LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010"

Transcript

1 LUISS Lure specilistic in Economi e Finnz Anno Accdemico 9/ Corso di Metodi Mtemtici per l Finnz Pro. Fusto Gozzi, Dr. Dvide Vergni Soluzioni dell'esme scritto del 6//. Si dto lo spzio vettorile V R 3 e l'opertore ˆL : V V tle che ˆL = 3 punti). Determinre i vlori di per cui KerˆL) = }. 3 punti) b. Mostrre che esistono utovettori di ˆL che non dipendono dl prmetro... Condizione perché il KerˆL) si composto dl solo vettore nullo, è che l'equzione ˆLv = mmett l sol soluzione bnle v =, e quindi detˆl). Sviluppndo il determinnte rispetto ll terz rig di ˆL si h ) detˆl) = det = det = ). Il determinnte è diverso d zero se, ±. b. Per determinre gli utovettori di ˆL e vericre che non dipendono d possimo procedere in due modi, il primo, cercre direttmente le soluzioni per ˆLv = λv, mentre il secondo pss prim per l ricerc degli utovlori. Vedimo il primo metodo: x x y = λ y z z x + y = λx x + y = λy z = λz Visto che simo interessti mostrre che lmeno un utovettore è indipendente d, se ponimo x, y = e λ =, il sistem ˆLv = λv si riduce z =. Per cui il vettore v = è utovettore per ˆL indipendentemente dl vlore di. Il secondo metodo, più elborto, consiste prim nel ricvre gli utovlori di ˆL: λ detˆl λî) = det λ = λ) λ) ) =. λ Per cui gli utovlori sono λ = già trovto nel primo metodo risolutivo) e λ) ) = λ) = λ = ± λ = ±. Quindi, un volt trovti gli utovlori si cercno gli utovettori corrispondenti: ) Autovettore ssocito λ =, ˆL Î)v = - - x y = z )x + y = x + )y = v =

2 b) Autovettore ssocito λ =, ˆL )Î)v = x y = -+ z c) Autovettore ssocito λ = +, ˆL + )Î)v = - x y = - z x + y = + )z = x y = z = v = v = Quindi, tutti e tre gli utovettori di ˆL sono indipendenti d. Bisogn notre che le sottomtrici che determinno il rngo sono corrette solo nel cso in cui. Però, nche in questo cso, gli utovettori di ˆL continuno d essere quelli che bbimo ricvto.. Si dto il sistem di equzioni dierenzili in R x t) = Âxt), con  = punti). Determinrne l soluzione generle ssndo in modo d vere spettro complesso. punti) b. Determinre l soluzione prticolre pssnte per x =, ). punti) c. Determinre in modo d vere inniti punti di equilibrio. Discuterne l stbilità. ).. Determinimo prim di tutto lo spettro di Â: ) λ detâ λî) = det = λ + 4λ λ λ, = ±. Per cui per vere spettro complesso occorrerà vere >. In questo cso, gli utovlori di  sono λ = λ ±iλ b = ±i. Per determinre gli utovettori ssimo λ = +i :  + )Î)v = : i ) x ) + i = i ) )x = y v = y i ) per cui possimo scrivere v = v + iv b = + i ), e quindi determinimo l mtrice del ) cmbimento di bse Û = v v b =. L soluzione generle srà pertnto: ) ) xt) = eât x) = ÛeÂFt Û x) = v v b e λt cosλb t) sinλ b t) c, sinλ b t) cosλ b t) c xt) = ) e t cos t) sin t) ) ) sin t) cos c. t) c b. Per qunto rigurd l soluzione prticolre, possimo clcolrl o determinndo Û o risolvendo un semplice sistem. ) Vedimo il primo metodo. detû) =, e Û = / /. Per cui xt) = eât x) = ÛeÂFt Û x),

