Esercizi di Probabilità e Statistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Probabilità e Statistica"

Transcript

1 Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 6 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, nere, 8 bianche. Si estrae una pallina; calcolare la probabilità di avere a) una pallina bianca; b) una pallina nera; c) una pallina non bianca; d) una pallina blu. [a) 9 ; b) 9 ; c) 9 ; d) ] P (E a ) # bianche Ω 9 P (E c ) # bianche Ω 9 P (E b ) # nere Ω 9 P (E d ) # blu Ω Esercizio Un urna contiene palline numerate da a ; si estraggono contemporaneamente palline. Calcolare la probabilità di avere: a) due numeri dispari; b) un numero divisibile per e uno non divisibile per ; due numeri la cui somma è. [a) 9, b) 6 9, c) ] Ω numero di combinazioni di classe sulle palline (C, ). Lo spazio campionario considera insiemi non ordinati!! E a numero di combinazioni di classe sulle palline dispari (C, ). E b numero di coppie (non ordinate) di palline in cui una è divisibile per e una non lo è. palline divisibili per (ovvero ) palline non divisibili per (ovvero ). E c numero di coppie (non ordinate) di palline che danno come somma (ovvero ) P (E a ) C, C, 9 P (E c ) C, P (E b ) C, 6 9

2 Esercizio Si estraggono contemporaneamente carte da un mazzo di carte. Calcolare la probabilità di avere: a) figure; b) figure e un asso; c) una figura, un asso, un sette. [a) 9 ; b) ; c) ] Ω numero di combinazioni di classe su (C, ). Lo spazio campionario considera insiemi non ordinati!! E a numero di combinazioni di classe sulle figure (C, ). E b prodotto tra il numero di combinazioni di classe sulle figure (C, ), e il numero di possibili assi (ovvero ). E c prodotto tra il numero di figure (ovvero ), il numero di assi (ovvero ), e il numero di 7 (ovvero ). P (E a ) C, C, 9 P (E c ) C, P (E b ) C, C, Esercizio Nel gioco del Totocalcio calcolare la probabilità dei seguenti eventi, supponendo che qualunque risultato sia equopossibile: a) totalizzare punti; b) totalizzare punti; c) sbagliare tutti i pronostici. [a) 9 ; b) 6 9 ; c) 89 9 ] Ω numero di disposizioni di classe sui possibili pronostici (,, X) (D,) Lo spazio campionario considera insiemi ordinati!! E a l unica combinazione vincente E b il prodotto tra il numero di combinazioni vincenti di classe sulle partite (C, ), e il numero di pronostici perdenti sull unica partita sbagliata (ovvero ) E c il numero di disposizioni perdenti di classe (il numero di partite) sui possibili pronostici (due perchè una è vincente e due sono perdenti) (D,) P (E a ) D, P (E b ) C, D, 6 P (E c ) D, D, Esercizio Una scatola contiene lampadine di cui si sa che sono difettose; si prendono a caso lampadine. Calcolare la probabilità che: a) siano tutte difettose; b) almeno una non sia difettosa. [a) ; b) ]

3 Ω numero di combinazioni di classe sulle possibili lampadine (C, ) Lo spazio campionario considera insiemi non ordinati!! E a numero di combinazioni di lampadine difettose di classe (C, ) E b questo insieme è complementare ad E a P (E a ) C, C, P (E b ) P (E a ) Esercizio 6 Si lanciano dadi. Calcolare la probabilità di avere: a) numeri dispari; b) due numeri pari e uno dispari; c) tre numeri la cui somma sia ; almeno due. [a) 8 ; b) 8 ; c) 6 ; d) 7 ] Ω numero di disposizioni con ripetizione di classe (numero di dadi) sui 6 possibili numeri (D 6,) Lo spazio campionario considera insiemi ordinati!! E a numero di disposizioni con ripetizione di classe (numero di dadi) sui possibili valori (numeri dispari tra e 6) (D,) E b prodotto tra il numero di disposizioni con ripetizione di classe (i due dadi) sui possibili valori (numeri pari tra e 6) (D,), il numero di valori dispari che può assumere il terzo dado (ovvero ), e il numero di ordinamenti possibili (ovvero C, ) E c numero di coppie ordinate di numeri tra e 6 la cui somma da E d prodotto tra il numero di combinazioni di classe (i due dadi con l ) sui dadi e il numero di valori che può assumere il terzo dado tralasciando l (ovvero ). In più sommiamo l esito (,,). P (E a ) D, D 6, 8 P (E c ) 6 D 6, 6 P (E b ) D, C, 8 P (E d ) C, Esercizio 7 Cinque amici A, B, C, D, E acquistano biglietti per posti contigui a teatro e si siedono a caso in uno dei posti. Calcolare la probabilità degli eventi: a) i cinque amici si siedono in ordine alfabetico; b) A e B sono seduti vicino. [a) ; b) ] Tralasciamo l perchè la combinazione (,,) non è riordinabile, quindi non deve entrarmi del prodotto con i possibili ordinamenti C,

4 Ω numero di permutazioni dei amici (!) Lo spazio campionario considera insiemi ordinati!! E a l unica permutazione che preserva l ordine alfabetico E b prodotto tra il numero di esiti che fanno sedere A e B vicini (ovvero 8), e il numero di permutazioni degli altri amici sui restanti posti (!) P (E a )! P (E b ) 8!! Esercizio 8 Si consideri un gruppo di persone. Calcolare le seguenti probabilità: a) che siano nate tutte nello stesso mese, supponendo che le nascite nei vari mesi siano egualmente possibili; b) siano nate tutte in mesi diversi. [a) 76 ; b) ] Ω Il numero di disposizioni con ripetizione di classe (le persone) sui possibili mesi (D,) Lo spazio campionario considera insiemi ordinati!! E a Il numero di esiti che corrispondono a nascita di ciascuna persona nello stesso mese (ovvero ) E b Il numero di disposizioni di classe (le persone) sui possibili mesi (D, ) P (E a ) D, P (E b ) D, D, Esercizio 9 In una moneta non è regolare, la probabilità di avere testa è la probabilità di avere croce. Calcolare la probabilità di ciascuna faccia. [T ; C ] P (T ) P (C) P (T ) + P (C) P (T ) P (C) () () Esercizio Verificare che per qualunque coppia di eventi A, B A. P (A \ B) P (A) P (A B). P (A B C ) P (A) P (A B)

5 . P (A C B C ) P (A B). P (A C B C ) P (A B). P (A\B) P (A (A B)) P ((A C (A B) C ) C ) P (A C (A B) C ) P (A) P (A B)... P (A B C ) P (A \ B) P (A) P (A B) P (A C B C ) P ((A B) C ) P (A B) P (A C B C ) P ((A B) C ) P (A B) Esercizio Un giocatore di poker riceve all inizio del gioco cinque carte da un normale mazzo di. a) Qual è la probabilità di ricevere almeno assi? b) Qual è la probabilità di ricevere cinque carte dello stesso seme? c) Qual è la probabilità di ricevere un poker servito? [a).68; b) 666 ; c) 6 ] Ω Il numero combinazioni di classe (il numero di carte ricevute) sulle carte possibili (C, ). Lo spazio campionario considera insiemi non ordinati!! E a Dobbiamo considerare il caso di estrarre esattamente, e assi quindi avremo la sommatoria con i [, ] del prodotto tra il numero di combinazioni di classe i (gli assi estratti) sui assi possibili(c, ), e il numero di combinazioni di classe i (le carte rimanenti) sulle restanti 8 carte (C 8,i ). E b Il prodotto tra il numero di semi (ovvero ) e il numero di combinazioni di classe (il numero di carte) sulle carte per seme (C, ) E c Il prodotto tra il numero di possibili poker (ovvero ), e il numero di restanti valori per la carta rimanente (ovvero 8) P (E a ) P (E c ) i C,i C 8, i C,.68 P (E b ) C, C, C, 6

6 Esercizi di Probabilità e Statistica Samuel Rota Bulò aprile 6 Probabilità condizionata Esercizio I componenti prodotti da una certa ditta possono presentare due tipi di difetti, con percentuali % e 7% rispettivamente. I due tipi di difettosità si possono produrre in momenti diversi della produzione per cui si può assumere che le presenze dell uno o dell altro siano indipendenti tra loro. a) Qual è la probabilità che un componente presenti entrambi i difetti? b) Qual è la probabilità che un componente presenti almeno uno dei due difetti? c) Qual è la probabilità che un componente presenti il difetto, sapendo che esso è difettoso? d) Qual è la probabilità che esso presenti uno solo dei due difetti sapendo che esso è difettoso? [a).; b).979; c).6 d).978 ] D presenta difetto ; D presenta difetto P (D ).; P (D ).7 a) P (D D ) P (D ) P (D ).. b) P (D D ) P (D ) + P (D ) P (D D ).979 c) P (D D D ) P (D D D ) P (D ) P (D D ) d) D D (D D ) \ (D D ) P (D D ) P (D D D D ) P (D D D D ) P (D D ) P (D D ) Esercizio Un urna contiene due carte: una di esse ha entrambi i lati neri mentre l altra ha un lato nero e uno bianco. Una carta viene estratta e se ne guarda uno solo dei lati: è nero. Qual è la probabilità che anche il secondo lato sia nero? [ ] A entratto carta NN ; A estratto carta BN ; N estratto lato nero

