Laboratorio di dati e sistemi multimediali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio di dati e sistemi multimediali"

Transcript

1 Laboratorio di dati e sistemi multimediali Scienze e tecnologie Multimediale Prof. Christian Micheloni

2 Relazioni tra dati Si consideri un insieme di elementi generico O = o 1,, o n Potrebbe essere imossibile fornire una raresentazione a feature degli oggetti o k, k = 1,, n Al contrario è ossibile fornire una relazione tra coie di oggetti n n r 11 r 1n r = r n1 r nn R r ij si riferisce al grado di similarità, dissimilarità, comatibilità, imcomatibilità, distanza ecc.. Tra l oggetto o i e o j Laboratorio di dati e sistemi multimediali 2

3 Funzioni di Dissimilarità Una funzione d è detta di dissimilarità in R se er ogni x, y R d x, y = d y, x d x, y = 0 x = y d x, z d x, y + d y, z Da cui segue che d x, y 0 Laboratorio di dati e sistemi multimediali 3

4 Norma: Funzione di dissimilarità Una funzione : R R + è una norma se x = 0 x = 0,, 0 a x = a x a R, x R x y x + y x, y R Hyerbolic norm x h = x(i) Laboratorio di dati e sistemi multimediali 4

5 Norma rodotto scalare Una classe di norme molto oolare è quella basata sul rodotto scalare definita come x A = xax t A R La norma iù conosciuta è la norma euclidea x A = xax t A = Laboratorio di dati e sistemi multimediali 5

6 Lebesgue La norma di Lebesque è definita come x α = α x i α City Block x 1 = x(i) Euclidea x 2 = 2 x i 2 Laboratorio di dati e sistemi multimediali 6

7 Dissimilarità di Hamming La distana di Hamming è definita come d H x, y = ρ(x i, y(i) Dove ρ x, y = 1 se x = y 0 altrimenti Laboratorio di dati e sistemi multimediali 7

8 Misure di similarità Una funzione è detta essere una misura di similarità R se er ogni x, y R s x, y = s y, x s x, y s x, x s x, z s x, y + s y, z s x, y 0 Laboratorio di dati e sistemi multimediali 8

9 Dualità Similarità- Dissimilarità Qualsiasi funzione di dissimilarità uò essere utilizzata er definire una corrisondente funzione di similarità e vice versa s x, y = d x, y Laboratorio di dati e sistemi multimediali 9

10 PROBLEMA???? Funzioni di similarità Coseno s x, y = x i y(i) x i 2 y i 2 Overla Dice s x, y = s x, y = min x i y(i) x i 2, x i y(i) x i 2 + y i 2 y i 2 Laboratorio di dati e sistemi multimediali 10

11 Esercizio 1 Si scrivano delle funzioni in Matlab/Octave che calcolano le seguenti distanze Euclidea City Block Hamming Si utilizzino tali funzioni er calcolare la distanza tra i seguenti vettori (0,1,0,1,0,1,0,1) (1,0,1,0,1,0,1,0) (1,1,1,1,1,1,1,1) (0,0,0,0,0,0,0,0) (0,0,0,0,0,1,0,1) (1,0,1,0,0,0,0,0) Laboratorio di dati e sistemi multimediali 11

12 Esercizio 2 Quale delle seguenti funzioni è di similarità o di dissimilarità 1. f x, y = 1 se x = y 0 altrimenti 2. f x, y = x y T x x T y y^t Laboratorio di dati e sistemi multimediali 12

13 Correlazione La correlazione quantifica la relazione tra diverse feature Identifica candidati di interesse Correlazione lineare Semlice, robusta e efficiente da calcolare Identifica solo diendenze lineari Correlazione non lineare Identificano diendenze non lineari Richiedono la definizioni di arametri Laboratorio di dati e sistemi multimediali 13

14 Correlazione Laboratorio di dati e sistemi multimediali 14

15 Correlazione Lineare Quantifica la relazione lineare tra diverse feature o misure. Dato un data set esresso da n vettori X R la covarianza C è calcolata come c ij = 1 n 1 n k=1(x k, i x(i))(x k, j x j ) = COV(x i, x j ) cij>>0 forse diendenza ositiva tra i e j cij<<0 forte diendenza negativa tra i e j cij==0 diendenza debole tra i e j Laboratorio di dati e sistemi multimediali 15