3 ) xt) = e t cos t) sin t) ) ) sin t) cos t) / / ). Oppure, con il secondo metodo, si procede con il clcolo di x): ) ) ) x) = x) = ) c = c ) ) ) x) = c = c ) c = c = /. c. Per vere inniti punti di equilibrio si dovrà vere un utovlore pri zero, e quindi visto che λ, = ± dovremo porre = 4 e quindi λ, =, 4. I punti di equilibrio si trovno sullo spzio invrinte reltivo ll'utovettore ssocito λ =. Tli punti sono stbili perché l'ltro utovlore è negtivo, e l'utovlore zero h molteplicità lgebric pri ll molteplicità geometric ossi è un utovlore regolre). 3. Dt l unzione x) = xe x x con t) = xt)) ), si consideri il problem di Cuchy x) = x R. punto). Dire, motivndo l rispost, se esiste un'unic soluzione locle per ogni x R. punti) b. Fissto =, trovre i punti di equilibrio, dire se sono stbili o no e disegnre il digrmm di se. punto) c. Fissre =. Dire, motivndo l rispost, per quli x R le soluzioni locli sono nche globli. punti) d. Si >. Trovre i punti di equilibrio l vrire di e dire se sono stbili o instbili.. L unzione : R R, x) = xe x, è, per ogni, continu e derivbile con derivt continu in qunto è composizione di unzioni C. Perciò, grzie l teorem di Cuchy-Lipschitz- Picrd, il problem di Cuchy mmette un'unic soluzione locle per ogni dto inizile x R. b. Se = llor x) = xe x. L'equzione x) = in tl cso h per unic soluzione x = che è quindi l'unico punto di equilibrio. Per disegnre il digrmm di se occorre re un grco pprossimtivo dell unzione x) d cui risultino gli intervlli in cui ess è positiv e quelli in cui è negtiv. Innnzitutto è immedito vedere che, usndo d esempio il Teorem di Bernoulli-de l'hopitl: lim x) =, lim x x) =. x+ Vedimolo per il limite l'ltro è nlogo). Possimo scrivere lim x) = x lim x Se clcolimo il limite del rpporto delle derivte ottenimo x e x lim x xe x = che è qunto volevmo dimostrre. Clcolndo l derivt si h Quindi x) > per x, ); x) < per x, ), + ); x) = per x = ±. x) = e x + x x)e x = e x [ x ].

4 x) x) Ne segue che x = è punto di minimo locle e globle con ) = e < ) mentre x = è punto di mssimo locle e globle con ) = e > ). Quindi > per x, ); x) < per x, + ); = per x =. Disegnndo il grco di si ottiene quindi che le triettorie del sistem decrescono se il dto inizile è x < mentre crescono se il dto inizile è x >. Ne segue che il punto di equilibrio x = è instbile. c. Il teorem di prolungmento Teorem.4.) non può essere usto in questo cso. Tuttvi possimo usre l'ltro teorem di esistenz e unicità globle Teorem.4.). Intti, dllo studio tto l punto b) scoprimo che l unzione è denit su R e ivi limitt. Il Teorem.4. ssicur llor che il nostro problem di Cuchy h soluzione globle unic per ogni dto inizile x R e questo è vero nche per tempi negtivi). d. Si >. Anche in tl cso i punti di equilibrio sono le soluzioni dell'equzione x) = tuttvi qui non è possibile determinrli esplicitmente. Possimo determinre qunti sono studindo l unzione. Usndo qunto scoperto nel cso = bbimo che: lim x) =, lim x x) =. x+ L derivt di è l stess che nel cso =. Si h quindi Quindi x) > per x, ); x) < per x, ), + ); x) = per x = ±. x) = e x [ x ]. Ne segue che x = è punto di minimo locle e globle con ) = e < dto che > ) mentre x = è punto di mssimo locle con ) = e il cui segno dipende dl vlore di ). Quindi, usndo i teoremi di esistenz e unicità degli zeri vremo che i) se ) < cioè se > e ) llor l unzione è sempre < e non vi sono punti di equilibrio; ii) se ) = cioè se = e ) llor l unzione è sempre e si nnull solo in x =. In tl cso vi è un solo punto di equilibrio x = ; iii) se ) > cioè se < < e ) llor l unzione h due zeri, uno nell'intervllo, ) e l'ltro nell'intervllo, + ); Nel cso ii) l'unico punto di equilibrio è instbile in esso l derivtà di è null e quindi non si può usre il Teorem di Hrtmnn-Grossmnn per dedurne l stbilità, tuttvi dl digrmm di se si vede che le triettorie del sistem sono decrescenti si destr che sinistr di esso. Possimo quindi dire che il punto x = in tl cso è instbile e stbile d sinistr. Nel cso iii) vi sono due punti di equilibrio: x, ) e x, + ). Dllo studio del segno di o dl digrmm di se) vedimo subito che > su, ) e quindi nche x ) > e quindi il punto di equilibrio x è instbile. Anlogmente dllo studio del segno di o dl digrmm di se) vedimo subito che < su, + ) e quindi nche x ) < e quindi il punto di equilibrio x è sintoticmente stbile. Il suo bcino di ttrzione srà x, + ). 4. Dt l unzione x) = x x) con > ), si consideri il problem di Cuchy punti). Trovre i punti di equilibrio l vrire di >. punti) b. Discutere l stbilità dei punti di equilibrio l vrire di >. xn+ = x n ) x) = x >. punti) c. Si =. Clcolre gx) = x) e dire qunti punti di equilibrio h l ED x n+ = gx n ). Fcolttivo: esiste un legme tr i punti di equilibrio trovti e quelli dell ED inizile? Perché?

5 . L unzione : R R, quindi, per il Teorem..7 esiste un unic soluzione globle per ogni vlore di x. I punti di equilibrio sono le soluzioni dell'equzione x) = x. Svolgendo i clcoli si h Quindi i punti di equilibrio sono x x) = x )x x = x[ ) x] =. x =, e x = = >. Notte come il secondo punto di equilibrio si positivo grzie l tto che >. b. L unzione è C su R. Usimo il teorem di Hrtmnn-Grossmnn per studire l stbilità dei punti di equilibrio l vrire di >. Innnzitutto x) = x quindi ) =, e ) = ) = + Dto che > si h che ) = > e quindi il punto di equilibrio x = è instbile qulunque si il vlore di >. Invece ) =. Or < < >, 3) Quindi, se, 3) il punto è sintoticmente stbile, mntre se > 3 il punto è instbile. Se = 3 non possimo dire null con il solo iuto del Teorem di Hrtmnn-Grossmnn. c. Si =. Dto che l unzione è denit su tutto R sppimo che l unzione g = è ben denit su R. Si h gx) = x)) = x) x)) = [x x)] [x x)]) = 4x x) x + x ) Per dire qunti punti di equilibrio h l ED x n+ = gx n ) bst dire qunte soluzioni h l'equzione gx) = x. L'equzione si scrive come: 4x x) x + x ) = x 4x x) x + x ) x = e, rcogliendo ttor comune x primo membro: x[4 x) x + x ) ] = Vedimo quindi che l'equzione gx) = h sicurmente come soluzione x =. Per vedere se h ltre soluzioni e qunte sono) occorre, per l legge di nnullmento del prodotto, studire l'equzione: 4 x) x + x ) = 3 x + 6x 8x 3 = Si trtt di un'equzione di terzo grdo. Quindi le soluzioni sono l mssimo 3. Per spere qunte sono possimo studire l unzione primo membro: hx) = 3 x + 6x 8x 3 Si vede cilmente che, essendo negtivo il coeciente del termine di grdo mssimo: lim hx) = +, lim x hx) =. x+

6 Inoltre h x) = + 3x 4x = x 6x ) Dto che il polinomio di secondo grdo 3 + 8x 6x h discriminnte negtivo, tle polinomio è sempre negtivo per ogni vlore di x. Quindi h x) <, x R. Ne segue che h è strettmente decrescente su tutto R. Per il teorem di esistenz e unicità degli zeri si h che esiste un unico zero x di h su R. Inoltre x dto che h). Ne segue che l'equzione gx) = x h esttmente due soluzioni e quindi vi sono due punti di equilibrio per l ED ssocit g. E' possibile risolvere il problem nche scomponendo il polinomio hx) con l regol di Runi. In tl cso si trov nche il vlore dell rdice x che è /. Fcolttivo: esiste un legme tr i punti di equilibrio trovti e quelli dell ED inizile? Perché? Il legme è il seguente: i punti di equilibrio per l ED ssocit g sono gli stessi di quelli dell ED ssocit. Intti bbimo il seguente Teorem. Dt un qulunque unzione : A R A R), le soluzioni dell'equzione x) = x risolvono nche l'equzione x) = x. Intti se x è tle che x) = x si h, utilizzndo due volte tle tto: e quindi x risolve nche l'equzione x) = x. x)) = x) = x D tle teorem sppimo quindi che i due punti di equilibrio dell ED ssocit sono nche punti di equilibrio dell ED ssocit g. Poichè bbimo scoperto l punto c) sopr) che i punti di equilibrio dell ED ssocit g sono solo due, essi devono essere per orz quelli dell ED ssocit. Curiosità: come si vede sul libro di testo, se ce ne ossero stti ltri due essi vrebbero costituito un'orbit periodic di periodo due per l'ed ssocit. 5. Si consideri il seguente sistem di equzioni dierenzili ordinrie x t) = xt)yt) + x 3 t) y t) = yt) xt) punti). Determinre le equzioni delle curve isocline x = e y = ) e drne un rppresentzione grc. punti) b. Determinre i punti di equilibrio studindone l stbilità. punti) b. Trccire il digrmm di se del sistem linerizzto intorno l punto di equilibrio con y positiv.. Le equzioni delle isocline sono Considerimo l prim xy + x 3 =, y x = xy + x 3 = x =, oppure y = x Quindi il grco di quest isoclin è costituito dll'unione dto che bbimo usto oppure") dell rett verticle di equzione x = e dell prbol concvità rivolt verso il bsso di equzione y = x. Considerimo l second y x = y = x + Quindi il grco di quest isoclin è costituito dll rett obliqu di equzione crtesin y = x +.

7 b. Per trovre i punti di equilibrio dobbimo trovre le soluzioni del sistem xy + x 3 = y x = che signic trovre le intersezioni delle due isocline. Dll prim equzione trovimo che x =, oppure y = x Se x =, sostituimo nell second equzione e trovimo y =. Quindi un primo punto di equilibrio è P =, ). Se invece y = x, sostituimo nell second equzione e trovimo x x = x + ) = che h per unic soluzione x =. Sostituendo nell prim equzione trovimo quindi un secondo punto di equilibrio che è P =, ). Vi sono quindi due punti di equilibrio: P e P. Per studirne l stbilità usimo il teorem di Hrtmnn-Grossmnn. L dinmic del sistem è x, y) = xy + x 3, y x ) il cui Jcobino è Dx, y) = y + 3x x ) Il Jcobino nei punti di equilibrio è il seguente. In P ) D, ) = mentre in P D, ) = Il Jcobino in P h λ = come unico utovlore si vede immeditmente dto che l mtrice è tringolre ineriore). Tle utovlore h molteplicità geometric e lgebric. Essendo tle utovlore positivo il punto di equilibrio è instbile. Il Jcobino in P h determinnte nullo le due colonne sono linermente dipendenti) e trcci positiv ugule 3. Quindi i due utovlori sono λ = e λ = 3. Non possimo usre il il teorem di Hrtmnn-Grossmnn. Usndo il Teorem 9.7 pg 7 del libro: J. Hle - H Kock Dynmics nd Biurctions, Springer si ottiene che il punto P è instbile. b. Il Jcobino in P h λ = come unico utovlore si vede immeditmente dto che l mtrice è tringolre ineriore). Tle utovlore h molteplicità geometric e lgebric. Questo signic che il digrmm di se o digrmm delle orbite) del sistem linerizzto è quello di un nodo un tngente dove tle tngente è l rett genert dgli utovettori del Jcobino, e quindi l'sse delle ordinte) instbile perché l'unico utovettore è positivo). )

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010 LUISS Lure specilistic in Economi e Finn Anno Accdemico 9/ Corso di Metodi Mtemtici per l Finn Prof. Fusto Goi, Dr. Dvide Vergni Soluioni dell'esme scritto del 5/7/. Sino dti i due opertori Â, ˆB : R 3

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

Corso di Modelli Matematici in Biologia Esame del 22 Gennaio 2018

Corso di Modelli Matematici in Biologia Esame del 22 Gennaio 2018 Corso di Modelli Mtemtici in Biologi Esme del Gennio 08 Scrivere chirmente in test ll elborto: Nome Cognome numero di mtricol Risolvere tutti gli esercizi Tempo disposizione: DUE ORE E MEZZA Non e consentito

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Rom Tre - Corso di Lure in Mtemtic Tutorto di GE0 AA 04-05 - Docente: Prof Angelo Felice Lopez Tutori: Federico Cmpnini e Giuli Slustri Soluzioni Tutorto 8 Aprile 05 Si determinino

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

Materia: MATEMATICA Data: 5/04/2005

Materia: MATEMATICA Data: 5/04/2005 Mteri: MATEMATICA Dt: 5/4/25 L disequzione e' un disuguglinz che e' verifict per certi intervlli di vlori Ad esempio l disequzione x - 4 e' verifict per tutti i vlori dell x mggiori di 4, cioè se l posto

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

5. Autovalori e autovettori di matrici reali.

5. Autovalori e autovettori di matrici reali. 5 Autovlori e utovettori di mtrici reli Definizione 5 Dt un mtrice A M n si dice utovlore di A un numero rele tle che X per cui n, n, AX = λ X L mtrice X si dice utovettore reltivo ll'utovlore λ λ Vicevers

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Tutorato di GE110. (a)det(a) = k 2. Se k 0 si ha che r(a) = 3 e quindi! soluzione del tipo: k ; 2; 5 )

Tutorato di GE110. (a)det(a) = k 2. Se k 0 si ha che r(a) = 3 e quindi! soluzione del tipo: k ; 2; 5 ) Universitá degli Studi Rom Tre - Corso di Lure in Mtemtic Tutorto di GE0 AA 0-0 - Docente: Prof Angelo Felice Lopez Tutori: Drio Ginnini e Giuli Slustri Tutorto 7 4 Aprile 0 Si determinino esplicitmente,

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n Coniche e qudriche Un qudric è il luogo degli zeri in E n, lo spzio euclideo di dimensione n, di un polinomio di grdo nelle vribili,, n Polinomi proporzionli dnno luogo ll stess qudric Se n = un qudric

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

Soluzioni a cura di Nicola de Rosa

Soluzioni a cura di Nicola de Rosa MINISERO DELL'ISRUZIONE, DELL'UNIVERSIÀ E DELLA RICERCA SCUOLE IALIANE ALL ESERO ESAMI DI SAO DI LICEO SCIENIFICO Sessione suppletiv 005 Clendrio ustrle SECONDA PROVA SCRIA em di Mtemtic PROBLEMA Si consideri

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorto di Anlisi - AA /5 Emnuele Fbbini 8 prile 6 Curve in R ed R 3.. Prmetrizzzione. Scrivere un prmetrizzzione regolre per le seguenti curve:. Segmento di estremi A ; ) e B ; 3). Esiste un formul di

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 2

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 2 www.mtefili.it Indirizzi: LI, EA SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 5 PROBLEMA Si f l funzione definit d f(x) = (4x ) e x. ) Dimostr che l funzione possiede

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica:

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica: PROGRESSIONI ) Di un progressione geometric si conosce: 9 9 clcolre l rgione q. Possimo risolvere fcilmente il problem ricordndo l formul ce dà il termine n-esimo di un progressione geometric: n q n Applicimol

Dettagli

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R Curve prmetriche April 6, 01 Esercizi sulle curve scritte in form prmetric. 1. Elic cilindric Dt l curv di equzioni prmetriche r(t) x(t) = cos t y(t) = sin t t [0, T ], > 0, b R z(t) = bt (0.1) clcolre

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1)

Nome.Cognome classe 5D 21 Febbraio Verifica di matematica. (punti 1.5) x è sempre decrescente in R? (punti 1) Nome.Conome clsse 5D Febbrio Veriic di mtemtic Dt l unzione: ke k k per < per punti.5 Dimostr che k R è continu e derivbile R b Trov il vlore di k tle che l tnente l rico dell unzione nel suo punto di

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

f(z) = log A.2) Determinare i valori del parametro 2 IR per cui il problema ( y 00 +3y = y y(0) = 0

f(z) = log A.2) Determinare i valori del parametro 2 IR per cui il problema ( y 00 +3y = y y(0) = 0 (prov scritt di ANALISI MATEMATICA II - mggio 00) Compito A A.) Studire il dominio di denizione e quello di olomor dell funzione f(z) = log 0 z I def = fz C jz 6= g ; I ol = C n ( x y =0 A.) Determinre

Dettagli

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni 9 ) Proprietà delle disuguglinze fr numeri reli reltivi ) Inequzioni e loro proprietà ) Inequzioni rzionli intere di primo grdo d un incognit 4) Segno del trinomio di secondo grdo : T = c 5) Inequzioni

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile.

1. Ma per t = 0 si ha che A(0) è la matrice nulla che è già diagonale e, quindi, è 3 anche diagonalizzabile. Esercizio (). Il polinomio crtteristico dell mtrice A(t) è p(λ) λ (TrA)λ + deta ovvero p(λ) λ tλ t t il cui discriminnte è 6(t+)t. Sppimo che un mtrice A di ordine due non digonle è digonlizzbile se e

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010. Esame scritto del 25/02/2010

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2009/2010. Esame scritto del 25/02/2010 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 29/2 Corso di Metodi Matematici per la Finanza Pro Fausto Gozzi, Dr Davide Vergni Esame scritto del 25/2/2 Sia dato lo spazio vettoriale

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO Esercizio : ESERCIZI DI CALCOLO UMERICO Formule di qudrtur Costruire l ormul di qudrtur interpoltori del tipo d ( ) ( ) ( ) clssiicndol e determinndone l ordine di ccurtezz polinomile Mell Per costruzione

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L.

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L. Anlisi Mtemtic II, Anno Accdemico 7-8. Ingegneri Edile e Architettur Vincenzo M. Tortorelli 5 Settembre 7: prim prov in itinere. N. mtr./nno iscr. Cognome docente/ crediti Nome Istruzioni l fine dell vlutzione:

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri Integrzione 1 Integrzione Problem: pprossimre integrli definiti del tipo: f(x)dx, Sceglimo n + 1 punti nell intervllo

Dettagli

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006

COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 COMPITO DI ANALISI DEI SISTEMI 20 Settembre 2006 Esercizio. Si consideri il seguente sistem tempo discreto: x(t + ) = Fx(t) + gu(t) = 0 0 0 x(t) + 0 u(t), 0 0 0 y(t) = Hx(t) = x(t), t Z 0 +, dove è un

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. a.a. 2008/2009. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri.. 2008/2009 Integrzione () 29 mggio 2009 1 / 18 Integrzione Problem: pprossimre integrli definiti del tipo: f (x)dx,

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnic delle Mrce Fcoltà di ngegneri ng. normtic e Automtic ng. delle Telecomuniczioni Teledidttic ANALS NUMERCA TEMA D Pro. A. M. Perdon Ancon, giugno PARTE - SOLUZONE Si ciede llo studente

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

equazioni e disequazioni

equazioni e disequazioni T Cpitolo equzioni e disequzioni Disequzioni e princìpi di equivlenz Le disuguglinze sono enunciti fr espressioni che confrontimo medinte le seguenti relzioni d ordine: (minore), (mggiore), # (minore o

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Elenco dei teoremi dimostrati a lezione

Elenco dei teoremi dimostrati a lezione Elenco dei teoremi dimostrti lezione Muro Sit murosit@tisclinet.it In queste pgine si riport l elenco dei teoremi dimostrti lezione. 1 1 Principio di induzione. 1. Utilizzndo il principio di induzione

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

4. Massimi e minimi per funzioni reali di più variabili reali

4. Massimi e minimi per funzioni reali di più variabili reali 4 Mssimi e minimi per funzioni reli di più vribili reli http://euleroinguniboit/~brozzi/scam/scam-tr4pdf Si f : D R, D R 2, P =(x,y ) un punto interno D Diremo che P è un punto di minimo (risp di mssimo)

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

g x ax b e g x x e g x x e g ' x e a ax b 2 2x e 2ax 2 a b x a 2b 2ax 2 a b x a 2b a b a b 2a a 2b a b a 2ab b 2a 4ab a b a b 2a f x x x f x x x ; 2 4

g x ax b e g x x e g x x e g ' x e a ax b 2 2x e 2ax 2 a b x a 2b 2ax 2 a b x a 2b a b a b 2a a 2b a b a 2ab b 2a 4ab a b a b 2a f x x x f x x x ; 2 4 Esme di Stto 09 Mtemtic-Fisic Problem Derivimo l funzione d cui x x g x x b e x x xx g ' x e x b x e x b x b g ' x 0 per x b x b 0 b b b b b b b b b x che mmette soluzioni distinte 0. Per l condizione

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneri civile - mbientle - edile Anlisi - Prove scritte dl 7 Prov scritt del 9 giugno 7 Esercizio Determinre i numeri complessi z che risolvono l equzione i z z z z i =. Esercizio (i) Posto n = n 3

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgno cortesemente i seguenti esercizi. METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 GIUGNO 5 ESERCIZIO (PUNTEGGIO: 6/) Si clcoli l integrle SOLUZIONE P sen( x) x + x + d x. Fccimo l sostituzione

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli