietà importanti. Tema B. In più: esercizi interattivi Unità Esercizi In iù: esercizi interattivi Tema B SINTESI E RIEPILG Parole chiave Ascissa. 17 Asse delle ascisse. 17 Asse delle ordinate. 17 Asse. 17 Asse. 17 Coefficiente angolare. 10 Coordinata. 17 Distanza

Dettagli

N.B. La parte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata.

N.B. La parte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata. N.B. La arte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata. Telerilevamento e modelli matematici Michele Scardi La biomassa fitolanctonica, generalmente esressa come concentrazione

Dettagli

Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli

Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli Un portafoglio è costituito dal titolo A e dal titolo B. Il

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO CM a.s. /3 PROLEMA DELL TILE DEL CONSMATORE CON IL VINCOLO DEL ILANCIO Il consumatore è colui che acquista beni er destinarli al rorio consumo. Linsieme dei beni che il consumatore acquista rende il nome

Dettagli

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza 5 LAVR ED ENERGIA La valutazione dell equazione del moto di una articella a artire dalla forza agente su di essa risulta articolarmente semlice qualora la forza è costante; in tal caso è ossibile stabilire

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Legge del gas perfetto e termodinamica

Legge del gas perfetto e termodinamica Scheda riassuntia 5 caitoli 9-0 Legge del gas erfetto e termodinamica Gas erfetto Lo stato gassoso è quello di una sostanza che si troa oltre la sua temeratura critica. La temeratura critica è quella oltre

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DEI MODELLI E DEI SISTEMI TESI DI LAUREA

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DEI MODELLI E DEI SISTEMI TESI DI LAUREA UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA DEI MODELLI E DEI SISTEMI TESI DI LAUREA Sistemi Ibridi: stabilità e alicazioni al controllo Relatore: Francesco

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia STATISTICA GIUSEPPE DE NICOLAO Dipartimento di Informatica e Sistemistica Università di Pavia SOMMARIO V.C. vettoriali Media e varianza campionarie Proprietà degli stimatori Intervalli di confidenza Statistica

Dettagli

SENSAZIONE SONORA. 18.1 L orecchio umano. 18.2 La sensazione sonora - Audiogramma normale

SENSAZIONE SONORA. 18.1 L orecchio umano. 18.2 La sensazione sonora - Audiogramma normale Corso di Imiati Tecnici a.a. 009/010 Docente: Prof. C. Isetti CAPITOLO 18 18.1 L orecchio umano La ercezione di suoni, come d altra arte già osservato al riguardo della luce, coinvolge sia asetti fisici

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

6. CAMPO MAGNETICO ROTANTE.

6. CAMPO MAGNETICO ROTANTE. 6 CAMPO MAGNETICO ROTANTE Il camo magnetico monofase Il funzionamento delle macchine elettriche rotanti alimentate in corrente alternata si basa sul rinciio del camo magnetico rotante: il suo studio viene

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Strumenti statistici per l analisi di dati genetici

Strumenti statistici per l analisi di dati genetici Strumenti statistici per l analisi di dati genetici Luca Tardella + Maria Brigida Ferraro 1 email: luca.tardella@uniroma1.it Lezione #1 Introduzione al software R al suo utilizzo per l implementazione

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Un applicazione della programmazione lineare ai problemi di trasporto

Un applicazione della programmazione lineare ai problemi di trasporto Un applicazione della programmazione lineare ai problemi di trasporto Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria della Sicurezza: Trasporti e Sistemi Territoriali AA 2012-2013

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Riconoscimento e recupero dell informazione per bioinformatica Clustering: similarità Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Definizioni preliminari

Dettagli

Analisi Statistica Spaziale

Analisi Statistica Spaziale Analisi Statistica Spaziale Posa D., De Iaco S. posa@economia.unile.it s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA ANNO ACCADEMICO

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

[4] che, nel caso piano, assume la seguente forma: T = [4 ] Denominate a x, a y e a z le componenti del vettore traslazione t ed indicando con

[4] che, nel caso piano, assume la seguente forma: T = [4 ] Denominate a x, a y e a z le componenti del vettore traslazione t ed indicando con L'LLINEMENTO DELLE SCNSIONI LSER SCNNER MEDINTE L'IMPLEMENTZIONE DI UN INSIEME RIDONDNTE DI SISTEMI RISOLUTIVI Massimo CHILLEMI, Luigi GICOBBE DISI Facoltà di Ingegneria Università di Messina, 0903977208,

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P 4. Reti correttrici e regolatori industriali Un sistema di controllo ad anello chiuso deve soddisfare le secifiche assegnate nel dominio della frequenza e quelle assegnate nel dominio del temo. Queste

Dettagli

Analisi delle relazioni tra due caratteri

Analisi delle relazioni tra due caratteri Analisi delle relazioni tra due caratteri Le misure di connessione misurano il grado di associazione tra due caratteri qualsiasi sotto il profilo statistico (e non causale in quanto non è compito della

Dettagli

CONCORRENZA PERFETTA E DINAMICA

CONCORRENZA PERFETTA E DINAMICA 1 CONCORRENZA PERFETTA E DINAMICA 1. La caratterizzazione dell'equilibrio di mercato Per caratterizzare un mercato di concorrenza erfetta consideriamo un certo numero di imrese che roducono e offrono tutte

Dettagli

Selezione di un portafoglio di titoli in presenza di rischio. Testo

Selezione di un portafoglio di titoli in presenza di rischio. Testo Selezione di un portafoglio di titoli in presenza di rischio Testo E ormai pratica comune per gli operatori finanziari usare modelli e metodi basati sulla programmazione non lineare come guida nella gestione

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle robabilità Evento casuale Chissà quante volte vi hanno detto: Scegli una carta da questo mazzo e voi scegliete casualmente una carta. Perché casualmente? Cosa vuol dire scegliere a caso?

Dettagli

Elementi di meccanica dei fluidi

Elementi di meccanica dei fluidi IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 Caitolo 3 Elementi di meccanica dei fluidi 3. IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 3. Introduzione In molti imianti il collegamento

Dettagli

I NUMERI INDICI. Numeri indici indici (misurano il livello di variabilità, concentrazione, dipendenza o interdipendenza, ecc.)

I NUMERI INDICI. Numeri indici indici (misurano il livello di variabilità, concentrazione, dipendenza o interdipendenza, ecc.) NUMER NDC Numeri indici indici (misurano il livello di variabilità, concentrazione, diendenza o interdiendenza, ecc.) si utilizzano er confrontare grandezze nel temo e nello sazio e sono dati dal raorto

Dettagli

La categoria «ES» presenta (di solito) gli stessi comandi

La categoria «ES» presenta (di solito) gli stessi comandi Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna bolfra@gmail.com ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:

Dettagli

Separazione in due fondi Security Market Line CAPM

Separazione in due fondi Security Market Line CAPM Separazione in due fondi Security Market Line CAPM Eduardo Rossi Economia dei mercati monetari e finanziari A.A. 2002/2003 1 Separazione in due fondi Un vettore di rendimenti er può essere separato in

Dettagli

STABILITÀ DEI SISTEMI LINEARI

STABILITÀ DEI SISTEMI LINEARI STABILITÀ DEI SISTEMI LINEARI Quando un sistema fisico inizialmente in quiete viene sottoosto ad un ingresso di durata finita o di amiezza limitata, l uscita del sistema dovrebbe stabilizzarsi a un certo

Dettagli

La presa dei fotogrammi

La presa dei fotogrammi UNITÀ T2 La resa dei fotogrammi TEORI 1 Fotogrammetria aerea 2 Relazione tra scala dei fotogrammi e altezza di volo 3 Parametri del volo aereo fotogrammetrico 4 Gestione del volo fotogrammetrico 5 Fotogrammetria

Dettagli

CARATTERISTICHE DELLA SOLLECITAZIONE

CARATTERISTICHE DELLA SOLLECITAZIONE RRISIH D SOIZIO bbiamo visto che la trave uò essere definita come un solido generato da una figura iana S (detta seione retta o seione ortogonale) che si muove nello saio mantenendosi semre ortogonale

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

E chiaro allora che, rappresentando l evento impossibile e quello certo le due situazioni limite, per un qualunque evento si avrà:

E chiaro allora che, rappresentando l evento impossibile e quello certo le due situazioni limite, per un qualunque evento si avrà: CORSO ELEMENTARE SULLA PROBABILITA Eserimento aleatorio: ogni fenomeno del mondo reale il cui svolgimento è accomagnato da un certo grado di incertezza. rova (tentativo) singola esecuzione di un ben determinato

Dettagli

Indice-sommario INDICE SOMMARIO CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE

Indice-sommario INDICE SOMMARIO CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE VII INDICE SOMMARIO Prefazione... xv CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE 1. Analisi dei dati e data mining... 1 2. La matrice dei dati «unità pervariabili»... 6 3. Idatiricavatidaun

Dettagli

(a) E' una scala grafica, o di valutazione continua (b) Non e' comparativa (c) E' una scala semplice. 2. E' data la seguente matrice di distanze

(a) E' una scala grafica, o di valutazione continua (b) Non e' comparativa (c) E' una scala semplice. 2. E' data la seguente matrice di distanze A.A. 013/014 Corso di Laurea triennale in Economia Aziendale e Bancaria Insegnamento: Ricerche di Mercato Esercitazione valida per l'esonero dalla prova scritta -- 1 dicembre 013 1. Si consideri la seguente

Dettagli

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE

1 Associazione tra variabili quantitative COVARIANZA E CORRELAZIONE 1 Associazione tra variabili quantitative ASSOCIAZIONE FRA CARATTERI QUANTITATIVI: COVARIANZA E CORRELAZIONE 2 Associazione tra variabili quantitative Un esempio Prezzo medio per Nr. Albergo cliente (Euro)

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 Controlli Digitali Laurea Magistrale in Ingegneria Meccatronica CONTROLLORI PID Tel. 0522 522235 e-mail: secchi.cristian@unimore.it Introduzione regolatore Proorzionale, Integrale, Derivativo PID regolatori

Dettagli

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V LEGGI DEI GS Per gas si intende un fluido rivo di forma o volume rorio e facilmente comrimibile in modo da conseguire notevoli variazioni di ressione e densità. Le variabili termodinamiche iù aroriate

Dettagli

6. I GAS IDEALI. 6.1 Il Gas perfetto

6. I GAS IDEALI. 6.1 Il Gas perfetto 6. I GAS IDEALI 6. Il Gas erfetto Il gas erfetto o ideale costituisce un modello astratto del comortamento dei gas cui tendono molti gas reali a ressioni rossime a quella atmosferica. Questo modello di

Dettagli

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η =

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η = CICLI ERMODINAMICI DIREI: Maccine termice Le maccine ce anno come scoo uello di trasformare ciclicamente in lavoro il calore disonibile da una sorgente termica sono dette maccine termice o motrici e il

Dettagli

Appunti di Termodinamica

Appunti di Termodinamica ullio Paa unti di ermodinamica Per arofondire consultare il testo: Paa; Lezioni di Fisica-ermodinamica, edizioni Kaa, Roma 1 Sistemi e variabili termodinamiche Equazioni di stato 1 Introduzione La termodinamica

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

ANALISI DEI DATI BIOLOGICI

ANALISI DEI DATI BIOLOGICI ANALISI DI DATI BIOLOGICI RAPPRSNTAR L COMUNITA tramite descrizioni grafiche e relazioni tra gli organismi presenti nei vari campioni. DISCRIMINAR dei siti sulla base della loro composizione biologica.

Dettagli

MAGNETIC RESONANCE IMAGING

MAGNETIC RESONANCE IMAGING MAGNETIC RESONANCE IMAGING L'MRI èuna tecnica di generazione di immagini usata prevalentemente per scopi diagnostici in campo medico, basata sul principio fisico della risonanza magnetica nucleare. Le

Dettagli

IMPIANTI DI LAVAGGIO A PORTALE IL MODELLO BASIC. EasyWash

IMPIANTI DI LAVAGGIO A PORTALE IL MODELLO BASIC. EasyWash IMPIANTI DI LAVAGGIO A PORTALE IL MODELLO BASIC EasyWash EasyWash il modello ideale er stazioni di servizio e attività di autolavaggio di iccole dimensioni Design: Basic EasyWash disone di tutte le caratteristiche

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11 Modelli dei Sistemi di Produzione Modelli e lgoritmi della Logistica 00- Scheduling: Macchina Singola CRLO MNNINO Saienza Università di Roma Diartimento di Informatica e Sistemistica Il roblema /-/ w C

Dettagli

CONTROLLO TERMICO DEI SISTEMI DI CALCOLO Fluidodinamica UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B)

CONTROLLO TERMICO DEI SISTEMI DI CALCOLO Fluidodinamica UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B) U.07/0 UNITA' 07 - SOMMARIO 7. EQUAZIONI INTEGRALI DI BILANCIO PER FLUIDI IN MOTO (B) 7. BILANCIO DELL ENERGIA 7.. Bilancio dell energia stazionario er sistemi a due correnti 7... Bilancio dell energia

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA DIPARTIMENTO DI PRINCIPI E IMPIANTI DI INGEGNERIA CHIMICA I. Sorgato TESI DI LAUREA IN INGEGNERIA CHIMICA METODOLOGIE PER LA SELEZIONE DELLE VARIABILI

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

Le Macchine a Fluido. Tutor Ing. Leonardo Vita

Le Macchine a Fluido. Tutor Ing. Leonardo Vita Le Macchine a Fluido Tutor Ing. Leonardo Vita Introduzione Si uò definire macchina, in senso lato, un qualsiasi convertitore di energia cioè, in generale, una scatola chiusa in cui entra e da cui esce

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Modello di simulazione per un portafoglio diversificato

Modello di simulazione per un portafoglio diversificato Modello di simulazione per un portafoglio diversificato Giulio alomba Università olitecnica delle Marche Dipartimento di Economia giulio@dea.unian.it Maggio 2004 Indice 1 Introduzione 2 2 Il modello analitico

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

8 - Analisi della deformazione

8 - Analisi della deformazione 8 - Analisi della deformazione ü [A.a. - : ultima revisione 6 ottobre ] Esercizio n. Si supponga di voler conoscere sperimentalmente lo stato di deformazione in un punto M di un solido. A tal fine, si

Dettagli

Complementi ed esercizi di Idrodinamica I parte. 1. Proprietà fisiche dei fluidi

Complementi ed esercizi di Idrodinamica I parte. 1. Proprietà fisiche dei fluidi Comlementi ed esercizi di Idrodinamica I arte.. Prorietà fisiche dei fluidi. Densità e modulo di elasticità a comressione cubica. Come è noto la densità di massa ρ misura la massa contenuta nell unità

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Il modello media-varianza con N titoli rischiosi. Una derivazione formale. Enrico Saltari

Il modello media-varianza con N titoli rischiosi. Una derivazione formale. Enrico Saltari Il modello media-varianza con N titoli rischiosi. Una derivazione formale Enrico Saltari La frontiera efficiente con N titoli rischiosi Nel caso esistano N titoli rischiosi, con N 2, il problema della

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

Il rischio di un portafoglio

Il rischio di un portafoglio Come si combinano in un portafoglio i rischi di 2 titoli? dipende dai pesi e dal valore delle covarianze covarianza a a ρ a b ρ a b ρ b b ρ coefficiente di correlazione = cov / ² p = a² ² + b² ² + 2 a

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Classificazione e Segmentazione di Gesture per la Human Computer Interaction

Classificazione e Segmentazione di Gesture per la Human Computer Interaction Università degli studi di Modena e Reggio Emilia Dipartimento di Ingegneria "Enzo Ferrari" Corso di Laurea Magistrale in Ingegneria Informatica Classificazione e Segmentazione di Gesture per la Human Computer

Dettagli

Scambio termico 6.1. 6.1.1 Introduzione. 6.1.2 Conduzione

Scambio termico 6.1. 6.1.1 Introduzione. 6.1.2 Conduzione 6. Scambio termico 6.. Introduzione Lo studio dei fenomeni di scambio termico si uò ricondurre a due variabili: la temeratura e il flusso di calore. La temeratura indica l energia molecolare media di un

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

5. Dati sperimentali e loro elaborazione 9. 5.1 Resistenza interna del triodo 9. 5.2 Conduttanza mutua del triodo 16

5. Dati sperimentali e loro elaborazione 9. 5.1 Resistenza interna del triodo 9. 5.2 Conduttanza mutua del triodo 16 Sommario Pa. 1. Scoo dell eserienza 2 2. Presuosti teorici 3 3. Aarato Strumentale 6 4. Descrizione dell eserimento 8 5. Dati serimentali e loro elaborazione 9 5.1 Resistenza interna del triodo 9 5.2 Conduttanza

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Strutture dati efficienti per la ricerca della similarità

Strutture dati efficienti per la ricerca della similarità Strutture dati efficienti per la ricerca della similarità Anche utilizzando i metodi di filtraggio visti in precedenza, il numero di confronti tra query e oggetti presenti nel database rimane alto. L efficienza

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale Aunti ed Esercizi di Fisica Tecnica e Macchine Termiche Ca. 0. Elementi di sicrometria, condizionamento dell aria e benessere ambientale Nicola Forgione Paolo Di Marco Versione 0.0.04.0. La resente disensa

Dettagli

Trasformazioni 2D. Grande differenza rispetto alla grafica raster!

Trasformazioni 2D. Grande differenza rispetto alla grafica raster! Trasformazioni 2D Il grande vantaggio della grafica vettoriale è che le immagini vettoriali descrivono entità matematiche È immediato manipolare matematicamente tali entità In quasi tutte le manipolazioni

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

2. Analisi Statistica dei Dati

2. Analisi Statistica dei Dati Frequenza e Probabilità Distribuzione di probabilità Media e varianza Regressione statistica Test del χ Correlazione lineare Analisi della varianza Media e varianza multivariata Gaussiana Multivariata

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

I COSTI DI UNA VALUTA COMUNE

I COSTI DI UNA VALUTA COMUNE I COTI I UNA VALUTA COMUNE Un aese che aderisce a un UNIONE MONETARIA rinuncia ad alcuni strumenti di olitica economica utili a far fronte a eventuali situazioni di squilibrio ❶ manovre del tasso di cambio

Dettagli

SISTEMA D ALLARME E COMUNICATORI

SISTEMA D ALLARME E COMUNICATORI SISTEMA D ALLARME E COMUNICATORI MANUALE D USO Grazie er aver acquistato un sistema di sicurezza DAITEM adeguato alle vostre esigenze di rotezione. Precauzioni L installazione del sistema deve essere effettuata

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

CAP.3 LA LEGGE COSTITUTIVA ELASTO-PLASTICA

CAP.3 LA LEGGE COSTITUTIVA ELASTO-PLASTICA ECNOLOGE E MAERAL AEROSPAZAL CAP. LA LEGGE COSUVA ELASO-PLASCA CAPOLO LA LEGGE COSUVA ELASO-PLASCA. ntroduzione Le microstruttura dei materiali olicristallini è all origine del comortamento elasto-lastico

Dettagli

L analisi statistica multivariata applicata alle ricerche di mercato

L analisi statistica multivariata applicata alle ricerche di mercato Capitolo 4 L analisi statistica multivariata applicata alle ricerche di mercato 4.1 Introduzione I capitoli precedenti hanno discusso alcuni aspetti relativi alla raccolta delle informazioni rilevanti

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Esercitazioni in Maple

Esercitazioni in Maple Esercitazioni in Maple 6 giugno 2007 Capitolo 1 Prima esercitazione 1.1 Anelli di polinomi Per cominciare bisogna dichiarare un anello di polinomi. Possiamo lavorare con un qualsiasi anello di tipo dove

Dettagli