16 Indice di correlazione lineare L indice di correlazione lineare esrime la eventuale relazione di linearità tra due variabili aleatorie s ij = COV x i, x j VAR x i VAR x j s ij = n k=1(x k, i n ( k=1 (x k, i x(i))(x k, j x(i)) 2 x k, j x j ) x j 2 Laboratorio di dati e sistemi multimediali 16

17 Esercizio Scrivere una funzione matlab er il calcolo della covarianza tra due vettori Scrivere una funzione matlab er il calcolo dell indice di correlazione tra due vettori Scrivere una funzione matlab er il calcolo della matrice di covarianza del dataset IRIS Scrivere una funzione matlab er il calcolo dell indice di correlazione del dataset IRIS Laboratorio di dati e sistemi multimediali 17

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

N.B. La parte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata.

N.B. La parte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata. N.B. La arte rilevante ai fini del corso di Metodologie Ecologiche è quella riquadrata. Telerilevamento e modelli matematici Michele Scardi La biomassa fitolanctonica, generalmente esressa come concentrazione

Dettagli

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza

5 LAVORO ED ENERGIA. 5.1 Lavoro di una forza 5 LAVR ED ENERGIA La valutazione dell equazione del moto di una articella a artire dalla forza agente su di essa risulta articolarmente semlice qualora la forza è costante; in tal caso è ossibile stabilire

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO

CBM a.s. 2012/2013 PROBLEMA DELL UTILE DEL CONSUMATORE CON IL VINCOLO DEL BILANCIO CM a.s. /3 PROLEMA DELL TILE DEL CONSMATORE CON IL VINCOLO DEL ILANCIO Il consumatore è colui che acquista beni er destinarli al rorio consumo. Linsieme dei beni che il consumatore acquista rende il nome

Dettagli

Esercizi SINTESI E RIEPILOGO. Parole chiave. Formule e proprietà importanti. Tema B. In più: esercizi interattivi

Esercizi SINTESI E RIEPILOGO. Parole chiave. Formule e proprietà importanti. Tema B. In più: esercizi interattivi Unità Esercizi In iù: esercizi interattivi Tema B SINTESI E RIEPILG Parole chiave Ascissa. 17 Asse delle ascisse. 17 Asse delle ordinate. 17 Asse. 17 Asse. 17 Coefficiente angolare. 10 Coordinata. 17 Distanza

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

SENSAZIONE SONORA. 18.1 L orecchio umano. 18.2 La sensazione sonora - Audiogramma normale

SENSAZIONE SONORA. 18.1 L orecchio umano. 18.2 La sensazione sonora - Audiogramma normale Corso di Imiati Tecnici a.a. 009/010 Docente: Prof. C. Isetti CAPITOLO 18 18.1 L orecchio umano La ercezione di suoni, come d altra arte già osservato al riguardo della luce, coinvolge sia asetti fisici

Dettagli

CONCORRENZA PERFETTA E DINAMICA

CONCORRENZA PERFETTA E DINAMICA 1 CONCORRENZA PERFETTA E DINAMICA 1. La caratterizzazione dell'equilibrio di mercato Per caratterizzare un mercato di concorrenza erfetta consideriamo un certo numero di imrese che roducono e offrono tutte

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Riconoscimento e recupero dell informazione per bioinformatica Clustering: similarità Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Definizioni preliminari

Dettagli

[4] che, nel caso piano, assume la seguente forma: T = [4 ] Denominate a x, a y e a z le componenti del vettore traslazione t ed indicando con

[4] che, nel caso piano, assume la seguente forma: T = [4 ] Denominate a x, a y e a z le componenti del vettore traslazione t ed indicando con L'LLINEMENTO DELLE SCNSIONI LSER SCNNER MEDINTE L'IMPLEMENTZIONE DI UN INSIEME RIDONDNTE DI SISTEMI RISOLUTIVI Massimo CHILLEMI, Luigi GICOBBE DISI Facoltà di Ingegneria Università di Messina, 0903977208,

Dettagli

Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli

Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli Esercitazione di Martedì 28 Ottobre (Rischio-Rendimento) Esercizio n 1, Calcolo dei pesi all interno di un portafoglio costituito da 2 titoli Un portafoglio è costituito dal titolo A e dal titolo B. Il

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P

4. Reti correttrici e regolatori industriali. 4.1 Regolatori industriali. 4.1.1 Regolatore ad azione proporzionale P 4. Reti correttrici e regolatori industriali Un sistema di controllo ad anello chiuso deve soddisfare le secifiche assegnate nel dominio della frequenza e quelle assegnate nel dominio del temo. Queste

Dettagli

Elementi di meccanica dei fluidi

Elementi di meccanica dei fluidi IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 Caitolo 3 Elementi di meccanica dei fluidi 3. IMPIANTI AEROSPAZIALI DISPENSE DEL CORSO, VERSIONE 005 3. Introduzione In molti imianti il collegamento

Dettagli

STABILITÀ DEI SISTEMI LINEARI

STABILITÀ DEI SISTEMI LINEARI STABILITÀ DEI SISTEMI LINEARI Quando un sistema fisico inizialmente in quiete viene sottoosto ad un ingresso di durata finita o di amiezza limitata, l uscita del sistema dovrebbe stabilizzarsi a un certo

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle robabilità Evento casuale Chissà quante volte vi hanno detto: Scegli una carta da questo mazzo e voi scegliete casualmente una carta. Perché casualmente? Cosa vuol dire scegliere a caso?

Dettagli

CARATTERISTICHE DELLA SOLLECITAZIONE

CARATTERISTICHE DELLA SOLLECITAZIONE RRISIH D SOIZIO bbiamo visto che la trave uò essere definita come un solido generato da una figura iana S (detta seione retta o seione ortogonale) che si muove nello saio mantenendosi semre ortogonale

Dettagli

La presa dei fotogrammi

La presa dei fotogrammi UNITÀ T2 La resa dei fotogrammi TEORI 1 Fotogrammetria aerea 2 Relazione tra scala dei fotogrammi e altezza di volo 3 Parametri del volo aereo fotogrammetrico 4 Gestione del volo fotogrammetrico 5 Fotogrammetria

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 Controlli Digitali Laurea Magistrale in Ingegneria Meccatronica CONTROLLORI PID Tel. 0522 522235 e-mail: secchi.cristian@unimore.it Introduzione regolatore Proorzionale, Integrale, Derivativo PID regolatori

Dettagli

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V

Consideriamo un gas ideale in equilibrio termodinamico alla pressione p 1. , contenuto in un volume V LEGGI DEI GS Per gas si intende un fluido rivo di forma o volume rorio e facilmente comrimibile in modo da conseguire notevoli variazioni di ressione e densità. Le variabili termodinamiche iù aroriate

Dettagli

Appunti di Termodinamica

Appunti di Termodinamica ullio Paa unti di ermodinamica Per arofondire consultare il testo: Paa; Lezioni di Fisica-ermodinamica, edizioni Kaa, Roma 1 Sistemi e variabili termodinamiche Equazioni di stato 1 Introduzione La termodinamica

Dettagli

6. I GAS IDEALI. 6.1 Il Gas perfetto

6. I GAS IDEALI. 6.1 Il Gas perfetto 6. I GAS IDEALI 6. Il Gas erfetto Il gas erfetto o ideale costituisce un modello astratto del comortamento dei gas cui tendono molti gas reali a ressioni rossime a quella atmosferica. Questo modello di

Dettagli

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η =

L Q = 1. e nel ciclo di Carnot questo rendimento assume valore massimo pari a : η = CICLI ERMODINAMICI DIREI: Maccine termice Le maccine ce anno come scoo uello di trasformare ciclicamente in lavoro il calore disonibile da una sorgente termica sono dette maccine termice o motrici e il

Dettagli

IMPIANTI DI LAVAGGIO A PORTALE IL MODELLO BASIC. EasyWash

IMPIANTI DI LAVAGGIO A PORTALE IL MODELLO BASIC. EasyWash IMPIANTI DI LAVAGGIO A PORTALE IL MODELLO BASIC EasyWash EasyWash il modello ideale er stazioni di servizio e attività di autolavaggio di iccole dimensioni Design: Basic EasyWash disone di tutte le caratteristiche

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

Modello di simulazione per un portafoglio diversificato

Modello di simulazione per un portafoglio diversificato Modello di simulazione per un portafoglio diversificato Giulio alomba Università olitecnica delle Marche Dipartimento di Economia giulio@dea.unian.it Maggio 2004 Indice 1 Introduzione 2 2 Il modello analitico

Dettagli

Le Macchine a Fluido. Tutor Ing. Leonardo Vita

Le Macchine a Fluido. Tutor Ing. Leonardo Vita Le Macchine a Fluido Tutor Ing. Leonardo Vita Introduzione Si uò definire macchina, in senso lato, un qualsiasi convertitore di energia cioè, in generale, una scatola chiusa in cui entra e da cui esce

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Selezione di un portafoglio di titoli in presenza di rischio. Testo

Selezione di un portafoglio di titoli in presenza di rischio. Testo Selezione di un portafoglio di titoli in presenza di rischio Testo E ormai pratica comune per gli operatori finanziari usare modelli e metodi basati sulla programmazione non lineare come guida nella gestione

Dettagli

E chiaro allora che, rappresentando l evento impossibile e quello certo le due situazioni limite, per un qualunque evento si avrà:

E chiaro allora che, rappresentando l evento impossibile e quello certo le due situazioni limite, per un qualunque evento si avrà: CORSO ELEMENTARE SULLA PROBABILITA Eserimento aleatorio: ogni fenomeno del mondo reale il cui svolgimento è accomagnato da un certo grado di incertezza. rova (tentativo) singola esecuzione di un ben determinato

Dettagli

(a) E' una scala grafica, o di valutazione continua (b) Non e' comparativa (c) E' una scala semplice. 2. E' data la seguente matrice di distanze

(a) E' una scala grafica, o di valutazione continua (b) Non e' comparativa (c) E' una scala semplice. 2. E' data la seguente matrice di distanze A.A. 013/014 Corso di Laurea triennale in Economia Aziendale e Bancaria Insegnamento: Ricerche di Mercato Esercitazione valida per l'esonero dalla prova scritta -- 1 dicembre 013 1. Si consideri la seguente

Dettagli

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h).

Portata Q - è il volume di liquido mosso dalla pompa nell'unità di tempo; l'unità di misura della portata è m 3 /sec (l/s; m 3 /h). OME ER FLUIDI ALIMENARI Definizione Sono macchine oeratrici oeranti su fluidi incomrimibili in grado di trasformare l energia meccanica disonibile all albero di un motore in energia meccanica del fluido

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia

STATISTICA GIUSEPPE DE NICOLAO. Dipartimento di Informatica e Sistemistica Università di Pavia STATISTICA GIUSEPPE DE NICOLAO Dipartimento di Informatica e Sistemistica Università di Pavia SOMMARIO V.C. vettoriali Media e varianza campionarie Proprietà degli stimatori Intervalli di confidenza Statistica

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche. Cap. 10. Elementi di psicrometria, condizionamento dell aria e benessere ambientale Aunti ed Esercizi di Fisica Tecnica e Macchine Termiche Ca. 0. Elementi di sicrometria, condizionamento dell aria e benessere ambientale Nicola Forgione Paolo Di Marco Versione 0.0.04.0. La resente disensa

Dettagli

Analisi Statistica Spaziale

Analisi Statistica Spaziale Analisi Statistica Spaziale Posa D., De Iaco S. posa@economia.unile.it s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA ANNO ACCADEMICO

Dettagli

Strutture dati efficienti per la ricerca della similarità

Strutture dati efficienti per la ricerca della similarità Strutture dati efficienti per la ricerca della similarità Anche utilizzando i metodi di filtraggio visti in precedenza, il numero di confronti tra query e oggetti presenti nel database rimane alto. L efficienza

Dettagli

Indice-sommario INDICE SOMMARIO CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE

Indice-sommario INDICE SOMMARIO CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE VII INDICE SOMMARIO Prefazione... xv CAPITOLO I LE MATRICI DEI DATI E LE ANALISI UNIVARIATE 1. Analisi dei dati e data mining... 1 2. La matrice dei dati «unità pervariabili»... 6 3. Idatiricavatidaun

Dettagli

SISTEMA D ALLARME E COMUNICATORI

SISTEMA D ALLARME E COMUNICATORI SISTEMA D ALLARME E COMUNICATORI MANUALE D USO Grazie er aver acquistato un sistema di sicurezza DAITEM adeguato alle vostre esigenze di rotezione. Precauzioni L installazione del sistema deve essere effettuata

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11 Modelli dei Sistemi di Produzione Modelli e lgoritmi della Logistica 00- Scheduling: Macchina Singola CRLO MNNINO Saienza Università di Roma Diartimento di Informatica e Sistemistica Il roblema /-/ w C

Dettagli

ANALISI DEI DATI BIOLOGICI

ANALISI DEI DATI BIOLOGICI ANALISI DI DATI BIOLOGICI RAPPRSNTAR L COMUNITA tramite descrizioni grafiche e relazioni tra gli organismi presenti nei vari campioni. DISCRIMINAR dei siti sulla base della loro composizione biologica.

Dettagli

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T

sorgente di lavoro meccanico operante in maniera ciclica internamente reversibile esternamente reversibile termostato T CICLI MOORI Utilizzando un motore (sorgente di lavoro meccanico oerante in maniera ciclica) che evolve secondo il ciclo isotermo-adiabatico di Carnot in maniera internamente reversibile, scambiando calore

Dettagli

1 Il campo elettrico. 1.1 Azione a distanza

1 Il campo elettrico. 1.1 Azione a distanza 1 Il camo elettrico 1.1 Azione a distanza L idea di interazione fra cori è stata semre associata all idea di un contatto: la ossibilità che un oggetto otesse esercitare un azione in una regione di sazio

Dettagli

SoftCare² Pro Touchless

SoftCare² Pro Touchless SoftCare² Pro Touchless l IMPIANTO COMBINATO SoftCare² Pro Touchless le massime restazioni di lavaggio touchless SoftCare² Pro Touchless Sono disonibili due varianti dell'imianto: semlice oure combinata

Dettagli

CORSO DI FORMAZIONE DOCENTI NEOIMMESSI IN RUOLO. a.s. 2011/12. Istituto attuatore: IPSEOA Duca di Buonvicino. Napoli

CORSO DI FORMAZIONE DOCENTI NEOIMMESSI IN RUOLO. a.s. 2011/12. Istituto attuatore: IPSEOA Duca di Buonvicino. Napoli CORSO DI FORMAZIONE DOCENTI NEOIMMESSI IN RUOLO a.s. 2011/12 Istituto attuatore: IPSEOA Duca di Buonvicino Naoli COGNOME MONE NOME Mariangela Assunta E-TUTOR : Guidotti Ugo AREA TEMATICA: Elettronica,

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

A.1 Rappresentazione geometrica dei segnali

A.1 Rappresentazione geometrica dei segnali Appendice A Rappresentazione dei segnali A.1 Rappresentazione geometrica dei segnali Scomporre una generica forma d onda s(t) in somma di opportune funzioni base è operazione assai comune, particolarmente

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale

Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Saienza Università di Roma - Diartimento di Ingegneria Informatica, Automatica e Gestionale Scheduling Renato Bruni bruni@dis.uniroma.it Il materiale resentato è derivato da quello dei roff. A. Sassano

Dettagli

TEORIA sui SISTEMI OPERATIVI

TEORIA sui SISTEMI OPERATIVI TEORIA sui SISTEMI OPERATIVI A cura del Prof. Enea Ferri - - - 3 o o - - 4 - - - - 5 - - - - - - - 1 Detto anche Descrittore del Processo o Process Control Block (PCB) 6 - - - - - - 7 8 9 2 Ricordiamo

Dettagli

DIFFERENZIAZIONE. Economia Industriale Università Bicocca

DIFFERENZIAZIONE. Economia Industriale Università Bicocca DIFFERENZIAZIONE Economia Industriale Università Bicocca Contesto e concetti Una delle iotesi che ortano alla traola di Bertrand è che i rodotti siano omogenei Nella realtà, molti rodotti sono differenziati

Dettagli

La riflessione della luce: gli specchi

La riflessione della luce: gli specchi APITOLO 3 La riflessione della luce: gli secchi Immaginiamo un camo di 20 ettari ( ha 0 4 m 2 ) ieno di secchi arabolici: er l esattezza 360. Grazie a un articolare sistema di tubi, la radiazione solare

Dettagli

L analisi statistica multivariata applicata alle ricerche di mercato

L analisi statistica multivariata applicata alle ricerche di mercato Capitolo 4 L analisi statistica multivariata applicata alle ricerche di mercato 4.1 Introduzione I capitoli precedenti hanno discusso alcuni aspetti relativi alla raccolta delle informazioni rilevanti

Dettagli

Dispensa n.1 Esercitazioni di Analisi Mat. 1

Dispensa n.1 Esercitazioni di Analisi Mat. 1 Disensa n.1 Esercitazioni di Analisi Mat. 1 (a cura di L. Pisani) C.d.L. in Matematica Università degli Studi di Bari a.a. 2003/04 i Indice Notazioni iii 1 Princii di sostituzione 1 1.1 Funzioni equivalenti

Dettagli

Soluzione Hotel. Parking Solutions. Necessità. Soluzione. Identified system

Soluzione Hotel. Parking Solutions. Necessità. Soluzione. Identified system Hotel Creare abbonamenti su biglietti 2D er gli ositi, validi er la durata del loro soggiorno. Accesso libero ai diendenti attraverso badge. Installazione di una soluzione ESPAS 20 Attraverso il validatore

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Analizziamo le informazioni

Analizziamo le informazioni Analizziamo le informazioni Lato osservatore 27 Analizziamo le informazioni 28 Analizziamo le informazioni 29 Analizziamo le informazioni 30 Analizziamo le informazioni 1 sfondo 2 volto 3 fronte 4 occhio

Dettagli

Introduzione alla trigonometria

Introduzione alla trigonometria Introduzione alla trigonometria Angoli e loro misure In questa unità introdurremo e studieremo una classe di funzioni che non hai ancora incontrato, le funzioni goniometriche. Esse sono imortanti sorattutto

Dettagli

APPUNTI del CORSO di MACCHINE I

APPUNTI del CORSO di MACCHINE I APPUNI del CORSO di MACCHINE I Motori a combustione interna A cura del dott. ing. Daniele Scatolini dalle lezioni del rof. Cinzio Arrighetti Introduzione Il motore a combustione interna (m.c.i.) ha origine

Dettagli

Il coordinamento interno e internazionale della politica economica

Il coordinamento interno e internazionale della politica economica Il coordinamento interno e internazionale della olitica economica Coordinamento interno Il roblema del coordinamento interno sorge er la resenza di Moltelicità di obiettivi e strumenti Ogni strumento è

Dettagli

MOSS (Mini One Stop Shop) Mini Sportello Unico

MOSS (Mini One Stop Shop) Mini Sportello Unico MOSS (Mini One Sto Sho) Mini Sortello Unico Oerazioni di e-commerce diretto Giovedì 13 novembre 2014 Gruo di lavoro oerazioni doganali e intracomunitarie Gruo di lavoro oerazioni doganali e intracomunitarie

Dettagli

Il sistema di contabilità nazionale e la comparazione degli aggregati economici nel tempo e nello spazio

Il sistema di contabilità nazionale e la comparazione degli aggregati economici nel tempo e nello spazio Bruno Bracalente Il sistema di contabilità nazionale e la comarazione degli aggregati economici nel temo e nello sazio Disense er il corso di Statistica Economica Modulo I Università degli Studi di Perugia

Dettagli

ESERCITAZIONI DEL CORSO DI PROGETTO DELLE SOVRASTRUTTURE VIARIE - A.A. 2008-09 MATERIALI GRANULARI

ESERCITAZIONI DEL CORSO DI PROGETTO DELLE SOVRASTRUTTURE VIARIE - A.A. 2008-09 MATERIALI GRANULARI MATERIALI GRANULARI. IL COMPORTAMENTO MECCANICO DEI MATERIALI GRANULARI. Introduzione I materiali granulari imiegati negli strati iù rofondi della sovrastruttura stradale (fondazione, sotto-fondazione

Dettagli

La FREQUENZA del suono

La FREQUENZA del suono ACUSTICA PSICOFISICA La FREQUENZA del suono Infra Audio Ultra... K Hz Frequenza L orecchio è sensibile solo a variazioni della ressione, intorno a quella media atmosferica, caratterizzate da oscillazioni

Dettagli

AVVISO INTEGRATIVO DI EMISSIONE RELATIVO A: ABN AMRO BANK N.V. MINI FUTURES LONG E MINI FUTURES SHORT CERTIFICATES SU

AVVISO INTEGRATIVO DI EMISSIONE RELATIVO A: ABN AMRO BANK N.V. MINI FUTURES LONG E MINI FUTURES SHORT CERTIFICATES SU Avviso Integrativo della Nota Integrativa relativa al rogramma di emissione degli ABN Mini Futures Long e Mini Futures Short Certificates su Future sull Oro, sull Argento, sul Platino, sul Palladio e sul

Dettagli

Il trade-off Efficienza Equità. L ottimo paretiano e l ottimo sociale. Quale teoria della giustizia? ECONOMIA E FINANZA PUBBLICA

Il trade-off Efficienza Equità. L ottimo paretiano e l ottimo sociale. Quale teoria della giustizia? ECONOMIA E FINANZA PUBBLICA niversità degli Studi di erugia orso di Laurea Magistrale in Scienze della olitica e dell'mministrazione EONOMI E FINNZ LI Lezione n 7-8 Il trade-off Efficienza Equità L ottimo aretiano e l ottimo sociale

Dettagli

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet.

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet. Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Dottorato di Ricerca in Statistica e Finanza Quantitativa - XXI Ciclo Sergio Salvino

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Ancora sulla II parte dell articolo ALCUNE REGOLARITA DAI NUMERI PRIMI di Guido Carolla 1

Ancora sulla II parte dell articolo ALCUNE REGOLARITA DAI NUMERI PRIMI di Guido Carolla 1 Ancora sulla II arte dell articolo ALCUNE REGOLARITA DAI NUMERI PRIMI di Guido Carolla 1 1. Un osservazione sulle somme contratte e sul software del massimo ga Facendo seguito a quanto l autore ha iniziato

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni)

PARTE TERZA. STATISTICA DESCRITTIVA MULTIDIMENSIONALE (Analisi delle Relazioni) PARTE TERZA STATISTICA DESCRITTIVA MULTIDIMESIOALE (Analisi delle Relazioni) La notazione matriciale 3 III.. LA OTAZIOE MATRICIALE III... L analisi statistica dei fenomeni multivariati L intrinseca complessità

Dettagli

2. Analisi Statistica dei Dati

2. Analisi Statistica dei Dati Frequenza e Probabilità Distribuzione di probabilità Media e varianza Regressione statistica Test del χ Correlazione lineare Analisi della varianza Media e varianza multivariata Gaussiana Multivariata

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Capitolo 4 GPS. Prof. MAURO CAPRIOLI. Capitolo 4 GPS

Capitolo 4 GPS. Prof. MAURO CAPRIOLI. Capitolo 4 GPS 89 ...89 1 - Introduzione...91 2 - Princiio di base del osizionamento GPS...92 3 - Organizzazione del sistema GPS...93 3.1 - La sezione saziale...93 3.2 - La sezione di controllo...95 3.3 - La sezione

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p

Capitolo Ventitrè. Offerta nel breve. Offerta dell industria. Offerta di un industria concorrenziale Offerta impresa 1 Offerta impresa 2 p Caitolo Ventitrè Offerta dell industria Offerta dell industria concorrenziale Come si combinano le decisioni di offerta di molte imrese singole in un industria concorrenziale er costituire l offerta di

Dettagli

Classicazione dei moduli nitamente generati su un dominio euclideo

Classicazione dei moduli nitamente generati su un dominio euclideo Classicazione dei su un dominio euclideo Relatore: Prof. Andrea Loi Candidato: Università degli Studi di Cagliari 31 Marzo 2015 (UniCa) 31 Marzo 2015 1 / 14 classicazione dei su un dominio euclideo Obiettivo:

Dettagli

Capitolo 12 - Individuazione di Forme 1. Template Matching

Capitolo 12 - Individuazione di Forme 1. Template Matching Capitolo - Individuazione di Forme Template Matching Molte applicazioni di visione richiedono di localizzare nell immagine correntemente analizzata una o più istanze di una particolare sotto-immagine di

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

FISICA. V [10 3 m 3 ]

FISICA. V [10 3 m 3 ] Serie 5: Soluzioni FISICA II liceo Esercizio 1 Primo rinciio Iotesi: Trattiamo il gas con il modello del gas ideale. 1. Dalla legge U = cnrt otteniamo U = 1,50 10 4 J. 2. Dal rimo rinciio U = Q+W abbiamo

Dettagli

Corporate Compliance Policy

Corporate Compliance Policy Cororate Comliance Policy Traduzione italiana dal testo originale in lingua inglese Prefazione Care collaboratrici, cari collaboratori, Bayer è un azienda che oera a livello globale. Le nostre attività

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Riconoscimento di modelli volumetrici di autoveicoli in condizioni di Stop&Go: Matching di modelli

Riconoscimento di modelli volumetrici di autoveicoli in condizioni di Stop&Go: Matching di modelli Università degli Studi di Siena Facoltà di Ingegneria Corso di Laurea in Ingegneria delle Telecomunicazioni Riconoscimento di modelli volumetrici di autoveicoli in condizioni di Stop&Go: Matching di modelli

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Un estensione stocastica del modello Fisher-Lange

Un estensione stocastica del modello Fisher-Lange Un estensione stocastica del modello Fisher-Lange Massimo De Felice, Sapienza - Università di Roma Franco Moriconi, Università di Perugia Sunto Tra i metodi di stima puntuale della riserva sinistri nell

Dettagli

Gli autori saranno grati a chiunque segnali loro errori, inesattezze o possibili miglioramenti.

Gli autori saranno grati a chiunque segnali loro errori, inesattezze o possibili miglioramenti. Diloma Universitario in Ingegneria Corso di Fisica ecnica Paolo Di Marco e Alessandro Franco Esercizi di ermodinamica Alicata Versione 99.00 //99. La resente raccolta è redatta ad esclusivo uso didattico

Dettagli

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Classificazione e Segmentazione di Gesture per la Human Computer Interaction

Classificazione e Segmentazione di Gesture per la Human Computer Interaction Università degli studi di Modena e Reggio Emilia Dipartimento di Ingegneria "Enzo Ferrari" Corso di Laurea Magistrale in Ingegneria Informatica Classificazione e Segmentazione di Gesture per la Human Computer

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 6 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, nere, 8 bianche. Si estrae una pallina; calcolare la

Dettagli

Parte 2. Problemi con macchine parallele

Parte 2. Problemi con macchine parallele Parte 2 Problemi co macchie arallele Esemio job 1 2 3 4 5 j 2 3 5 1 4 2macchie Assegado{2,3,5}aM1e{1,4}aM2 M2 M1 4 1 1 3 3 2 5 5 8 12 Assegado{1,4,5}aM1e{2,3}aM2 M2 3 2 M1 4 1 5 1 3 5 7 8 R m //C Algoritmo

Dettagli

6 Collegamento cerniera con piastra d anima (Fin Plate)

6 Collegamento cerniera con piastra d anima (Fin Plate) 6 Collegamento cerniera con iastra d anima (in Plate) 6. Generalità e caratteristiche del collegamento Il collegamento a cerniera con iastra d anima si realizza saldando in oicina una iastra all elemento

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Risk Italia. Sondaggio esclusivo I migliori operatori in derivati sul mercato italiano

Risk Italia. Sondaggio esclusivo I migliori operatori in derivati sul mercato italiano MAGGIO 23 www.risk.net Risk Italia CURRENCIES INTEREST RATES EQUITIES COMMODITIES CREDIT Sondaggio eslusivo I migliori oeratori in derivati sul merato italiano L'esordio di Cofiri nel settore dell'investment

Dettagli

Software di calcolo numerico, analisi, statistica e simulazione. Un esempio pratico: Octave

Software di calcolo numerico, analisi, statistica e simulazione. Un esempio pratico: Octave Software di calcolo numerico, analisi, statistica e simulazione Un esempio pratico: Octave Problemi tradizionali Risoluzione di funzioni matematiche complesse Esecuzione di calcoli matriciali Analisi

Dettagli