Concetti per il calcolo delle probabilità. Gli eventi: una classificazione

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Concetti per il calcolo delle probabilità. Gli eventi: una classificazione"

Transcript

1 Concetti per il calcolo delle probabilità "La prova genera l 'evento con una certa probabilità". Prova, evento, probabilità, sono concetti primitivi, nozioni intuitive. Comunque una loro qualificazione è opportuna darla. prova: un'esperimento soggetto a incertezza; evento: uno dei possibili risultati della prova e costituisce un insieme di descrizioni circa i possibili risultati dell'esperimento; probabilità: un numero associato al presentarsi di un evento. Gli eventi possono essere : veri o falsi Gli eventi: una classificazione gli eventi possono essere poi: impossibili, certi, casuali (probabili, aleatori, possibili) eventi certi: quando in base alle informazioni si desume che l'evento in ogni prova assume il valore vero; eventi impossibili: quando in base alle informazioni si deduce la falsità dell'evento; eventi casuali: sempre in base ai dati non è possibile dedurre la verità o la falsità dell'evento; Ogni risultato di una prova (evento) costituisce un campione e l'insieme di tutti i risultati (o degli eventi) possibili forma lo spazio campionario o spazio degli eventi. Gli eventi sono, quindi, sottoinsiemi dello spazio campionario; i sottoinsiemi con un solo elemento sono eventi elementari; i sottoinsiemi con più elementi sono eventi composti. Ad ogni esperimento si può associare un insieme SZ (spazio degli eventi); SZ è legato al tipo di esperimento, non è fisso ma dipende dal problema.

2

3

4 = {l, 2,3,4, 5,6} : spazio degli eventi (spazio fondamentale) delle facce di un dado. Siano gli eventi: a) Numeri pari; b) Numero 4; C) Numeri l 3; d) Numeri > 5; e) Tutti i numeri escluso 4 e 5 (O); f) Complementare di O (U); Classe degli eventi di a : dove n è il numero degli elementi dell'insieme a, cioè, in altre parole, il numero di sottoinsiemi che con si possono formare compreso l'insieme vuoto e lo stesso (partizione di un insieme o insieme potenza), a secondo della struttura della prova.

5 *)(i) = n! = k!(n - k)! (combinazioni di n elementi presi k volte) Probabilità nelllimpostazione assiornatica (Kolmogorov, 1933). Si consideri un insieme SZ di eventi elementari, cioè lo spazio campionario. Si definisce quindi una classe A di eventi generata a partire dagli eventi elementari di SZ, una classe sufficientemente ampia tale da consentire operazioni logiche sui suoi elementi senza uscire dalla classe stessa, cioè la classe A deve essere una sigma-algebra (a-algebra); una sinma-algebra è detta anche campo degli eventi. Per probabilizzare questi eventi si introduce la funzione P che associa un numero reale compreso tra O e 1 ad ogni evento del campo degli eventi se sono soddisfatti i seguenti assiomi: 3) se El e E2 sono incompatibili, ElfìE2 = 0, => U&)=flq)+fl&); Alcune importati proprietà per calcolo: C) Somma di probabilità (probabilità totale): se due eventi sono non-incompatibili, n&); ElnE2 # 0 => fl4 ue;>=fl4>+m>-fl4 d) Prodotto di probabilità (probabilità composta): se due eventi sono compatibili e indipendenti (v. prova) => qe, W)=fl4).qE;); se gli eventi sono compatibili, ma dipendenti => fl4 W) =fl&).fl& 14 ), per cui fl4 I&)= WW), cioè la probabilità condizionata. 44)

6 2 u: - 'L- h. 2 ~ L-4 cuw- s.=~~ys, &.e,)

7

8 Ti- +-: mce - - /~l" u V&< X - JL A< e&%/ n=4

9 - m.: a,&b h. 3 3 ; kslr &=L *CC t&** 2 = g 1

10

11

12

13

14 n! P(x) :=.px,( 1 - P) n-x F(n) := P(x) (X!.n- x!)

15 X := o.. Il n

16 x := O.. n 11 n! 17 - x P(x) :=,px.( 1 - P) (x!.n- x!)

17 La teoria della probabilità benché sia nata per risolvere problemi dei giochi, si rivela fondamentale per lo studio della realtà poiché ci si aspetta che quest'ultima si possa schematizzare secondo modelli teorici riconducibili alla struttura sperimentale dei giochi. Per questo motivo nella realtà quando si prendono delle decisioni globali, sulla base di osservazioni parziali, si ricorre a un giudizio probabilistico di tali decisioni. La teoria del calcolo delle probabilità riveste un ruolo incontestabile che consiste nella costruzione dei modelli matematici per lo studio di fenomeni casuali e nello sviluppo delle conseguenze logico-deduttive che derivano dall'applicazione di tali modelli. Così come l'inferenza statistica costituisce il passaggio dal campione alla popolazione (processo induttivo o problema inverso) la teoria delle probabilità affronta il passaggio dalla popolazione ai risultati empirici o alle previsioni (processo deduttivo o problema diretto). Va sottolineato come nella costruzione logica mediante gli assiomi la teoria delle probabilità non si pone il problema di come si valuta la probabilità di un particolare evento. Essa esprime piuttosto un insieme di relazioni fondamentali, di regole formali sulla base delle quali è possibile attribuire, in modo del tutto coerente, delle probabilità a degli eventi e non un unica probabilità. Non si pone il problema di "misurare" la probabilità degli eventi. Infatti non viene definita nessuna funzione per il calcolo della probabilità, né appare un valore numerico escluso i casi limiti O ed 1. In questo senso le definizioni di "probabilità classica" e di "probabilità fì-equentista" diventano così solo dei modi possibili per attribuire le probabilità agli eventi. I1 calcolo basato sugli assiomi ci pone in condizioni di lavorare quando siamo in possesso di un valore di probabilità, cioè quando si siano ricavate in qualche modo le probabilità iniziali. Quindi la determinazione del valore di p (probabilità iniziale), e la sua valutazione, deriverà da considerazioni analitiche o da considerazioni sull'effettuazione dell'esperimento, oppure da informazioni sul meccanismo sottostante il fenomeno o da altri tipi di considerazioni. I problemi relativi alla determinazione di p ricadono nell'ambito dell'inferenza statistica. RIFLESSIONI SULLA STATISTICA "L'oggetto del metodo statistico è la riduzione dei dati. Una massa di dati deve essere sostituita da un piccolo numero di quantità che rappresentano correttamente questa massa e che devono contenere il massimo di informazione pertinente contenuta nei dati originari. Questo obbiettivo si raggiunge con la costruzione di una popolazione infinita ipotetica. La statistica comporta dei problemi di specificazione, che sorgono nella scelta della forma matematica della popolazione, problemi di stima, che implicano la scelta del metodo di calcolo delle quantità derivate dai campioni che noi chiameremo "statistiche", costruite per stimare i valori dei parametri della popolazione ipotetica ed infine i problemi di distribuzione". (R.Fisher (1 9 12), On the Mathematical Foundations of Theoretical Statistics)

18 Nel caso di v. C. continue non è possibile attribuire le probabilità ai singoli valori. Nelle v. C. discrete, in corrispondenza di ogni singolo valore, la probabilità è espressa dall'area di un istograrnrna di ampiezza Ax e altezza A (densità di frequenza). X Con le v. C. continue in corrispondenza dei singoli valori non si hanno istograrnmi ma segmenti, quindi P(x) = O; Di qui la necessità di introdurre una funzione matematica f(x) i cui valori non esprimono le probabilità o le frequenze, ma conservano il significato di altezze di rettangoli, con basi infinitamente piccole, le cui aree sono delle frequenze. f(x) è detta funzione di densità difreguenza ed è il rapporto tra la frequenza dei valori compresi in un intervallo infinitamente piccolo e l'ampiezza dell'intervallo stesso. Indicando con dx l'ampiezza infinitesima dell'intervallo, la frequenza è data dal prodotto della densità di frequenza f(x) per l'ampiezza dx, cioè ed è una quantità infinitesima, come l'ampiezza dell'intervallo dei valori di x. F(x) è la funzione di ripartizione e conserva lo stesso significato del caso delle V.C. discrete, cioè la frequenza relativa (quindi la probabilità) dei valori minori o uguali ad X Pertanto la funzione di densità delle frequenze è data dal rapporto differenziale cioè la funzione di densità è la derivata della funzione di ripartizione. Con essa è possibile assegnare probabilità a singoli intervalli:

19 Una V.C. X continua, con valori in un certo intervallo [a, b], è definita se esiste una funzione di densità f(x) tale che per ogni x E [a, b ] cioè: P(x, 2 X 2 x, + dx) = f (x)dx P(a I X I b) = Quindi si parla di probabilità al più per intervalli infinitesimali: La funzione di densità deve soddisfare tali proprietà: 1) f(xk0;

20

21

22 ,K= (x; -.h).m /&L l tic L4 r4 T+ ~(An/fiì;

23

24

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI IL CONCETTO DI VARIABILE CASUALE Associare una misura di probabilità al verificarsi di un certo evento (come esito di un esperimento) non sempre è sufficiente a risolvere gran parte dei problemi reali

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE AREA TECNICO ASSISTENZIALI

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Appunti: elementi di Probabilità

Appunti: elementi di Probabilità Università di Udine, Facoltà di Scienze della Formazione Corso di Laurea in Scienze e Tecnologie Multimediali Corso di Matematica e Statistica (Giorgio T. Bagni) Appunti: elementi di Probabilità. LA PROBABILITÀ..

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Corso di Statistica. Corso di Laurea in Ingegneria Edile. Ingegneria Tessile. Docente: Orietta Nicolis

Corso di Statistica. Corso di Laurea in Ingegneria Edile. Ingegneria Tessile. Docente: Orietta Nicolis Corso di Statistica Corso di Laurea in Ingegneria Edile ed Ingegneria Tessile Docente: Orietta Nicolis Orario del corso: Martedì: dalle 16.00 alle 18.00 Giovedì: dalle 9.30 alle 11.30 Ricevimento: Mercoledì:

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza

Teoria della probabilità: eventi, proprietà additiva e moltiplicativa. L incertezza La probabilità Teoria della probabilità: eventi, proprietà additiva e moltiplicativa L incertezza Nella maggior parte delle situazioni la nostra condizione è caratterizzata dallincertezza Incertezza relativa

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi

Sommario. Corso di Statistica Facoltà di Economia. L'Algebra degli Eventi ommario Corso di tatistica Facoltà di Economia a.a. 2006-2007 2007 francesco mola L algebra degli eventi Diagrammi di Venn Teoremi fondamentali Probabilità Condizionata ed Indipendenza tocastica Lezione

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 ESERCIZIO N 4 Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 PUNTO a CALCOLO MODA E QUARTILI La moda rappresenta quell'elemento del campione

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Il calcolo delle probabilità

Il calcolo delle probabilità Il calcolo delle probabilità Cenni storici Come in molti altri casi, anche l'individuazione di una data precisa per la collocazione della nascita della teoria della probabilità non ha soluzione univoca.

Dettagli

MATEMATICA LINEE GENERALI E COMPETENZE

MATEMATICA LINEE GENERALI E COMPETENZE MATEMATICA LINEE GENERALI E COMPETENZE Al termine del percorso dei licei classico, linguistico, musicale coreutico e della scienze umane lo studente conoscerà i concetti e i metodi elementari della matematica,

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛ Università di Macerata Facoltà di Scienze Politiche - Anno accademico 009- Una variabile casuale è una variabile che assume determinati valori con determinate probabilità; Ad una variabile casuale è associata

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento

Dettagli

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio»

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014 Problemi di Matematica Giovanni Romano Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014: ciclo formativo di orientamento alle prove di ammissione ai

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010. AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa

COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010. AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa COORDINAMENTO PER MATERIE 14/15 SETTEMBRE 2010 AREA DISCIPLINARE: Matematica MATERIA Calcolo delle Probabilità-Statistica-Ricerca Operativa COORDINATORE Ranzani Sono presenti i proff. P Ranzani (coordinatore),

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA PROGRAMMA DI MATEMATICA A.S. 2014-2015 CLASSE IV SEZ. B INDIRIZZO SIA PROF. Orlando Rocco Carmelo ODULO MODULO ORD. ARGOMENT O 1 SEZ 1 FUNZIONI E LIMITIDI FUNZIONI ARGOMENTO 1 TOMO E SEZ 1 FUNZIONI E LIMITIDI

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Esercitazione del 18/1/2005 Dott. Claudio Conversano Esercizio 1 (non svolto in aula) Vengono lanciati

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004 Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità

Dettagli

LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA

LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA LICEO CLASSICO, LICEO DELLE SCIENZE UMANE, LICEO MUSICALE E COREUTICO, LICEO LINGUISTICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA?

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA? INDICE (lezione17.04.07 LE REGOLE GENERALI DI CALCOLO DELLE PROBABILIA : COME SI DIMOSRANO CON I RE ASSIOMI DELLA PROBABILIA?.1 Raccordo con le regole di calcolo delle probabilità già viste nelle lezioni

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Mete e coerenze formative Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Area disciplinare: Area Matematica Finalità Educativa Acquisire gli alfabeti di base della cultura Disciplina

Dettagli

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it TEORIA DELLE DECISIONI DOCENTE: JULIA MORTERA mortera@uniroma3.it 1 Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi, aziende, sindacati ecc. si trovano

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale

ANNO SCOLASTICO 2015 2016. Piano di lavoro individuale ANNO SCOLASTICO 2015 2016 Piano di lavoro individuale Classe: Materia: 4A ind. TURISMO Matematica Docente: CABERLOTTO GRAZIAMARIA Situazione di partenza della classe La classe è composta da 24 alunni di

Dettagli

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto.

DEFINIZIONE Una grandezza fisica è una classe di equivalenza di proprietà fisiche che possono essere misurate mediante un rapporto. «Possiamo conoscere qualcosa dell'oggetto di cui stiamo parlando solo se possiamo eseguirvi misurazioni, per descriverlo mediante numeri; altrimenti la nostra conoscenza è scarsa e insoddisfacente.» (Lord

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA

CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA ANNO ACCADEMICO 2013-2014 UNIVERSITA DEGLI STUDI DI TERAMO FACOLTA DI MEDICINA VETERINARIA CORSO DI STATISTICA ED ELEMENTI DI INFORMATICA CFU 5 DURATA DEL CORSO : ORE 35 DOCENTE PROF. DOMENICO DI DONATO

Dettagli

la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali

la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali 1/29 la raccolta di dati scientifici il metodo ingegneristico-scientifico e l'approccio statistico la progettazione di indagini sperimentali modelli teorici e modelli empirici l'osservazione dei processi

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

MEDIA CONDIZIONATA E. DI NARDO

MEDIA CONDIZIONATA E. DI NARDO MEDI CONDIZIONT E. DI NDO 1. Media condizionata da un evento ssumiamo di avere una informazione parziale circa l esito ω di un esperimento casuale. Questa informazione parziale potrebbe essere rappresentata

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 7 marzo 20 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana

Dettagli

Appunti: Teoria Dei Test

Appunti: Teoria Dei Test Appunti: Teoria Dei Test Fulvio De Santis, Luca Tardella e Isabella Verdinelli Corsi di Laurea A + E + D + G + R 1. Introduzione. Il test d ipotesi è un area dell inferenza statistica in cui si valuta

Dettagli

Inferenza statistica. Inferenza statistica

Inferenza statistica. Inferenza statistica Spesso l informazione a disposizione deriva da un osservazione parziale del fenomeno studiato. In questo caso lo studio di un fenomeno mira solitamente a trarre, sulla base di ciò che si è osservato, considerazioni

Dettagli

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET LA COSTRUZIONE DI UN BUDGET Prof. Francesco Albergo Docente di PIANIFICAZIONE E CONTROLLO Corso di Laurea in Economia Aziendale Curriculum in Gestione Aziendale Organizzata UNIVERSITA degli Studi di Bari

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione

Dettagli

Appunti di Probabilità

Appunti di Probabilità Appunti di Probabilità Bruno Betrò CNR-IMATI, Sezione di Milano bruno.betro@mi.imati.cnr.it www.mi.imati.cnr.it/ bruno Testi di riferimento: Dall Aglio G., Calcolo delle Probabilità, Zanichelli Scozzafava

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Anno Scolastico 2014-2015. INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA. CLASSI: Terza Quarta Quinta

Anno Scolastico 2014-2015. INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA. CLASSI: Terza Quarta Quinta ISTITUTO PROFESSIONALE PER L INDUSTRIA E L ARTIGIANATO E. BERNARDI PADOVA Anno Scolastico 2014-2015 INDIRIZZO: Manutenzione e assistenza tecnica DISCIPLINA: MATEMATICA CLASSI: Terza Quarta Quinta Anno

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli