E SUE APPLICAZIONI A PROBLEMI EOQ

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "E SUE APPLICAZIONI A PROBLEMI EOQ"

Transcript

1 UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE Dipartimento di Tecnica e Gestione dei Sistemi Industriali Tesi di Laurea di Primo Livello INTERESSE CONTINUO E SUE APPLICAZIONI A PROBLEMI EOQ RELATORE: PROF. MAURO GAMBERI LAUREANDO: EMANUELE MURA ANNO ACCADEMICO

2 2

3 Dedico questo lavoro ai miei genitori, ringraziandoli per avermi fatto raggiungere codesto obiettivo. Emanuele Mura 3

4 4

5 INDICE INTRODUZIONE... 7 CAPITOLO 1 INTERESSE E FORMULE RELATIVE Interesse semplice e composto Interesse semplice Interesse composto Descrizione dei flussi di cassa nel tempo Formule dell interesse, capitalizzazione annuale, pagamenti annuali degli interessi Il fattore di capitalizzazione composta per un singolo pagamento Il fattore di attualizzazione per un singolo pagamento Il fattore di capitalizzazione composta per una serie di pagamenti uguali Il fattore delle rate d ammortamento per una serie di pagamenti uguali Il fattore di recupero del capitale per una serie di pagamenti uguali Il fattore di attualizzazione per una serie di pagamenti uguali CAPITOLO 2 TASSI DI INTERESSE CHE VARIANO NEL TEMPO Tassi di interesse nominali ed effettivi Capitalizzazione continua Formule dell interesse, pagamenti annuali con capitalizzazione continua Formule dell interesse, pagamenti continui degli interessi in regime di capitalizzazione continua CAPITOLO 3 APPLICAZIONE A PROBLEMI EOQ Confronto tra le quantità ordinate usando il metodo del costo medio annuo e il metodo del costo attualizzato Introduzione

6 3.1.2.Costo medio annuo e costo attualizzato Confronto tra i valori di Q Principio per determinare il corretto costo del capitale di prodotti in corso di lavorazione e mantenuti a magazzino Introduzione Misura della redditività a lungo termine Modelli di lotti elementari Politiche di riordino e di immagazzinamento con cambiamenti nel prezzo unitario del prodotto Introduzione L impostazione generale e il modello Applicazione al caso di prezzo c costante per ogni unità di prodotto CONCLUSIONI BIBLIOGRAFIA

7 INTRODUZIONE Il termine capitale si riferisce al patrimonio, sotto forma di denaro o di beni, che può essere impiegato per generare ulteriore ricchezza. La maggior parte delle analisi di economia applicata all ingegneria ha a che fare con situazioni in cui il capitale viene impegnato a questo scopo per lunghi periodi, e quindi l effetto del tempo deve essere preso in considerazione. A questo proposito, è ben noto che un euro oggi ha un valore superiore a quello che avrà tra uno o più anni, a causa dell interesse (o profitto) che questo può nel frattempo produrre. Quindi, il denaro ha un valore che dipende dal tempo. Perché è importante considerare il rendimento del capitale? Ci sono alcuni motivi fondamentali per cui il rendimento del capitale (sotto forma di interessi e profitti) rappresenta un elemento essenziale degli studi di economia applicata all ingegneria. Per prima cosa, l interesse e il profitto remunerano chi investe il proprio capitale per il fatto di rinunciare al suo uso nel periodo in cui esso viene utilizzato da altri. Il fatto che chi presta capitale possa ottenere un rendimento agisce come un incentivo all accumulo del capitale stesso attraverso i risparmi, rimandando quindi il consumo immediato in favore della creazione di ricchezza nel futuro. In secondo luogo, l interesse e il profitto rappresentano una remunerazione per il rischio che l investitore affronta quando permette a un altra persona o a un impresa di utilizzare il suo capitale. Nelle situazioni tipiche, gli investitori devono decidere se il rendimento atteso del loro capitale sia sufficiente a giustificare la partecipazione a un progetto o a un iniziativa imprenditoriale. Se il capitale viene investito in un progetto, gli investitori si aspetterebbero, come minimo, di ricevere una somma almeno pari a quella a cui hanno rinunciato non investendolo in un altra possibile opportunità con rischio paragonabile. L interesse, o il profitto, ricavabile da un investimento alternativo rappresenta il costo opportunità dell utilizzo del capitale nell iniziativa proposta. Di conseguenza il capitale impiegato ha un costo, nel senso che il progetto e l iniziativa devono fornire un rendimento sufficiente a renderli economicamente attraenti per i finanziatori esterni o interni (gli imprenditori). Per riassumere, ogni qualvolta progetti di ingegneria o altre iniziative di business richiedono del capitale, è essenziale prestare la dovuta considerazione al suo costo (ossia, come vedremo, al suo valore nel tempo). I primi due capitoli di questo lavoro di tesi esaminano i principi relativi al valore del denaro nel tempo, essenziali per la corretta valutazione dei progetti di ingegneria che costituiscono la base della competitività di un impresa e, di conseguenza, della sua stessa sopravvivenza. 7

8 Il terzo capitolo invece è costituito da tre articoli, tradotti in lingua italiana, che evidenziano i concetti precedentemente discussi applicandoli a problemi relativi al lotto economico di riordino. Il primo articolo presenta una discussione sul costo medio annuo e sul costo attualizzato ed in esso vengono ricavate le rispettive formule. In seguito vengono confrontate le quantità ottimali di riordino ottenute dalla minimizzazione di questi costi. L articolo successivo illustra una breve analisi sul corretto costo del capitale di prodotti in fase di lavorazione o mantenuti a magazzino. Verrà presentato il principio del Net Present Value e verranno calcolati i flussi di cassa annui di due modelli di lotti elementari. Nell ultimo articolo invece viene preso in considerazione il fatto che, in condizioni normali, il costo della merce a magazzino non è costante ma varia nel tempo dipendendo in maniera diretta da altri costi. Ciò comporta delle variazioni nelle formule del calcolo della quantità di riordino, che presenteremo e discuteremo in seguito. 8

9 CAPITOLO 1 INTERESSE E FORMULE RELATIVE 9

10 10

11 1.1.Interesse semplice e composto Di solito, il saggio di rendimento di una somma di denaro viene espresso come la percentuale della somma che deve essere pagata per il suo uso per il periodo di un anno. Il tasso di interesse può essere specificato anche per periodi diversi da un anno, noti come periodi di interesse. Questo paragrafo confronta i metodi dell interesse semplice e composto per determinare l effetto del valore nel tempo del denaro Interesse semplice Nel caso dell interesse semplice, l interesse da pagare su un debito è proporzionale alla lunghezza del periodo di tempo per cui si prende a prestito la somma. L interesse I che si guadagnerà può essere calcolato come segue. Poniamo il capitale uguale a P, il periodo dell interesse uguale a n e il tasso d interesse uguale a i. In questo modo I = Pni Un debito a interesse semplice può essere contratto per qualunque periodo di tempo. Il capitale e gli interessi devono essere rimborsati solo alla fine del periodo stabilito. Quando bisogna calcolare gli interessi dovuti per una frazione di un anno, solitamente si considera l anno di dodici mesi con trenta giorni l uno, cioè di 360 giorni Interesse composto Quando si concede un prestito per un tempo pari a parecchi periodi d interesse, si considera che l interesse guadagnato sia dovuto alla fine di ogni periodo d interesse. Esiste un ampia gamma di piani per il rimborso dei prestiti che va dalla possibilità di pagare l interesse quando matura (cioè alla fine di ogni periodo) all opzione di capitalizzare l interesse fino al termine della durata del prestito. Se il debitore può trattenere gli interessi fino alla scadenza dell intero prestito (montante + interessi), il debito aumenterà di una somma uguale agli interessi dovuti alla fine di ogni anno. In questo caso non sono richiesti pagamenti annuali degli interessi e si dice che l interesse è composto. 1.2.Descrizione dei flussi di cassa nel tempo Nella maggior parte degli studi di economia per ingegneri, vengono presi in considerazione soltanto piccoli elementi di una impresa. Ad esempio, frequentemente vengono fatti degli 11

12 studi per valutare le conseguenze dell acquisto di un singolo impianto in un sistema produttivo complesso. In casi come questo, sarebbe desiderabile isolare il singolo pezzo dall intero facendo uso di strumenti analoghi al diagramma del corpo libero della meccanica. Così sarebbe necessario dettagliare tutte le entrate e tutte le uscite di cassa che sorgerebbero dall acquisizione e dal funzionamento dell impianto considerato. Allora le uscite potrebbero venire detratte dalle entrate. La differenza rappresenterebbe un profitto o un guadagno, in base al quale si potrebbe calcolare il rendimento dell investimento. Per rendere più agevole l identificazione e la registrazione degli effetti economici di investimenti alternativi, si può usare una descrizione grafica delle transazioni di cassa di ciascuna alternativa. Questa descrizione grafica, nota come diagramma del flusso di cassa, fornirà le informazioni necessarie per analizzare un progetto di investimento. Un diagramma del flusso di cassa rappresenta le entrate relative ad un certo periodo di tempo come una freccia rivolta verso l alto (un aumento di cassa) collocata alla fine del periodo. L altezza della freccia può essere proporzionale all entità delle entrate di quel periodo. In modo simile, le uscite che si verificano in un certo periodo sono rappresentate da una freccia rivolta verso il basso (una diminuzione di cassa). Queste frecce sono poi collocate su una scala temporale che abbraccia tutti i periodi di tempo coperti dal progetto. Esempio di diagramma del flusso di cassa. E importante notare che le direzioni del flusso di cassa nei diagrammi dipendono dal punto di vista che si assume. Quando una alternativa di investimento è tale per cui introiti e spese si verificano simultaneamente, si può calcolare un flusso di cassa netto. Il flusso di cassa netto è la 12

13 somma aritmetica delle entrate (+) e delle uscite (-) che si verificano allo stesso momento del tempo. Per facilitare la descrizione dei flussi di cassa degli investimenti, si adotterà la seguente notazione. Sia F = flusso di cassa netto al tempo k dove F < 0 rappresenta un uscita netta di cassa F > 0 rappresenta un entrata netta di cassa. Negli studi di economia per ingegneri, si suppone che le spese sostenute per implementare un alternativa abbiano luogo all inizio del periodo abbracciato dall alternativa. Si ipotizza che le entrate e le uscite che si verificano durante la vita dell alternativa abbiano luogo alla fine dell anno o del periodo di interesse in cui si verificano. Questa convenzione di fine anno viene adottata per descrivere i flussi di cassa nel tempo e per sviluppare diagrammi del flusso di cassa applicabili. 1.3.Formule dell interesse, capitalizzazione annuale, pagamenti annuali degli interessi Le formule che seguono riguardano la capitalizzazione annuale degli interessi e dei pagamenti annuali. Saranno usati i seguenti simboli. Poniamo: i = tasso annuale d interesse; n = numero dei periodi degli interessi misurati in anni; P = capitale iniziale o valore attuale; A = un pagamento singolo, in una serie di n pagamenti uguali, effettuato alla fine di ogni periodo d interesse; F = montante che si avrà dopo n anni d interesse a partire dal presente. Nella derivazione e nell uso dei fattori di interesse per i pagamenti annuali si applicano quattro importanti convenzioni: 1) La fine di un anno è l inizio dell anno successivo. 2) P è all inizio di un anno in un momento considerato come presente. 3) F è al termine dell n-esimo anno calcolato da un momento che si suppone il presente. 4) Un A si verifica alla fine di ciascun anno del periodo considerato. 13

14 Quando sono coinvolti P e A, il primo A della serie si verifica un anno dopo P. Quando sono coinvolti F e A, l ultimo A della serie si verifica simultaneamente a F Il fattore di capitalizzazione composta per un singolo pagamento Se una somma di P euro viene investita in un certo istante temporale e i è il tasso d interesse per periodo, la somma aumenterà a P + Pi = P(1 + i) alla fine di un periodo; sarà pari a P(1 + i)(1 + i) = P(1 + i) alla fine di due periodi; a P(1 + i) (1 + i) = P(1 + i) alla fine di tre periodi; e alla fine di n periodi la somma arriverà a: F = P(1 + i) (1-1) Il fattore (1 + i) viene comunemente chiamato fattore di capitalizzazione composta per un singolo pagamento ed è indicato con (F/P, i, n). Di conseguenza, l equazione (1-1) può essere espressa come: F = P(F/P, i, n) (1-2) In generale, un buon modo per interpretare una relazione come quella data dall equazione (1-2) è che la somma calcolata, F, in un dato momento futuro, è equivalente al valore noto P nel momento presente al tasso d interesse o di profitto dato i. Ossia, a quel tasso, si è indifferenti tra avere F tra n periodi o P ora. Esempio 1 Equivalente futuro di una somma presente Si supponga di prendere a prestito 8.000, pattuendo di restituire tra quattro anni la somma presa a prestito più gli interessi accumulati ad un tasso di interesse del 10% l anno. Quanto si deve restituire alla fine dei quattro anni? Soluzione In generale, utilizzando la formula (1-1) otteniamo: F = 8.000(1 + 0,1) = Il fattore di attualizzazione per un singolo pagamento Dalla relazione della capitalizzazione composta in un unico pagamento possiamo ricavare P come segue: 14

15 P = F () (1-3) Il fattore risultante, (), è noto come fattore di attualizzazione in un unico pagamento ed è indicato con (P/F, i, n). Quindi l equazione (1-3) diventa: P = F(P/F, i, n) (1-4) Questo fattore può essere utilizzato per trovare il valore attuale, P, di un montante, F. Esempio 2 Equivalente attuale di una somma futura Un investitore possiede un opzione di acquisto per un appezzamento di terreno che tra sei anni si prevede avrà un valore di Se il valore dei terreni aumenta dell 8% all anno, quanto sarà disposto a pagare ora per questo appezzamento? Soluzione Il prezzo di acquisto può essere determinato dall equazione (1-3) come segue: 1 P = (1 + 0,08) = Il fattore di capitalizzazione composta per una serie di pagamenti uguali Se un flusso di cassa di ammontare pari ad A euro ha luogo alla fine di ciascun periodo per n periodi e i è il tasso d interesse, il valore futuro equivalente F alla fine del periodo n si ottiene sommando i valori equivalenti futuri di ciascun flusso di cassa. Di conseguenza: F = A(F/P, i, n 1) + A(F/P, i, n 2) + A(F/P, i, n 3) + + A(F/P, i, 1) + A(F/P, i, 0) = A[(1 + i) + (1 + i) + ((1 + i) + + (1 + i) + (1 + i) ]. I termini tra parentesi quadre costituiscono una serie geometrica con ragione (1 + i ) -1. Quindi, con le opportune semplificazioni possiamo scrivere: F = A () (1-5) Il fattore {[(1 + i) 1/i]} è definito come fattore di capitalizzazione composta per una serie di pagamenti uguali ed è indicato con (F/A, i, n). L equazione (1-5) diventa: F = A(F/A, i, n) (1-6) 15

16 Esempio 3 Equivalente futuro di una serie di pagamenti uguali Si supponga di effettuare 15 versamenti annuali uguali di 1000 ciascuno in un deposito bancario che riconosce il 5% d interesse l anno. Il primo versamento avverrà tra un anno a partire da oggi. Quanto potrà essere prelevato immediatamente dopo il quindicesimo versamento? Soluzione Il valore di A è pari a 1000, n è uguale a 15 anni e i = 5% l anno. Immediatamente dopo il quindicesimo pagamento, usando la formula (1-5), la somma equivalente futura è: F = (1 + 0,05) 1 = ,60 0, Il fattore delle rate d ammortamento per una serie di pagamenti uguali Dalla relazione del montante di una serie di pagamenti uguali possiamo ricavare A nel modo seguente: A = F (1-7) () Il fattore risultante i/[(1 + i) 1] è noto come fattore delle rate d ammortamento per una serie di pagamenti uguali ed è indicato con (A/F, i, n). Questo fattore può essere utilizzato per trovare i pagamenti di fine anno, A, necessari per formare una somma futura F. Quindi l equazione (1-7) diventa: A = F(A/F, i, n) (1-8) Esempio 4 Risparmiare ogni anno per la vecchiaia Una studentessa di 20 anni vuol fare in modo che i suoi risparmi personali ammontino a quando andrà in pensione all età di 65 anni. Quale importo deve risparmiare ogni anno, versandolo in un fondo d investimento che rende il 7% in media all anno per i prossimi 45 anni, per raggiungere il suo obiettivo? Soluzione La somma futura, F, è di L importo che la studentessa deve depositare con cadenza annuale in un fondo di investimento che raggiunga in 45 anni a un interesse annuo del 7% è, da (1-7): 16

17 0,07 A = (1 + 0,07) 1 = Il fattore di recupero del capitale per una serie di pagamenti uguali E stato dimostrato in precedenza che F è correlato ad A tramite il fattore delle rate di ammortamento di una serie di pagamenti uguali e che F e P sono legati dal fattore di capitalizzazione composta per un singolo pagamento. Se sostituiamo P(1 + i) al posto di F nella relazione delle rate di ammortamento per una serie di pagamenti uguali, abbiamo: A = P(1 + i) () () = P (1-9) () Il fattore risultante, i(1 + i) /[(1 + i) 1] è noto come fattore di recupero del capitale di una serie di pagamenti uguali ed è indicato con (A/P, i, n). Quindi l equazione (1-9) si può ora scrivere nel modo seguente: A = P(A/P, i, n) (1-10) Esempio 5 Rimborso di un prestito Per procedere al rinnovo di un macchinario obsoleto, un imprenditore tessile contratta con un istituto di credito un prestito di , da rimborsarsi in 6 rate annuali di importo costante in base al tasso di interesse dell 8% annuo. A quanto ammonta l importo di ogni singola rata? Soluzione Utilizzando la formula (1-9) possiamo facilmente ricavare il valore di A come segue: 0,08(1 + 0,08) A = (1 + 0,08) 1 = , Il fattore di attualizzazione per una serie di pagamenti uguali Dal fattore del recupero del capitale in una serie di pagamenti uguali possiamo ricavare P come segue: P = A () () (1-11) 17

18 Il fattore risultante [(1 + i) 1]/i(1 + i) è noto come fattore di attualizzazione di una serie di pagamenti uguali ed è indicato con (P/A, i, n). Otteniamo dunque: P = A(P/A, i, n). (1-12) Esempio 6 Valore presente di un pagamento a rate Una motocicletta viene acquistata oggi con l accordo acquirente-venditore di effettuare il pagamento mediante 5 versamenti annuali, al termine di ogni anno, del valore di ciascuno. Sapendo che il tasso di interesse concordato è del 7% annuo, si determini il valore della motocicletta. Soluzione Utilizzando la (1-11), possiamo ricavare il valore di P nel modo seguente: P = (1 + 0,07) 1 0,07(1 + 0,07) = 6970,34 Le formule ricavate in questo paragrafo si riferiscono a interessi in regime di capitalizzazione discontinua o discreta; ossia l interesse viene capitalizzato (composto) al termine di ciascun periodo di lunghezza specificata. Inoltre, le formule presuppongono la presenza di flussi di cassa discreti collocati in corrispondenza della fine/inizio dei periodi di capitalizzazione. 18

19 CAPITOLO 2 TASSI DI INTERESSE CHE VARIANO NEL TEMPO 19

20 20

21 2.1.Tassi di interesse nominali ed effettivi Può accadere che il periodo di composizione, o l intervallo temporale tra due composizioni successive degli interessi, sia inferiore all anno. La consuetudine vuole comunque che si indichino i tassi d interesse su base annua, precisando il periodo di composizione se diverso dall anno. Per esempio, se il tasso d interesse è del 6% per periodo d interesse e questo periodo è di sei mesi, si parla di tasso del 12% composto semestralmente. Questo tasso annuale d interesse, pari al 12% nel caso citato, viene definito come tasso nominale e si indica con r. Chiaramente il tasso reale (o effettivo) annuo non è del 12%, bensì superiore, in quanto la composizione avviene due volte nel corso dell anno. E possibile stabilire una relazione fra il tasso di interesse effettivo per ogni intervallo di tempo e il tasso di interesse nominale annuo. Siano: r = tasso di interesse nominale per anno, i = tasso di interesse effettivo nell intervallo di tempo, l = durata dell intervallo di tempo (in anni), m = reciproco della durata del periodo di capitalizzazione (in anni). Il tasso di interesse effettivo per ogni intervallo di tempo è dato da i = (2-1) Se l interesse è composto solo una volta nell intervallo di tempo, allora l m = 1 e i =. (2-2) Per trovare il tasso di interesse effettivo applicabile per ogni intervallo di tempo, si può usare la seguente relazione: i = (2-3) dove c (c 1) è il numero dei periodi di capitalizzazione nell intervallo di tempo (c = l m). Quando c = 1 l equazione (2-3) si riduce alla (2-2). 21

22 Esempio 7 Tasso effettivo annuo Una banca addebita un tasso d interesse del 1,375% al mese sugli scoperti di conto corrente. Il tasso d interesse annuale comunicato dalla banca è di 12(1,375%)=16,5%. Qual è il tasso d interesse effettivo applicato? Soluzione Utilizzando l equazione (2-3) otteniamo: i = 1 + 0, = 0,1781 = 17,81% 2.2.Capitalizzazione continua Nella maggior parte delle transazioni commerciali e delle applicazioni economiche, l interesse viene composto al termine di periodi discreti e, come discusso in precedenza, si presuppone che i flussi di cassa siano importi discreti alla fine di ciascun periodo. Tuttavia, è evidente che nella maggior parte delle imprese il denaro entra ed esce continuamente. Poiché il denaro può essere investito ogni qualvolta sia disponibile, esiste l opportunità che si verifichino capitalizzazioni molto frequenti. Per trattare e modellare questa situazione, nelle analisi economiche si ricorre qualche volta ai concetti di composizione e di flusso di cassa continui. In realtà, nella maggior parte dei casi i risultati ottenuti da questa procedura non si discostano di molto da quelli ottenuti tramite una composizione discreta. La capitalizzazione continua presuppone che i flussi di cassa abbiano luogo a intervalli discreti (per esempio, una volta l anno), ma che la composizione del tasso sia continua sull intero intervallo. Si può dunque supporre che gli interessi vengano capitalizzati un numero infinito di volte in un anno, cioè continuamente. In queste condizioni, il tasso di interesse effettivo per la capitalizzazione continua può essere ricavato dall equazione (2-1) con l = 1 come segue: i = lim 1 + r m 1 ma dato che 1 + =

23 e lim 1 + = e = 2,7182 allora i = lim = e 1 Quindi quando l interesse è calcolato in regime di capitalizzazione continua i = tasso di interesse effettivo annuale = e 1 (2-4) 2.3.Formule dell interesse, pagamenti annuali con capitalizzazione continua Questo paragrafo presenta le formule di interesse da usare nei casi in cui appaiono più convenienti i pagamenti annuali con capitalizzazione continua. Saranno usati i seguenti simboli. Poniamo: r = tasso d interesse nominale annuo; n = numero dei periodi annuali; P = capitale attuale; A = singolo pagamento, in una serie di n pagamenti uguali, effettuato alla fine di ogni periodo annuale; F = somma futura, a n periodi annuali a partire da adesso. Il fattore di capitalizzazione continua di un singolo pagamento. Il fattore di capitalizzazione composta di un singolo pagamento dipende dal numero dei periodi di capitalizzazione con le seguenti relazioni: Per la capitalizzazione annuale: F = P(1 + r) Per la capitalizzazione semestrale: F = P

24 Per la capitalizzazione mensile: F = P 1 + In generale, se in un anno vi sono m periodi di capitalizzazione F = P 1 + r m Quando si adotta la capitalizzazione continua, gli interessi ricavati vengono istantaneamente aggiunti alla somma principale alla fine di ogni periodo infinitesimale. Nella capitalizzazione continua, il numero dei periodi di capitalizzazione in ogni anno viene considerato infinito. Quindi F = P lim 1 +. Da questo si ha F = P lim 1 +. Ma lim 1 + = e = 2,7182. Perciò F = Pe. (2-5) Il fattore risultante, e, è il fattore di capitalizzazione continua di un singolo pagamento ed è indicato con (F/P, r, n). Si noti che ogni fattore discreto a capitalizzazione continua può essere ricavato dal suo corrispondente fattore a capitalizzazione discreta sostituendo il tasso continuo effettivo di interesse i. Per il fattore ricavato nell equazione (2-5) si sostituisca i = e 1 24

25 in (1 + i) e si ha e Il fattore di attualizzazione continua di un singolo pagamento. Dalla relazione della capitalizzazione continua in un singolo pagamento si può ricavare P nel modo seguente: P = F. (2-6) Il fattore risultante, e, è il fattore di attualizzazione continua di un singolo pagamento ed è indicato con (P/F, r, n). Il fattore di attualizzazione continua di una serie di pagamenti uguali. Se consideriamo singolarmente ogni pagamento della serie, il valore attuale totale della serie è dato dalla somma dei singoli valori attuali come segue: P = A(e ) + A(e ) + + A(e ) = Ae (1 + e + e + + e () ) che è uguale a Ae volte la progressione geometrica quindi P = Ae = A. (2-7) Il fattore risultante, (1 e )/(e 1) è il fattore di attualizzazione continua di una serie di pagamenti uguali ed è indicato con (P/A, r, n). Il fattore di recupero del capitale di una serie di pagamenti uguali. Dalla relazione del valore attuale di una serie di pagamenti uguali possiamo ricavare A come segue: A = P. (2-8) 25

26 Il fattore risultante, (e 1) / (1 e ), è il fattore di recupero del capitale per capitalizzazione continua degli interessi ed è indicato con (A/P, r, n). Esempio 8 Capitalizzazione continua e pagamenti annuali Si vuole calcolare quale somma A si potrebbe ricavare ogni anno per 10 anni versando adesso in un deposito che gode di un tasso di interesse nominale annuo del 20% composto continuamente (M = ). Soluzione E necessario utilizzare la formula (2-8): A = e, 1 1 e = 256 Il fattore della rate d ammortamento di una serie di pagamenti uguali. Se nella relazione del recupero del capitale di una serie di pagamenti uguali sostituiamo Fe al posto di P, otteniamo A = Fe = F. (2-9) Il fattore risultante, (e 1)/(e 1) è il fattore delle rate d ammortamento di una serie di pagamenti uguali per la capitalizzazione continua degli interessi ed è indicato con (A/F, r, n). Il fattore di capitalizzazione continua di una serie di pagamenti uguali. Dalla relazione delle rate d ammortamento di una serie di pagamenti uguali possiamo ricavare F come segue: F = A. (2-10) Il fattore risultante, (e 1)/(1 e ) è il fattore della capitalizzazione continua di una serie di pagamenti uguali ed è indicato con (F/A, r, n). 2.4.Formule dell interesse, pagamenti continui degli interessi in regime di capitalizzazione continua Nei calcoli precedenti si supponeva che i pagamenti fossero concentrati in momenti distinti nel tempo. Tuttavia in molti esempi è ragionevole supporre che le transazioni monetarie 26

27 avvengano su una base relativamente uniforme nel corso dell anno. Situazioni di questo tipo implicano un processo di flusso di fondi che può essere presentato in termini di tasso di flusso annuale. Saranno adoperati i seguenti simboli. Poniamo: r = tasso d interesse nominale annuo; n = tempo espresso in anni; P = capitale attuale; A = tasso del flusso uniforme del denaro per anno; F = quantità futura uguale al montante di un flusso uniforme del denaro nel tempo n. Quando non vi è il flusso dei pagamenti, come nel caso dei pagamenti annuali, i fattori di capitalizzazione e di attualizzazione sono identici a quelli dei pagamenti annuali degli interessi con capitalizzazione continua. Quindi F = Pe e P = Fe Il fattore di capitalizzazione continua di flusso di fondi. Per ricavare le formule relative agli interessi nel processo del flusso dei fondi ci serviremo dei simboli seguenti. Poniamo: F = somma futura uguale alla somma composta P. Questa somma futura si avrà t anni dopo il tempo n. A = tasso uniforme del flusso di denaro per anno. Poiché abbiamo dimostrato che F = Pe, F = Pe Ma P = A t quindi F = A e t Se supponiamo che t tenda a zero, abbiamo 27

28 df = A e t E, per l intero intervallo compreso tra 0 e n F = df = A e dt A e F = = A e r r e r F = A. (2-11) Il fattore risultante, (e 1)/r è definito il fattore di capitalizzazione continua del flusso di fondi ed è indicato con (F/A, r, n). Il fattore delle rate d ammortamento del flusso di fondi. Dalla relazione della capitalizzazione continua del flusso dei fondi possiamo ricavare A come segue: A = F. (2-12) Il fattore risultante, r/(e 1) è il fattore delle rate d ammortamento del flusso di fondi ed è indicato con (A /F, r, n). Il fattore di recupero del capitale nel flusso di fondi. Usando la relazione della capitalizzazione continua di un singolo pagamento F = Pe, e la relazione delle rate d ammortamento del flusso dei fondi appena ricavato, si ha che A = Pe r e 1 A = P. (2-13) Il fattore risultante, (re )/(e 1), è il fattore di recupero del capitale nel flusso di fondi ed è indicato con (A /P, r, n). 28

29 Il fattore di attualizzazione continua del flusso dei fondi. Dalla relazione del recupero del capitale nel flusso dei fondi di può ricavare P come segue: P = A. (2-13) Il fattore risultante, (e 1)/(re ) è il fattore di attualizzazione continua del flusso di fondi ed è indicato con (P/A, r, n). Il fattore di conversione del flusso dei fondi. I valori tabulati dei fattori relativi agli interessi con pagamenti annuali a capitalizzazione continua possono venire modificati ed impiegati per i fattori relativi al flusso di fondi. Il fattore di conversione necessario può essere ottenuto trovando l ammontare di fine anno equivalente alla somma di un numero infinito di pagamenti che avvengono durante l anno. Il fattore di capitalizzazione di una serie di pagamenti uguali dell equazione (2-10) può essere modificato come segue per considerare m periodi d interesse all anno: F = A 1 m e e = A 1 m e 1 e 1 Ma lim e 1 A m e 1 e = lim A m 1 e = A e 1 1 r F = A. (2-14) L equazione (2-14) esprime l equivalenza tra un flusso continuo e uniforme di fondi per un anno, A, e una somma futura alla fine dell anno, F. Per un intervallo di tempo superiore ad un anno, lo stesso fattore permette di calcolare l equivalenza tra un flusso uniforme di fondi al tasso A per ogni anno e somme annue uguali, A, alla fine di ogni anno. Quindi, per intervalli di tempo superiori ad un anno, si ha: 29

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

L analisi economico finanziaria dei progetti

L analisi economico finanziaria dei progetti PROVINCIA di FROSINONE CIOCIARIA SVILUPPO S.c.p.a. LABORATORI PER LO SVILUPPO LOCALE L analisi economico finanziaria dei progetti Azione n. 2 Progetti per lo sviluppo locale LA FINANZA DI PROGETTO Frosinone,

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

LIVELLO STRATEGICO E TATTICO

LIVELLO STRATEGICO E TATTICO Corso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO 1 ESEMPI DI PROBLEMI DECISIONALI LIVELLO STRATEGICO Capacity growth planning LIVELLO TATTICO Aggregate planning

Dettagli

Università di Pavia - Facoltà di Economia

Università di Pavia - Facoltà di Economia 0 Università di Pavia - Facoltà di Economia Il calcolo imprenditoriale per la trasformazione «finanziaria» Michela Pellicelli Le imprese possono essere considerate trasformatori finanziari in quanto: a)

Dettagli

Principio contabile internazionale n. 12 Imposte sul reddito

Principio contabile internazionale n. 12 Imposte sul reddito Principio contabile internazionale n. 12 Imposte sul reddito Finalità La finalità del presente Principio è quella di definire il trattamento contabile delle imposte sul reddito. L aspetto principale della

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Il bilancio con dati a scelta. Classe V ITC

Il bilancio con dati a scelta. Classe V ITC Il bilancio con dati a scelta Classe V ITC Il metodo da seguire Premesso che per la costruzione di un bilancio con dati a scelta si possono seguire diversi metodi, tutti ugualmente validi, negli esempi

Dettagli

Detrazione Fiscale e Scambio sul Posto

Detrazione Fiscale e Scambio sul Posto Gentile Cliente, il momento storico della fine del Conto Energia in Italia è arrivato lo scorso 6 luglio ed ha rappresentato un punto di svolta per tutti gli operatori del solare. La tanto discussa grid

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

Imprese individuali e società Le aziende possono essere distinte in: 1. aziende individuali, quando il soggetto giuridico è una persona fisica; 2.

Imprese individuali e società Le aziende possono essere distinte in: 1. aziende individuali, quando il soggetto giuridico è una persona fisica; 2. Imprese individuali e società Le aziende possono essere distinte in: 1. aziende individuali, quando il soggetto giuridico è una persona fisica; 2. aziende collettive, quando il soggetto giuridico è costituito

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

IFRS 2 Pagamenti basati su azioni

IFRS 2 Pagamenti basati su azioni Pagamenti basati su azioni International Financial Reporting Standard 2 Pagamenti basati su azioni FINALITÀ 1 Il presente IRFS ha lo scopo di definire la rappresentazione in bilancio di una entità che

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

i tassi di interesse per i prestiti sono gli stessi che per i depositi;

i tassi di interesse per i prestiti sono gli stessi che per i depositi; Capitolo 3 Prodotti derivati: forward, futures ed opzioni Per poter affrontare lo studio dei prodotti derivati occorre fare delle ipotesi sul mercato finanziario che permettono di semplificare dal punto

Dettagli

Qual è il fine dell azienda?

Qual è il fine dell azienda? CORSO DI FINANZA AZIENDALE SVILUPPO DELL IMPRESA E CREAZIONE DI VALORE Testo di riferimento: Analisi Finanziaria (a cura di E. Pavarani) - McGraw-Hill - 2001 Cap. 9 1 Qual è il fine dell azienda? Massimizzare

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

I contributi pubblici nello IAS 20

I contributi pubblici nello IAS 20 I contributi pubblici nello IAS 20 di Paolo Moretti Il principio contabile internazionale IAS 20 fornisce le indicazioni in merito alle modalità di contabilizzazione ed informativa dei contributi pubblici,

Dettagli

FONDAMENTI DI ECONOMIA AZIENDALE E IMPIANTISTICA INDUSTRIALE. Sistemi di rilevazione dei costi Job Costing, Process Costing

FONDAMENTI DI ECONOMIA AZIENDALE E IMPIANTISTICA INDUSTRIALE. Sistemi di rilevazione dei costi Job Costing, Process Costing FONDAMENTI DI ECONOMIA AZIENDALE E IMPIANTISTICA INDUSTRIALE Proff.. Alberto Baggini Marco Melacini A.A. 2008/2009 Sistemi di rilevazione dei costi Job Costing, Process Costing Allocazione dei costi industriali

Dettagli

INDICE. - Categorie di dipendenti o di collaboratori dell Emittente e delle società controllanti o controllate da tale Emittente

INDICE. - Categorie di dipendenti o di collaboratori dell Emittente e delle società controllanti o controllate da tale Emittente 1 INDICE Premessa 4 Soggetti Destinatari 6 - Indicazione nominativa dei destinatari che sono componenti del Consiglio di Amministrazione dell Emittente, delle società controllanti e di quelle, direttamente

Dettagli

FASI DI VITA DELL AZIENDA

FASI DI VITA DELL AZIENDA AZIENDA ORGANIZZAZIONE DI PERSONE E BENI CHE SVOLGE ATTIVITA ECONOMICA IN VISTA DEL SODDISFACIMENTO DEI BISOGNI UMANI. Dalla definizione si estraggono le 3 componenti principali dell azienda. Abbiamo ciò

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Guida alle offerte di finanziamento per le medie imprese

Guida alle offerte di finanziamento per le medie imprese IBM Global Financing Guida alle offerte di finanziamento per le medie imprese Realizzata da IBM Global Financing ibm.com/financing/it Guida alle offerte di finanziamento per le medie imprese La gestione

Dettagli

RELAZIONE TECNICA MODALITÀ E CONDIZIONI TECNICO ECONOMICHE PER L EROGAZIONE DEL SERVIZIO DI SCAMBIO SUL POSTO

RELAZIONE TECNICA MODALITÀ E CONDIZIONI TECNICO ECONOMICHE PER L EROGAZIONE DEL SERVIZIO DI SCAMBIO SUL POSTO RELAZIONE TECNICA MODALITÀ E CONDIZIONI TECNICO ECONOMICHE PER L EROGAZIONE DEL SERVIZIO DI SCAMBIO SUL POSTO Relazione tecnica alla deliberazione 20 dicembre 2012, 570/2012/R/efr Mercato di incidenza:

Dettagli

Capitalizzazione semplice e composta (sul libro a pag. 386 e seguenti)

Capitalizzazione semplice e composta (sul libro a pag. 386 e seguenti) Capitalizzazione semplice e composta (sul libro a pag. 386 e seguenti) Operazione finanziaria = un operazione in cui avviene uno scambio di denaro in tempi diversi. Mutuante o creditore = chi concede il

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Grafici di redditività BREAK-EVEN ANALYSIS

Grafici di redditività BREAK-EVEN ANALYSIS Grafici di redditività BREAK-EVEN ANALYSIS 1 Analisi del punto di equilibrio o di pareggio Consiste nella determinazione grafica o matematica del quantitativo di vendita al quale i costi totali e i ricavi

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Il Project Financing. Introduzione

Il Project Financing. Introduzione Il Project Financing Introduzione Il Project Financing nasce nei paesi anglosassoni come tecnica finanziaria innovativa volta a rendere possibile il finanziamento di iniziative economiche sulla base della

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

GLI INDICI DI BILANCIO PER LE ANALISI FINANZIARIE

GLI INDICI DI BILANCIO PER LE ANALISI FINANZIARIE GLI INDICI DI BILANCIO PER LE ANALISI FINANZIARIE GLI INDICI DI BILANCIO Gli indici sono rapporti tra grandezze economiche, patrimoniali e finanziarie contenute nello stato patrimoniale e nel conto economico

Dettagli

La riforma delle pensioni. Obiettivi e strumenti Nuove regole Misure temporanee

La riforma delle pensioni. Obiettivi e strumenti Nuove regole Misure temporanee La riforma delle pensioni Obiettivi e strumenti Nuove regole Misure temporanee Obiettivi Strumenti 2 Obiettivi e strumenti della riforma sostenibilità I REQUISITI DI PENSIONAMENTO SONO LEGATI ALLA LONGEVITA'

Dettagli

Come si calcolano,nel 2013, le pensioni dei lavoratori iscritti all INPS

Come si calcolano,nel 2013, le pensioni dei lavoratori iscritti all INPS Come si calcolano,nel 2013, le pensioni dei lavoratori iscritti all INPS Salvatore Martorelli 0 Le regole e il sistema di calcolo delle pensioni INPS I vertiginosi cambiamenti nella normativa sulle pensioni

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Capitolo 10. Analisi degli investimenti in beni strumentali

Capitolo 10. Analisi degli investimenti in beni strumentali Capitolo 10 Analisi degli investimenti in beni strumentali 1 I criteri tradizionali di valutazione degli investimenti 1. Il tempo di recupero (payback period) 2. Il payback period attualizzato 3. Il rendimento

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

CORSO DI CONTABILITA E BILANCIO 2

CORSO DI CONTABILITA E BILANCIO 2 CORSO DI CONTABILITA E BILANCIO 2 La valutazione delle IMMOBILIZZAZIONI MATERIALI Prima lezione di Alberto Bertoni 1 IMMOBILIZZAZIONI Definizione Cod. Civ. art. 2424-bis, 1 c. Le immobilizzazioni sono

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Gli indici per l analisi di bilancio. Relazione di

Gli indici per l analisi di bilancio. Relazione di Gli indici per l analisi di bilancio Relazione di Giorgio Caprioli Gli indici di solidità Gli indici di solidità studiano il rapporto tra le parti alte dello Stato Patrimoniale, ossia tra Capitale proprio

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

CAP.1: FINANZA AZIENDALE.

CAP.1: FINANZA AZIENDALE. FINANZA AZIENDALE CAP.1: FINANZA AZIENDALE. Studio dei principi di valutazione della convenienza economica delle decisioni (finanziarie) di investimento e di finanziamento delle imprese. Il mercato si

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Azionario Flessibile 7 anni Scheda sintetica - Informazioni specifiche 1 di 6

Azionario Flessibile 7 anni Scheda sintetica - Informazioni specifiche 1 di 6 Scheda sintetica - Informazioni specifiche 1 di 6 La parte Informazioni Specifiche, da consegnare obbligatoriamente all investitore contraente prima della sottoscrizione, è volta ad illustrare le principali

Dettagli

Introduzione... 2 GLI INDICI DI BILANCIO... 2 Classificazione... 2 Indici finanziari... 3 Indici (finanziari) patrimoniali... 3 Indebitamento ed

Introduzione... 2 GLI INDICI DI BILANCIO... 2 Classificazione... 2 Indici finanziari... 3 Indici (finanziari) patrimoniali... 3 Indebitamento ed Appunti di Economia Capitolo 8 Analisi di bilancio Introduzione... 2 GLI INDICI DI BILANCIO... 2 Classificazione... 2 Indici finanziari... 3 Indici (finanziari) patrimoniali... 3 Indebitamento ed indipendenza

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

LA TRASFORMAZIONE DEI SISTEMI AMMINISTRATIVI E CONTABILI: IL PASSAGGIO DALLA CONTABILITÀ FINANZIARIA AI NUOVI SISTEMI CONTABILI (CO.GE.

LA TRASFORMAZIONE DEI SISTEMI AMMINISTRATIVI E CONTABILI: IL PASSAGGIO DALLA CONTABILITÀ FINANZIARIA AI NUOVI SISTEMI CONTABILI (CO.GE. LA TRASFORMAZIONE DEI SISTEMI AMMINISTRATIVI E CONTABILI: IL PASSAGGIO DALLA CONTABILITÀ FINANZIARIA AI NUOVI SISTEMI CONTABILI (CO.GE. E COAN) Prof.ssa Claudia SALVATORE Università degli Studi del Molise

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

OIC 23 - Lavori in corso su ordinazione

OIC 23 - Lavori in corso su ordinazione Luca Bilancini (Commercialista, Pubblicista, coordinatore scientifico MAP) OIC 23 - Lavori in corso su ordinazione 1 OIC 23 - Principali novità Non ci sono più i paragrafi relativi alle commesse in valuta

Dettagli

PENSIONE DI VECCHIAIA, PENSIONE DI ANZIANITÀ, PENSIONE ANTICIPATA.

PENSIONE DI VECCHIAIA, PENSIONE DI ANZIANITÀ, PENSIONE ANTICIPATA. PENSIONE DI VECCHIAIA, PENSIONE DI ANZIANITÀ, PENSIONE ANTICIPATA. LA PENSIONE DI VECCHIAIA è il trattamento pensionistico corrisposto dall Istituto previdenziale al raggiungimento di una determinata età

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017

LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017 7 maggio 2015 LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017 Nel 2015 si prevede un aumento del prodotto interno lordo (Pil) italiano pari allo 0,7% in termini reali, cui seguirà una crescita dell

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Corso di Valutazioni d Azienda

Corso di Valutazioni d Azienda Andrea Cardoni Università degli Studi di Perugia Facoltà di Economia Dipartimento di Discipline Giuridiche e Aziendali Corso di Laurea Magistrale in Economia e Management Aziendale Corso di Valutazioni

Dettagli

I CRITERI DI VALUTAZIONE DELLE POSTE DI BILANCIO: una breve disamina sul fair value

I CRITERI DI VALUTAZIONE DELLE POSTE DI BILANCIO: una breve disamina sul fair value I CRITERI DI VALUTAZIONE DELLE POSTE DI BILANCIO: una breve disamina sul fair value A cura Alessio D'Oca Premessa Nell ambito dei principi che orientano la valutazione del bilancio delle società uno dei

Dettagli

ABC. degli investimenti. Piccola guida ai fondi comuni dedicata ai non addetti ai lavori

ABC. degli investimenti. Piccola guida ai fondi comuni dedicata ai non addetti ai lavori ABC degli investimenti Piccola guida ai fondi comuni dedicata ai non addetti ai lavori I vantaggi di investire con Fidelity Worldwide Investment Specializzazione Fidelity è una società indipendente e si

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

IL MERCATO FINANZIARIO

IL MERCATO FINANZIARIO IL MERCATO FINANZIARIO Prima della legge bancaria del 1936, in Italia, era molto diffusa la banca mista, ossia un tipo di banca che erogava sia prestiti a breve che a medio lungo termine. Ma nel 1936 il

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Guido Candela, Paolo Figini - Economia del turismo, 2ª edizione

Guido Candela, Paolo Figini - Economia del turismo, 2ª edizione 8.2.4 La gestione finanziaria La gestione finanziaria non dev essere confusa con la contabilità: quest ultima, infatti, ha come contenuto proprio le rilevazioni contabili e il reperimento dei dati finanziari,

Dettagli

ANALISI DEGLI INVESTIMENTI INDUSTRIALI

ANALISI DEGLI INVESTIMENTI INDUSTRIALI ANALISI DEGLI INVESTIMENTI INDUSTRIALI Università degli Studi di Parma Dipartimento di Economia Testo di riferimento: Analisi Finanziaria, McGraw-Hill, 2002 Obiettivi della lezione Capire i profili di

Dettagli

Innovative Procurement Process. Consulting

Innovative Procurement Process. Consulting Creare un rapporto di partnership contribuendo al raggiungimento degli obiettivi delle Case di cura nella gestione dei DM attraverso soluzione a valore aggiunto Innovative Procurement Process Consulting

Dettagli

RELAZIONE DEL CONSIGLIO DI AMMINISTRAZIONE SULLA GESTIONE DELL ESERCIZIO CHIUSO AL 31 DICEMBRE 2012

RELAZIONE DEL CONSIGLIO DI AMMINISTRAZIONE SULLA GESTIONE DELL ESERCIZIO CHIUSO AL 31 DICEMBRE 2012 STUDIARE SVILUPPO SRL Sede legale: Via Vitorchiano, 123-00189 - Roma Capitale sociale 750.000 interamente versato Registro delle Imprese di Roma e Codice fiscale 07444831007 Partita IVA 07444831007 - R.E.A.

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Classificazioni dei sistemi di produzione

Classificazioni dei sistemi di produzione Classificazioni dei sistemi di produzione Sistemi di produzione 1 Premessa Sono possibili diverse modalità di classificazione dei sistemi di produzione. Esse dipendono dallo scopo per cui tale classificazione

Dettagli

1 Introduzione. 2 Concetti e terminologia relativi all ammortamento. AMMORTAMENTO E IMPOSTE SUI REDDITI - generalità

1 Introduzione. 2 Concetti e terminologia relativi all ammortamento. AMMORTAMENTO E IMPOSTE SUI REDDITI - generalità AMMORTAMENTO E IMPOSTE SUI REDDITI - generalità 1 Introduzione La riscossione delle imposte è un attività che risale ai tempi antichi. Richiami al pagamento delle imposte si trovano anche nell Antico Testamento.

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

La compensazione impropria nei rapporti di dare avere quale rimedio al maggior danno nei contratti di mutuo. ANALISI TECNICA

La compensazione impropria nei rapporti di dare avere quale rimedio al maggior danno nei contratti di mutuo. ANALISI TECNICA La compensazione impropria nei rapporti di dare avere quale rimedio al maggior danno nei contratti di mutuo. ANALISI TECNICA Per un proficuo approccio alla problematica presa in esame si propone, qui di

Dettagli

ANALISI DEGLI SCOSTAMENTI DI COSTO E DI RICAVO

ANALISI DEGLI SCOSTAMENTI DI COSTO E DI RICAVO ATTIVITÀ DIDATTICHE 1 Prova di verifica ANALISI DEGLI SCOSTAMENTI DI COSTO E DI RICAVO di Rossana MANELLI MATERIA: ECONOMIA AZIENDALE (Classe 5 a IT IGEA, 5 a IP Economico - gestionale) La prova, indirizzata

Dettagli

Capitolo 5. Il mercato della moneta

Capitolo 5. Il mercato della moneta Capitolo 5 Il mercato della moneta 5.1 Che cosa è moneta In un economia di mercato i beni non si scambiano fra loro, ma si scambiano con moneta: a fronte di un flusso reale di prodotti e di servizi sta

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

ANALISI DEGLI INVESTIMENTI INDUSTRIALI

ANALISI DEGLI INVESTIMENTI INDUSTRIALI ANALISI DEGLI INVESTIMENTI INDUSTRIALI testo di riferimento: Analisi inanziaria (a cura di E. Pavarani) McGraw-Hill, 2001 cap. 10. Indice Introduzione I criteri tradizionali di valutazione degli investimenti

Dettagli

STUDI DI SETTORE: LE INDICAZIONI DELL AGENZIA DELLE ENTRATE (Sunto della C.M. n.31/2007)

STUDI DI SETTORE: LE INDICAZIONI DELL AGENZIA DELLE ENTRATE (Sunto della C.M. n.31/2007) STUDIO MINTO Associazione Professionale Commercialisti Revisori Contabili Consulenza del Lavoro Mirano (VE) Telefono 041/5701020 CIRCOLARE INFORMATIVA n. 16 Giugno 2007 STUDI DI SETTORE: LE INDICAZIONI

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

PRESENTARE UN IDEA PROGETTUALE

PRESENTARE UN IDEA PROGETTUALE PRESENTARE UN IDEA PROGETTUALE LINEE GUIDA PER UNA EFFICACE PRESENTAZIONE DI UN BUSINESS PLAN INTRODUZIONE ALLA GUIDA Questa breve guida vuole indicare in maniera chiara ed efficiente gli elementi salienti

Dettagli

FOGLIO INFORMATIVO. relativo alle operazioni di

FOGLIO INFORMATIVO. relativo alle operazioni di FOGLIO INFORMATIVO relativo alle operazioni di FINANZIAMENTI IMPORT, ANTICIPI E PREFINANZIAMENTI EXPORT, FINANZIAMENTI SENZA VINCOLO DI DESTINAZIONE (questi ultimi se non rientranti nel credito ai consumatori)

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

L azienda e la sua gestione P R O F. S A R T I R A N A

L azienda e la sua gestione P R O F. S A R T I R A N A L azienda e la sua gestione P R O F. S A R T I R A N A L azienda può essere considerata come: Un insieme organizzato di beni e persone che svolgono attività economiche stabili e coordinate allo scopo di

Dettagli

del 23 marzo 2001 (Stato 10 dicembre 2002)

del 23 marzo 2001 (Stato 10 dicembre 2002) Legge federale sul credito al consumo (LCC) 221.214.1 del 23 marzo 2001 (Stato 10 dicembre 2002) L Assemblea federale della Confederazione Svizzera, visti gli articoli 97 e 122 della Costituzione federale

Dettagli

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1

FACOLTA DI INGEGNERIA SCHEDA DIDATTICA N 1 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI STATISTICA E CALCOLO DELLE PROBABILITA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N ARGOMENTO: CALCOLO DELLE PROBABILITA

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Effetti delle imposte nel mercato internazionale dei capitali. Economia dei tributi_polin 1

Effetti delle imposte nel mercato internazionale dei capitali. Economia dei tributi_polin 1 Effetti delle imposte nel mercato internazionale dei capitali Economia dei tributi_polin 1 Allocazione internazionale del capitale Si possono definire due principi di neutralità della tassazione del capitale

Dettagli

Lezione 8. Ciclo gestionale e sintesi economico-patrimoniale

Lezione 8. Ciclo gestionale e sintesi economico-patrimoniale Lezione 8 Ciclo gestionale e sintesi economico-patrimoniale L AZIENDA SVOLGE UN PROCESSO DI TRASFORMAZIONE RISORSE PROCESSO DI PRODOTTI E SERVIZI TRASFORMAZIONE Valore di mercato delle risorse impiegate

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Lavori in corso su ordinazione

Lavori in corso su ordinazione OIC ORGANISMO ITALIANO DI CONTABILITÀ PRINCIPI CONTABILI Lavori in corso su ordinazione Agosto 2014 Copyright OIC PRESENTAZIONE L Organismo Italiano di Contabilità (OIC) si è costituito, nella veste giuridica

Dettagli