7 P (A ) P (A ) P (N) P (N A i ) P (A i ) + i P (A N) P (N A ) P (A ) P (N) Esercizio Dieci urne contengono tutte palline rosse (R) e un numero variabile di palline bianche (B). Più precisamente l urna i-esima contiene palline R e i palline B. Un urna viene scelta a caso e da essa vengono estratte due palline. a) Qual è la probabilità che le due palline siano una B e una R? b) Supponiamo che l estrazione abbia dato come risultato una pallina B e una R. Qual è la probabilità p i che l urna prescelta sia la i-esima? Qual è l urna più probabile? c) Supponiamo invece che vi siano urne contenenti palline R e B (le urne sono quindi ). Se l estrazione ha dato come risultato una pallina B ed una R, qual è ora la probabilità che l urna prescelta sia di tipo i (cioè contenga i palline B)? Qual è ora il valore i più probabile? [a).6 ; b) e le urne più probabili; c) sempre e ] A i estratto da urna i ; B estrarre una B e una R P (A i ) a) b) P (B) i P (B A i ) P (A i ) p i P (A i B) P (B A i) P (A i ) P (B) c) A A P (A i ) P (B) i Per ogni i [, ] i arg max i [,] p i, } P (B A i ) P (A i ) + P (B A ) P (A ) p i P (A i B) P (B A i) P (A i ) P (B) i C i+,.6 i C i+,.6.8 i (i + ) (i + ) i i C i+, + C,.9997 i C i+, i (i + ) (i + ) p p arg max i [,] p i, }

8 Esercizio Vivo a Venezia; domani ci può essere l acqua alta oppure no. L acqua alta domani è annunciata con probabilità.. Se c è acqua alta arrivo a lezione in ritardo con probabilità.8; se non c è acqua alta la probabilità che arrivi tardi a lezione è comunque.. Qual è la probabilità che arrivi tardi? [.8] A domani c è acqua alta ; B arrivo tardi a lezione P (A).; P (B A).8; P (B A C ). P (B) P (B A) P (A) + P (B A C ) P (A C ).8 Esercizio Se due eventi sono disgiunti e indipendenti, cosa si può dire della loro probabilità? [almeno uno dei due eventi ha probabilità nulla] Dati A, B A, sappiamo che A B e quindi P (A B). Inoltre sappiamo che sono indipendenti e quindi P (A B) P (A) P (B) che è vero sse almeno uno dei termini è nullo. Esercizio 6 Dimostra che due eventi A, B A sono indipendenti sse lo sono gli eventi A, B C. Dimostriamo solo ( ) perchè il verso opposto è simile. Supponiamo A e B indipendenti. Allora valgono le seguenti uguaglianze: P (A B) P (A) P (B A) P (B) Verifichiamo che P (B C A) P (B C ). (Questo basta per dimostrare questo verso, ma per esercizio verifichiamo anche che P (A B C ) P (A)) P (B C A) P (B A) P (B) P (B C ) P (A B C ) P (BC A) P (A) P (B C ) P (BC ) P (A) P (B C ) P (A) Esercizio 7 Ho tre urne. La prima contiene palline bianche e nere. La seconda bianche e nere. La terza bianche e una nera. Lancio un dado equo: se esce 6 estraggo una pallina dalla terza urna. Se esce o estraggo dalla seconda urna. Nel altri casi estraggo dalla prima. Qual è la probabilità di estrarre una pallina bianca? [.6] D esce un 6 ; D esce un o un ; D (D D ) C ; B estraggo una pallina bianca P (D ) 6 ; P (D ) ; P (D ) P (B D ) ; P (B D ) ; P (B D ) P (B) P (B D i ) P (D i ).6 i

9 Esercizio 8 Si pone un topo davanti a labirinti. Il topo sceglie a caso un labirinto. Da esperienze precedenti si sa che la probabilità che il topo esca da ogni labirinto in min sono, rispettivamente,.,.8,.,.. Sapendo che il topo è uscito in min, calcolare la probabilità che abbia scelto il terzo labirinto. [.] U il topo esce in min ; A i topo sceglie i-esimo labirinto P (A i ) ; P (U A ).; P (U A ).8; P (U A ).; P (U A ). P (U) P (U A i ) P (A i ). i P (A U) P (U A ) P (A ) P (U).

10 Esercizi di Probabilità e Statistica Samuel Rota Bulò aprile 6 V.a. discrete e distribuzioni discrete Esercizio Dimostrare la proprietà della mancanza di memoria della legge geometrica, ovvero posto X Geom(p) e m, P X m + k X k} P X m}. Sia X Geom(p). P X k} ( p) i p ( p) k p ( p) i ( p) k p ( p)k p ik i P X m + k X k} P X k X m + k} P X m + k} P X k} ( p)m+k p ( p) k ( p) m p P X m} Esercizio Esiste una tecnica nel lotto che consiste nel giocare i numeri che non sono stati estratti da molte settimane. I giocatori che usano questa tecnica sostengono che vi siano scarse probabilità che un numero in ritardo di settimane non venga estratto nemmeno alla -esima settimana. In effetti la probabilità di un simile ritardo è bassa, ma qual è l errore in questo ragionamento? Una v.a. che modella il ritardo nell estrazione di un numero segue una legge geometrica. Sia X questa v.a.. Se io al tempo t calcolo la probabilità di avere un ritardo di almeno giorni (P X }), questa è effettivamente molto bassa. Se p è la probabilità che il numero venga estratto ( p) C 89, C 9, 7 8 P X } ( p). Il problema di questo ragionamento è che quando vado a vedere la probabilità che ha il numero di uscire, non mi trovo più al tempo t, ma al tempo t +,

11 quindi in realtà la probabilità che devo calcolare è condizionata dal fatto che il numero è in ritardo da giorni. P X X } P X } ( p).9 Esercizio Verificare che la funzione di probabilità legata alla legge di Poisson sia una densità discreta. La funzione cui ci riferiamo è e λ λx p λ (x) x!, x,,,..., n, altrimenti Questa funzione è nulla ad eccezione di un infinità numerabile di x. Quindi la prima proprietà di una densità discreta è soddisfatta. Verifichiamo la seconda proprietà ovvero che la somma delle probabilità di ogni x da. λ k k! eλ k k k p λ (k) e λ λk k! e λ k λ k k! e λ e λ Esercizio Dimostrare che per n +, una variabile di Poisson si distribuisce come una binomiale di parametri n e λ n. lim n + ( ) n x ( ) x λ ( λ n n )n x n (n ) (n x + ) lim n + n x λx x! ( n) λ n ( n) λ k λx x! e λ p λ (x) Esercizio Sia X una v.a. di Poisson di parametro λ. Sapendo che P X } P X } calcolare P X }. [.9] P X } P X } e λ λ! e λ λ! λ λ λ P X } e!.9

12 Esercizio 6 Si lancia una moneta equa. Assumendo che i lanci siano tra loro indipendenti, qual è la probabilità di dover aspettare lanci prima di vedere la prima croce, avendo già visto l esito dei primi due lanci che hanno dato due teste? [ 8 ] Sia X una v.a. che indica il numero di lanci che bisogna fare prima di ottenere la prima croce (esclusa quella che ha successo). Allora X è una v.a. che si distribuisce con legge geometrica. P X X } P X } ( ) 8 Esercizio 7 Una compagnia aerea dispone di due tipi di aerei, uno da e uno da posti. Poichè si sa che i passeggeri che prenotano poi non si presentano con probabilità., vengono sempre accettate prenotazioni sui voli da posti e su quelli da. In quale dei due aerei è maggiore il rischio di lasciare a terra almeno un passeggero che ha regolarmente prenotato, per un volo in cui si è accettato il massimo di prenotazioni? [in quello da posti, con proabilità.9] Siano X e X due v.a. che contano il numero di passeggeri che si presentano su ciascun aereo. Queste si distribuiscono secondo una legge binomiale X B(,.9) e X B(,.9). Per avere che almeno un passeggero resti a terra, è necessario che il numero di prenotazioni sia maggiore rispettivamente di e. Quindi P X > } k P X > } ( ).9 k. k.9 k ( ).9.8 Quindi il volo più a rischio anche se di poco è quello da posti. Esercizio 8 Un associazione di consumatori ha ragione di credere che un certo produttore di olio extra vergine vende solo il 7% delle bottiglie effettivamente di olio extra vergine, mentre le restanti % e % contengono rispettivamente olio semplice e olio di sansa. Per pubblicizzare la frode alimentare l associazione acquista bottiglie a caso e le fa analizzare da uun istituto indipendente. Qual è la probabilità che almeno tre bottiglie siano di olio extra vergine? [.6789] Sia X una v.a. che conta il numero di bottiglie di olio extra vergine. Questa si distribuisce con legge binomiale B(,.7). La probabilità che ci interessa calcolare è P X }. P X } k ( ).7 k.7 k.6789 k

13 Esercizio 9 Consideriamo un lago contenente pesci rossi e bianchi. Peschiamo con una rete 6 pesci. Sia X il numero di pesci bianchi pescati. Qual è la densità di X se i pesci sono mescolati casualmente nel lago? Qual è la probabilità di aver pescato un numero pari di pesci bianchi? [ 9 77 ] La v.a. X di distribuisce con legge ipergeometrica di parametri k6, b, n. La probabilità di aver pescato un numero pari di pesci bianchi equivale alla somma delle probabilità di aver pescato, e pesci bianchi ovvero P X è pari} P X k} ( ( k) ) 6 k ) 9 77 k,,} k,,} Esercizio Si lancia ripetutamente una moneta difettosa che mostra testa con probabilità.. Assumento che i lanci siano tra loro indipendenti, a) qual è la probabilità di dover aspettare almeno lanci prima di vedere la prima croce? b) Qual è la probabilità che l attesa sia tra e lanci? [a).6; b).7] Sia X la v.a. che indica il numero di lanci che hanno dato testa prima di vedere la prima croce che si distribuisce con legge geometrica di parametro.. a) La probabilità di dover aspettare almeno lanci è P X 9} Ricordiamo che la probabilità che X k con X Geom(p) è P X k} ik i ( 6 k p i ( p) ( p) ( p i p i ) i P X 9}. 9.6 ( p) ( p pk p ) pk b) Per risolvere la seconda parte dell esercizio possiamo operare in modo classico e quindi calcolarci i P X i} (dove ricordiamo che X conta il numero di teste prima di ottenere croce e quindi se aspettiamo lanci abbiamo X, e se aspettiamo lanci abbiamo X ) oppure determiniamo la funzione di ripartizione F X di X per poi calcolare F X () F X (). Optiamo per la seconda soluzione perchè più veloce. F X (k) P X k} P X k + } p k+ P X } P < X } F X () F X ()...7 Esercizio Vengono trasmessi bits binari e la probabilità di errore nella trasmissione di ogni bit è, indipendentemente dagli altri. a) Calcolare la probabilità che bits siano errati. b) Come possiamo approssimare questa probabilità in modo tale da rendere il suo calcolo (in generale) computazionalmente meno pesante e qual è il suo valore approssimato? [a).988; b).986]

14 a) Sia X la v.a. che indica il numero di bits errati, questa si distribuisce con legge Binomiale di parametri e. ( ) P X } ( ) ( ).988 b) Per semplificare la computazione di questa probabilità possiamo fare le seguenti considerazioni. Il numero di prove è particolarmente elevato, mentre la probabilità di successo (avere un bit errato) è molto bassa, possiamo apprissimare la binomiale con la distribuzione di Poisson di parametro λ p n. P X } λ! e λ e.986!

15 Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 aprile 6 Funzioni di v.a., Media e Varianza Esercizio Calcolare la media delle distribuzioni binomiale, e quella di Poisson. Di quest ultima calcolare anche la varianza. Sia X Bin(n, p) E[X] n k P X k} k n k k ( ) n p k ( p) n k k n ( ) n n ( ) n n p k ( p) n k n p k+ ( p) (n ) k k k k k n ( ) n n p p k ( p) (n ) k n p (p + ( p)) n n p k k Sia X P λ E[X] k P X k} k λk k! e λ k λ k k λ k (k )! e λ λ k λ k k! e λ λ E[X ] k P λk X k} k e λ k! λ k k k k k e λ λ k (k )! λ (k + ) e λ λk λ E[X + ] λ (λ + ) k! V ar[x] E[X ] E[X] λ (λ + ) λ λ Esercizio Qual è la densità della v.a. Y X se X è una v.a. con densità p X?

16 P Y k} P X k} p X ( k) + p X ( k), se k, altrimenti Esercizio Un urna contiene sfere delle quali sono contrassegnate dal numero, una dal e una dal. Si estraggono senza reinserimento due sfere e sia X la v.a. che indica la somma dei numeri corrispondenti alle sfere estratte. Si determini: a) la funzione di densità di X, con rappresentazione grafica; b) la funzione di ripartizione di X con rappresentazione grafica; c) la media e la moda della distribuzione; d) la varianza di X; e) P X 7} e P < X } [c)., e ; d).; e) 6, ] a) Funzione di probabilità 6, x, x P X x}, x 6, x 7, altrimenti b) Funzione di ripartizione, x < 6, x, F X (x), x 6, x, 6, x 7 c) d) E[X] i,,,7} V ar[x] E[X ] E[X] i P X i}. i,,,7} i P X i}.. e) P X 7} 6 ; P < X } Esercizio Si lancia una moneta che presenta testa con probabilità.6. Se il risultato è testa, si estraggono palline con reinserimento da un urna che contiene 6 palline bianche e nere. Se esce croce, si estraggono dalla stessa urna palline senza reinserimento. Trovare funzione di probabilità e valore atteso della variabile che conta il numero di palline bianche estratte nell esperimento. [.6] il valore più probabile

17 T testa ; C croce. Calcoliamo la probabilità di estrarre x palline bianche sapendo che è uscita testa. La v.a. che conta il numero di palline bianche in questo caso si distribuisce con legge binomiale di paramentri e 6 P X x T } ( ) x. ( ) x ( ) x 6 Calcoliamo ora la probabilità di estrarre x palline bianche sapendo che è uscita croce. La v.a. che conta il numero di palline bianche in questo caso si distribuisce con legge ipergeometrica di parametri, 6,. ( 6 ( P X x C} x) ) x ( ) Calcoliamo la probabilità P X x}, utilizzando il teorema delle probabilità totali. P X x} P X x T } P (T ) + P X x C} P (C) P X x T }.6 + P X x C}. Ricordiamo che E[X T ] è pari alla media di una v.a. che si distribuisce con legge binomiale di parametri e 6, mentre E[X C] è pari alla media di una v.a. che si distribuisce con legge ipergeometrica di parametri, 6,. Calcoliamo il valore atteso E[X] E[X T ].6 + E[X C] Esercizio Da un urna contenente palline rosse in proporzione < p < vengono estratte n palline con reimbussolamento. Queste vengono messe in una seconda urna da dove si estrae una pallina. a) Qual è la probabilità che sia rossa? b) Sapendo che l estrazione dalla seconda urna da dato una pallina rossa, qual è la probabilità che il numero di palline rosse estratte dalla prima urna fosse k con k n? c) Qual è il numero medio di palline rosse estratte dalla prima urna sapendo che la pallina estratta dalla seconda è rossa? [a) p; b) prob. di estrarre k palline rosse dalla prima urna con però n palline; c) + il numero medio di palline rosse estratte dalla prima urna con n palline] X v.a. che conta il numero di palline rosse estratte dalla prima urna R estratto rossa dalla seconda La v.a. X si distribuisce con legge binomiale di parametri n e p. a) n n ( i n P (R) P R X i} P X i} n i i i n ( ) n n ( n p i ( p) n i p i i i i ) p i ( p) n i ) p i ( p) (n ) i p

18 b) P R X k} P X k} P X k R} P (R) ( n k k n (n) k pk ( p) n k p ) p k ( p) (n ) (k ) La probabilità che il numero di palline rosse estratte dalla prima urna sia k sapendo che dalla seconda urna è stata estratta una pallina rossa, è pari alla probabilità di estrarre k palline rosse dalla prima urna dalla quale abbiamo prima tolto una pallina. c) Sia Y una v.a. che conta il numero di palline rosse estratte dalla prima urna sapendo che la palline estratta dalla seconda è rossa. Questa ha come densità P X k R}. Calcoliamo la media di Y n n ( ) n E[Y ] k P Y k} k p k p (n ) (k ) k k k n ( ) n (j + ) p j p (n ) j E[Z + ] E[Z] + j j dove Z è una v.a. che si distribuisce con legge binomiale di parametri (n ) e p. Come possiamo vedere il numero medio di palline rosse è sicuramente maggiore di uno, perchè avendone estratta una dalla seconda, sappiamo per certo che almeno una c è. Il numero di palline rosse restanti è lo stesso numero medio di palline rosse che otteniamo se le estraessimo da un urna con n palline. Esercizio 6 Una partita di 6 stereo ne contiene difettosi. Un locale acquista di questi stereo a caso. a) Se X conta il numero di stereo difettosi, trovarne la funzione di probabilità e la funzione di ripartizione con relativi grafici. b) Calcolarne media, varianza, moda e quartili. c) Dalla funzione di ripartizione ricavare P X }, P < X }. [Distribuzione ipergeometrica; b),,,,, ; c), a) X si distribuisce con legge ipergeometrica di parametri k, b, n6. ( ( P X k} k) ) k ( 6 ) Funzione di probabilità, x P X x}, x, x, altrimenti Funzione di ripartizione, x < F X (x), x, x, x

19 b) E[X] x i P X x i } i,,} V ar[x] E[X ] E[X] i,,} Moda[X] arg max P X k} k x i P X x i } c) q. arg max P X k}. k q. arg max P X k}. k q.7 arg max P X k}.7 k P X } P < X } F X () F X () P < X } F X () F X () Esercizio 7 Un urna contiene tre palline numerate da a. Si estraggono con reinserimento due palline e sia X la v.a. che indica la differenza in modulo dei numeri estratti. Si determini: a) la funzione di densità con relativo grafico; b) la funzione di ripartizione con relativo grafico; c) la media e la moda della distribuzione X; d) la varianza di X; e) P X } e P X < }. [c) 8 9, d) 8 e), 9 ] a) b) c), x P X x} 9, x 9, x, altrimenti E[X], x < F X (x), x 7 9, x, x i,,} x i P X x i } 8 9 Moda[X]

20 d) V ar[x] E[X ] E[X] i,,} x i P X x i } ( ) e) P X } F X () P X < } P < X } F X () F X () 9 Esercizio 8 Si lancia volte una moneta e sia X numero di T seguite da C. a) Trovare e disegnare la funzione di probabilità di X; b) Trovare e disegnare la funzione di ripartizione di X; c) Calcolare media, varianza, moda e mediana di X. [c), 6,, ] Lo spazio campionario è caratterizzato da D, 6 combinazioni. Analizziamo per casi il numero di combinazioni per avere k T seguite da una C. k TTTT CTTT CCTT CCC* ( combinazioni) k TCCC TCTT *TCC *TCT **TC ( combinazioni) k TCTC ( combinazione) a) Funzione di probabilità 6, k P X k} 6, k 6, k, altrimenti b) Funzione di ripartizione, k < F X (k) 6, k 6, k, k c) E[X] i,,} V ar[x] E[X ] E[X] x i P X x i } i,,} Moda[X] Mediana[X] q. x i P X x i } ( ) 6 6

21 Esercizi di Probabilità e Statistica Samuel Rota Bulò 8 maggio 6 Vettori aleatori e funzioni di v.a. Esercizio Si lanciano due dadi equi. Qual è la probabilità che la somma sia? [ ] Siano X, X le v.a. che indicano l esito rispettivamente dei due lanci. Sia Z X + X. Calcoliamo la probabilità P Z }. P Z } 6 P X y} P X y} P X } P X }+ y + P X } P X } + P X } P X } ( ) 6 Esercizio Si consideri un urna con palline numerate. Si estraggono due palline con reimmissione. Sia (X, X ) il vettore aleatorio che descrive l esperimento. a) Calcolare la densità congiunta del vettore e le densità marginali. b) Ripetere il calcolo nel caso di estrazione in blocco delle due palline. a) Nel caso di estrazioni con reimmissione abbiamo che le v.a. X e X sono indipendenti. La probabilità di estrarre una pallina è, quindi le probabilità marginali P X x } P X x }. La probabilità congiunta è data da P X x, X x } P X x } P X x } b) Nel caso di estrazioni senza reimmissione abbiamo che le v.a. X e X non sono indipendenti. Se consideriamo le possibili coppie di palline estratte gli unici casi impossibili sono quando abbiamo due palline uguali. Quindi lo spazio campionario è formato da 9 casi, e di conseguenza la probablità congiunta in questo caso è data da P X x, X x } 9 Ricostruiamo ora le densità marginali P X x } z P X x, X z} 9 9

22 Allo stesso modo calcoliamo P X x }. Quindi abbiamo che nel secondo caso le densità marginali sono le stesse del primo caso, ma la denistà congiunta è diversa e in particolare non è ricostruibile a partire dalle densità marginali tramite prodotto. Ciò dimostra che non c è indipendenza. Esercizio Si consideri un urna con palline numerate. Si estraggono due palline senza reimmessione. Sia (X, X ) il vettore aleatorio che descrive l esperimento. Calcolare la densità condizionata della prima pallina estratta dato il risultato della seconda estrazione. [ 9 ] Considerando i risultati ottenuti con l esercizio precedente abbiamo che la probabilità congiunta di estrarre una certa coppia di palline è 9 mentre la densità marginale di estrarne una è, quindi la probabilità condizionata della prima pallina estratta data la seconda è P X x X x } P X x, X x } P X x } Esercizio Sia (X, Y ) un vettore aleatorio con la seguente densità congiunta X \ Y Dopo aver verificato che si tratti di una densità ben data, calcolare la denistà marginale di X e Y e discutere della loro eventuale indipendenza. Calcolare poi la densità di X condizionata a Y. Calcolare infine la media, la varianza delle due v.a., la covarianza e il coefficiente di correlazione. [E[X], E[Y ] ρ[x, Y ].689], V ar[x] 8 9 9, V ar[y ] 8, Cov[X, Y ] 9, La densità del vettore aleatorio è ben data perchè la somma di ogni elemento della matrice da. Quindi supponendo,, } il codominio di ciascuna v.a. i j P X i, Y j} Calcoliamo le densità marginali. Le densità marginali relative a X sono le somme di ciascuna riga, mentre quelle relative a Y sono le somme di ciascuna colonna. X \ Y 7 6

23 Quindi P X } 7, P Y }, P X }, P Y } 6, P X }, P Y }. Le due v.a. non sono indipendenti infatti possiamo trovare almeno un caso in cui il prodotto delle probabilità marginali non coincide con la congiunta. P X, Y } 7 P X } P Y } 6 Passiamo ora al calcolo delle probabilità condizionate di X dato Y. P X i Y j} X \ Y 7 P X i, Y j} P Y j} 7 7 Calcoliamo la media e la varianza delle v.a.. E[X] k P X k} E[Y ] k,,} k,,} V ar[x] E[X ] E[X] V ar[y ] E[Y ] E[Y ] E[X Y ] k,j,,} k,,} k P Y k} k,,} k P X k} k P Y k} k j P X k, Y j} Cov[X, Y ] E[X Y ] E[X] E[Y ] 6 9 Cov[X, Y ] ρ[x, Y ].689 V ar[x] V ar[y ] ( ) 8 ( ) 8 Esercizio Si calcoli la denistà della somma di n variabili aleatorie bernouilliane indipendenti di parametro p. Siano X i Bin(, p) con i n e sia X (X,..., X n ) il vettore aleatorio che le contiene. Sia poi φ(x) n i X i. P φ(x) k} P X φ (k)} Il vettore aleatorio X assume il valore k se k delle n variabili bernouilliane assumono valore. Quindi φ (k) contiene l insieme di esiti in cui delle n v.a.

24 solo k hanno successo, ovvero assumono valore. Ma questo significa che la probabilità della somma di n v.a. bernouilliane corrisponde alla probabilità di avere k successi su n prove ovvero la probabilità di una v.a. con legge binomiale di parametri n e p. ( ) n P X φ (k)} p k ( p) n k k Quindi se Z n i X i con X i Bin(, p) allora Z Bin(n, p). Esercizio 6 Si dimostri che la densità di probabilità della somma S di due v.a. aleatorie discrete X e Y, indipendenti e con densità di Poisson di parametri λ X e λ Y è ancora di Poisson con parametro λ X + λ Y. Utilizziamo il teorema di convoluzione. P X+Y k} k P X z} P Y k z} z e (λ X +λ Y ) k! k z k z λ z X λ k z Y z! e λx (k z)! e λ Y ( ) k λ z X λ k z Y (λ X + λ Y ) k e (λ X +λ Y ) z k! Esercizio 7 In una banca ci sono due sportelli. Sia (X, X ) il numero di clienti in coda nei due sportelli e si supponga che tale vettore aleatorio segua la seguente densità X \ X Verificare che sia una densità discreta e calcolare la probabilità che le due code differiscano esattamente di una persona. [.] La somma di tutti gli elementi della densità congiunta da quindi è ben definita. La probabilità che vogliamo calcolare è P X Y }. P X Y } P X Y } + P X Y } P X z, Y z } + P X z, Y z + }. z (Equivale alla somma degli elementi subito sopra e sotto la diagonale della matrice.) Esercizio 8 Si lancia una moneta equa volte. Sia X il numero totale di teste e sia Y il numero di teste dell ultimo lancio ( o ). Si calcoli la densità congiunta di (X, Y ) e le due densità marginali.

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Lezioni di STATISTICA MATEMATICA A

Lezioni di STATISTICA MATEMATICA A Università di Modena e Reggio Emilia Facoltà di Ingegneria Lezioni di STATISTICA MATEMATICA A Corso di Laurea in Ingegneria Meccanica Corso di Laurea in Ingegneria dei Materiali - Anno Accademico 010/11

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

i=1 Se tale somma ha un valore finito allora diremo che la variabile aleatoria X ammette valor medio. In tal caso, la quantità xp {X = x} = x E

i=1 Se tale somma ha un valore finito allora diremo che la variabile aleatoria X ammette valor medio. In tal caso, la quantità xp {X = x} = x E 2.7 Il valor medio La nozione di media aritmetica di un insieme finito di numeri reali {x 1,x 2,...,x n } è nota e molto naturale. Una delle sue possibili interpretazioni è quella che si ottiene associando

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Nota: Eventi meno probabili danno maggiore informazione

Nota: Eventi meno probabili danno maggiore informazione Entropia Informazione associata a valore x avente probabilitá p(x é i(x = log 2 p(x Nota: Eventi meno probabili danno maggiore informazione Entropia di v.c. X P : informazione media elementi di X H(X =

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti

Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Lo schema di Bernoulli (o delle prove indipendenti): un esempio di modello probabilistico applicabile a diversi contesti Rita Giuliano (Pisa) 0. Introduzione. È ormai acquisizione comune il fatto che uno

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli