Disequazioni di secondo grado

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Disequazioni di secondo grado"

Transcript

1 Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione nella variabile è un'espressione della forma: p q p q p q p q Risolvere una disequazione significa trovare quell intervallo (o più intervalli) di valori che, attribuiti alle incognite, verificano la disuguaglianza. Osservazioni si può portare una quantità da primo a secondo membro e viceversa, cambiandone il segno si può cambiare il segno dei termini a primo e secondo membro, invertendo il verso della disuguaglianza; se si divide per una quantità positiva primo e secondo membro di una equazione il verso della disequazione rimane invariato; se si divide per una quantità negativa primo e secondo membro di una equazione il verso della disequazione deve essere invertito; se ho una disequazione razionale (cioè contenente l incognita a denominatore), non conviene eliminare il denominatore(se ha segno sempre positivo non cambia nulla, ma se il segno è positivo in alcuni intervalli, negativo in altri, eliminando il denominatore si eliminano anche delle soluzioni della disequazione assegnata, il che è un errore) Per scrivere le soluzioni utilizzeremo il metodo seguente: si traccia una linea orizzontale e su di essa si individuano gli estremi dell intervallo(o degli intervalli)che verifica la disequazione assegnata, tale intervallo viene contrassegnato

2 superiormente con dei segni +,il che sta a significare che l intervallo con i segni + sopra è l intervallo dove la disequazione è verificata; gli intervalli rimanenti, cioè quelli che non verificano la disequazione, vengono contrassegnati con dei segni -; Osservazione k, significa che la disequazione è verificata per i valori maggiori di k, con k compreso, vale a dire i valori più grandi di k, cioè quelli che stanno alla sua destra; k, significa che la disequazione è verificata per i valori minori di k, con k compreso, vale a dire i valori più piccoli di k, cioè quelli che stanno alla sua sinistra; se il valore di un estremo per la soluzione di una disequazione è un valore accettabile, cioè verifica la disequazione, nel grafico in corrispondenza di tale valore faremo un punto, per indicare che tale valore è compreso nelle soluzioni della disequazione; se il valore di un estremo per la soluzione di una disequazione non è un valore accettabile, cioè non verifica la disequazione, nel grafico in corrispondenza di tale valore non faremo un punto, per indicare che tale valore non è compreso nelle soluzioni della disequazione. Esempio i) Supponiamo di dover tracciare le soluzioni della disequazione, allora: ii) Supponiamo di dover tracciare le soluzioni della disequazione, allora

3 iii) Supponiamo di dover tracciare le soluzioni della disequazione 5, allora: iv) Supponiamo di dover tracciare le soluzioni della disequazione, allora: Esempio Paragrafo Disequazioni razionali

4 Definizione: una disequazione si definisce razionale quando l incognita compare a denominatore. Supponiamo di dover risolvere la seguente disequazione: (porto gli eventuali termini da secondo a primo membro) (ora la disequazione è scritta nella forma pronta per la risoluzione)(*) Studio separatamente il segno del numeratore e del denominatore, ponendo il numeratore 0 o >0, a seconda che l uguale sia presente oppure no nel verso della disequazione da risolvere; mentre studio il segno del denominatore ponendolo sempre >0 (osservazione: un denominatore non si può annullare mai), pertanto in questo caso: N 0 D 0 Traccio ora due linee orizzontali (tante quante i termini di numeratore e denominatore), e delle linee verticali, tante quante i valori che sono soluzione delle disequazioni parziali studiate. In questo caso, ho due linee orizzontali(una per il numeratore e una per il denominatore), e due linee verticali(una per il valore, l altra per il valore ): N D

5 Per determinare i segni al di sotto dell ultima linea, si utilizza la regola dei segni, cioè si esegue la moltiplicazione tra tutti i segni che si trovano all interno (verticalmente) di ogni intervallo, il segno risultante lo si scrive al di sotto dell ultima linea orizzontale (in questo caso sotto la linea del denominatore). Per scegliere quali intervalli prendere come soluzioni della disequazione data, devo osservare il verso della disuguaglianza al passaggio precedente lo studio individuale dei termini che compongono il numeratore e il denominatore e procedere come segue: se la disuguaglianza generale della disequazione è 0 oppure 0 devo prendere i segni nella regola dei segni; se la disuguaglianza generale della disequazione è 0 oppure 0 devo prendere i segni + nella regola dei segni. Nell esempio considerato, dunque, il verso della disuguaglianza al passaggio precedente lo studio individuale dei termini che compongono il numeratore e il denominatore è <0 (vedi passaggio (*)), devo prendere allora gli intervalli dove la regola dei segni ha dato come risultato il segno -.. La parabola Definiamo come innanzitutto cosa sia una parabola, requisito che sarà necessario per affrontare lo studio delle disequazioni di secondo grado. Definizione: si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso detto fuoco e da una retta fissa detta direttrice. Una rappresentazione grafica indicativa della parabola nel piano cartesiano è data dalla figura seguente.

6 Da come si può intuire nel grafico dell esempio, ogni parabola presenta un asse di simmetria che divide la parabola in due parti sovrapponibili, detti anche rami. Il legame tra i punti del piano che costituiscono il grafico di una parabola si può scrivere in forma di funzione, cioè di legame tra la variabile indipendente e la variabile dipendente y, pertanto: y a b c rappresenta l equazione di una parabola (con asse parallelo all asse delle y). Il fuoco che concorre a definire la parabola è un punto appartenente alla parte di piano interna al grafico della funzione, le cui coordinate sono date da F b a b ac ; a Per definire la parabola viene utilizzata anche una retta fissa detta direttrice, la cui equazione è data da: b y a ac L asse di simmetria invece è dato dalla relazione: b a Nell equazione della parabola y a b c inoltre, bisogna distinguere tra due casi:

7 ) a 0, allora la concavità della parabola è rivolta verso l alto (cioè il grafico della parabola è simile ad una U) ) a 0 allora la concavità della parabola è rivolta verso l alto (cioè il grafico della parabola è simile ad una U rovesciata)

8 Da quest ultima osservazione, possiamo concludere che esiste un punto particolare, rispetto a tutti gli altri è il più basso (caso a 0 ) o il più alto (caso a 0), tale punto viene detto vertice e ha coordinate: b b V ; a ac a b o equivalentemente V ; a a Richiamiamo l interpretazione analitica della soluzione di un sistema: la soluzione di un sistema di equazioni rappresenta i punti di intersezione nel piano cartesiano delle equazioni che lo compongono. Pertanto se mettiamo a sistema l equazione generica di una parabola e l equazione dell asse delle, otteniamo: y a y 0 b c E ricordando il metodo del confronto, otteniamo a b c 0 Che non è altro che un equazione di secondo grado, pertanto le soluzioni, rappresentano l intersezione della parabola con l asse delle.

9 Si possono verificare quindi tre possibilità: ) 0, allora, cioè vi sono due intersezioni tra il grafico della parabola e l asse delle. oppure ) 0, allora, cioè vi è una intersezione tra il grafico della parabola e l asse delle. oppure ) 0, allora non ci sono soluzioni, cioè non vi sono intersezioni tra il grafico della parabola e l asse delle.. Disequazioni di secondo grado oppure

10 Definizione: una disequazione di secondo grado è una disequazione costituita da polinomi di secondo grado del tipo: a b c 0 a b c 0 a b c 0 a b c 0 Definizione: definiamo equazione associata alla disequazione, l equazione sostituendo al segno di disuguaglianza il simbolo di uguaglianza. che si ottiene Pertanto data l equazione a b c 0, l equazione associata è a b c 0 Per risolvere una disequazione di secondo grado utilizzeremo il cosiddetto metodo della parabola : a) scriveremo l equazione della parabola facendo in modo che il coefficiente abbia segno positivo per avere sempre una parabola con concavità rivolta verso l alto (in pratica basta cambiare segno dei termini ed il verso della disequazione) b) risolveremo l equazione associata; c) tracceremo grafico delle intersezioni della parabola con l asse delle ; d) sceglieremo gli intervalli che soddisfano la disequazione iniziale:, si prendono gli intervalli +, si prendono gli intervalli - Nel punto a) dobbiamo calcolare le soluzioni, dell equazione associata Nel punto b) dobbiamo rappresentare le intersezioni tra parabola e asse delle, come nei casi ), ), ) Nel punto c) dobbiamo scegliere quegli intervalli dell asse che corrispondono alle condizioni in cui la parabola verifica la disuguaglianza iniziale, più precisamente: dove il grafico della parabola si trova sotto l asse delle, significa che per i corrispondenti valori dell ascissa il polinomio di secondo grado contrassegnano gli intervalli corrispondenti con i segni -; a b c assume valori negativi, allora si che significa a b c 0 per a b c 0 per

11 Se i valori, sono compresi, allora si contrassegna la rispettiva intersezione con un punto. Osservazioni Caso particolare La parabola è sempre sopra l asse delle ed è tangente nel punto, allora: i) a b c 0 ii) b c 0 a \ iii) a b c 0 iv) a b c 0 mai verificata Caso particolare La parabola è sempre sopra l asse delle, allora: i) a b c 0 ii) a b c 0 iii) a b c 0 mai verificata iv) a b c 0 mai verificata Con considerazioni analoghe sulla posizione tra parabola e asse, si analizzano le situazioni in cui la parabola abbia concavità rivolta verso il basso e sia tangente o meno la retta delle ascisse.

12 Esempio i) 0 Calcolo e :, Pertanto le soluzioni positive sono date da ii) , Osservazione Pertanto la disequazione assume valori negativi per -.

13 Nel caso a b c 0 si può sintetizzare che le soluzioni sono date dai valori esterni a e, cioè, mentre se a b c 0 si può concludere che le soluzioni sono date dai valori interni a e, cioè. Inoltre posso sempre ricondurmi ad una situazione del tipo a b c 0 eventualmente cambiando i segni e il verso della disuguaglianza.. Disequazioni di grado superiore al secondo Alle disequazioni di secondo grado è possibile applicare i risultati visti per le disequazioni di primo grado quando si devono studiare disequazioni razionali o prodotto di più fattori. Vediamo con degli esempio di generalizzare le regole viste in precedenza. Caso: disequazioni contenenti il prodotto di più fattori Richiamiamo alcuni risultati Definizione (legge di annullamento del prodotto): una moltiplicazione tra più termini è nulla se almeno uno di essi è nullo. Utilizziamo questa legge per studiare particolari disequazioni di grado superiore al secondo, riconducibili allo studio di più disequazioni di primo grado e di secondo grado. Esercizio Risolvere 0 (*) Passo : studio separatamente i segni dei singoli fattori. In questa operazione vale sempre la regola che si deve porre ogni fattore maggiore o maggiore uguale di zero.. 0

14 . 0, soluzioni Passo : applico la regola dei segni ai risultati ottenuti. Richiamiamo la regola dei segni : per determinare i segni al di sotto dell ultima linea, si utilizza la regola dei segni, cioè si esegue la moltiplicazione tra tutti i segni che si trovano all interno (verticalmente) di ogni intervallo, il segno risultante lo si scrive al di sotto dell ultima linea orizzontale (in questo caso sotto la linea del denominatore). Per scegliere quali intervalli prendere come soluzioni della disequazione data, devo osservare il verso della disuguaglianza al passaggio precedente lo studio individuale dei termini che compongono il numeratore e il denominatore e procedere come segue: se la disuguaglianza generale della disequazione è 0 oppure 0 devo prendere i segni nella regola dei segni; se la disuguaglianza generale della disequazione è 0 oppure 0 devo prendere i segni + nella regola dei segni. Devo tracciare pertanto tante linee orizzontali quante sono le condizioni ottenute al passo, ricordando che nel caso di una disequazione di secondo grado le soluzioni ottenute con il metodo della parabola vanno tracciate su un unica linea

15 Il verso generale della disequazione principale (*) è 0, pertanto devo prendere le soluzioni negative:. Osservazione: la disequazione data è stata scomposta nel prodotto di più termini di primo o di secondo grado, posso utilizzare pertanto la legge di annullamento del prodotto, applicandola alle disequazioni aventi come argomenti singoli fattori, cioè studio separatamente il segno di ogni termine (ponendoli tutti 0 o >0, a seconda che l uguale sia compreso o meno nella disuguaglianza generale della disequazione), e poi applico la regola dei segni. Disequazioni razionali Esercizio Studio separatamente il segno del numeratore e del denominatore, ponendo il numeratore sempre maggiore o maggiore uguale a zero, mentre il denominatore va posto maggiore di zero. N 7 0 Soluzioni, D ,

16 Soluzioni Le soluzioni della disequazione si ottengono applicando la regola dei segni alle condizioni ottenute per il numeratore e per il denominatore, pertanto: Allora le soluzioni dell equazione sono:. 7 Il metodo si generalizza, cioè se a numeratore e a denominatore abbiamo una situazione riconducibile a quella del caso, allora per studiare la disequazione razionale: i) pongo il numeratore maggiore o maggiore uguale di zero; ii) iii) iv) pongo ogni fattore del numeratore maggiore o maggiore uguale di zero; pongo il denominatore maggiore di zero; pongo ogni fattore del denominatore maggiore di zero; v) per determinare le soluzioni della disequazione traccio tante linee orizzontali quante sono le vi) condizioni ottenute nei passaggi precedenti(nb:una disequazione di secondo grado vuole che le soluzioni siano tracciate su una singola linea); applico la regola dei segni alle condizioni così ottenute. Esempio 0 N 0. 0

17 , Soluzioni. D 0, Soluzioni. Calcoliamo le soluzioni della disequazione:

18 - N N D Soluzioni. Osservazione: se il numeratore che il denominatore presentano più fattori da studiare,si generalizza il procedimento sopra descritto, cioè si pongono numeratore e denominatore maggiori di zero (o maggiore uguale eventualmente per il numeratore) e poi si studiano i segni dei singoli fattori, le cui soluzioni vanno rappresentate tutte assieme alla fine per applicare la regola dei segni per individuare le soluzioni della disequazione.

Una rappresentazione grafica indicativa della parabola nel piano cartesiano è data dalla figura seguente.

Una rappresentazione grafica indicativa della parabola nel piano cartesiano è data dalla figura seguente. La paraola Definizione: si definisce paraola il luogo geometrico dei punti del piano equidistanti da un punto fisso detto fuoco e da una retta fissa detta direttrice. Una rappresentazione grafica indicativa

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

DISEQUAZIONI. Una disuguaglianza può essere Vera o Falsa. Per esempio:

DISEQUAZIONI. Una disuguaglianza può essere Vera o Falsa. Per esempio: DISEQUAZIONI Prima di vedere cosa sono le disequazioni è necessario dare uno sguardo alle disuguaglianze numeriche. Al contrario delle uguaglianze numeriche, dove tra i numeri è presente il segno di uguaglianza

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Le disequazioni di primo grado. Prof. Walter Pugliese

Le disequazioni di primo grado. Prof. Walter Pugliese Le disequazioni di primo grado Prof. Walter Pugliese Concetto di disequazione Consideriamo la seguente disuguaglianza: 2x 3 < 5 + x Procedendo per tentativi, attribuiamo alla lettera x alcuni valori e

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

asse fuoco vertice direttrice Fig. D3.1 Parabola.

asse fuoco vertice direttrice Fig. D3.1 Parabola. D3. Parabola D3.1 Definizione di parabola come luogo di punti Definizione: una parabola è formata dai punti equidistanti da un punto detto fuoco e da una retta detta direttrice. L equazione della parabola

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Equazioni e disequazioni goniometriche. Guida alla risoluzione di esercizi

Equazioni e disequazioni goniometriche. Guida alla risoluzione di esercizi Equazioni e disequazioni goniometriche Guida alla risoluzione di esercizi Valori noti per seno e eno per angoli particolari α α Funzioni goniometriche espresse tramite una di esse α α tan α ctg α ± α tanα

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria.

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. 1 Disequazioni fratte Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. Prima di affrontare le disequazioni fratte, ricordiamo il procedimento che utilizziamo per

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione

Dettagli

Y = ax 2 + bx + c LA PARABOLA

Y = ax 2 + bx + c LA PARABOLA LA PARABOLA La parabola è una figura curva che, come la retta, è associata ad un polinomio che ne definisce l'equazione. A differenza della retta, però, il polinomio non è di primo grado, ma è di secondo

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica? Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Problemi con discussione grafica

Problemi con discussione grafica Problemi con discussione grafica Un problema con discussione grafica consiste nel determinare le intersezioni tra un fascio di rette (proprio o improprio) e una particolare funzione che viene assegnata

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa): P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano 6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la

Dettagli

Disequazioni in una incognita. La rappresentazione delle soluzioni

Disequazioni in una incognita. La rappresentazione delle soluzioni Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

5. Massimi, minimi e flessi

5. Massimi, minimi e flessi 1 5. Massimi, minimi e flessi Funzioni crescenti e decrescenti A questo punto dovremmo avere imparato come si calcolano le derivate di una funzione razionale fratta, ma dobbiamo capire in che modo queste

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

Elementi sulle diseguaglianze tra numeri relativi

Elementi sulle diseguaglianze tra numeri relativi Elementi sulle diseguaglianze tra numeri relativi Dati due numeri disuguali a e b risulta a>b oppure ao oppure a-b

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometria Analitica Domande, Risposte & Esercizi La parabola. Dare la definizione di parabola come luogo di punti La parabola è un luogo di punti, è cioè un insieme di punti del piano che verificano tutti

Dettagli

GEOMETRIA ANALITICA Prof. Erasmo Modica

GEOMETRIA ANALITICA Prof. Erasmo Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine. LA RETTA La retta è un insieme illimitato di punti che non ha inizio, né fine. Proprietà: Per due punti del piano passa una ed una sola retta. Nel precedente modulo abbiamo visto che ad ogni punto del

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Luigi Lecci\Compito 2D\Lunedì 10 Novembre 2003 1 Oggetto: compito in Classe 2D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 60 minuti Argomenti: Equazioni e disequazioni immediate

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 4 Andrea Susa PROPRIETÀ GENERALI DISEQUAZIONI 1 Proprietà disuguaglianze Siano,,, allora valgono le seguenti proprietà se

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

5. EQUAZIONI e DISEQUAZIONI

5. EQUAZIONI e DISEQUAZIONI 5. EQUAZIONI e DISEQUAZIONI 1. Per ognuna delle affermazioni seguenti, indicare se e vera o falsa, motivando la risposta (a) L equazione di primo grado (1 2)x = 2 ha soluzione x = 2(1+ 2). V F (b) La disequazione

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:

Dettagli

Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso

Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso Premessa. Ci sono problemi, alcuni appartenenti anche alla vita quotidiana, che possono essere risolti attraverso una disequazione, ossia un espressione algebrica formata da due membri, contenenti un incognita,

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

FUNZIONI ALGEBRICHE PARTICOLARI

FUNZIONI ALGEBRICHE PARTICOLARI FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

La parabola. Tutti i diritti sono riservati.

La parabola. Tutti i diritti sono riservati. La parabola Copyright c 8 Pasquale Terrecuso Tutti i diritti sono riservati. La parabola di equazione y = a + b + c Concavità............................................................... Se a varia................................................................

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1)

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1) ttività di recupero conoscenze di ase) araola Oiettivi Saper riconoscere la funzione che esprime la conica. Saper tracciare il grafico di una paraola. Saper determinare gli elementi caratterizzanti una

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

Scheda 1. Concavo e convesso

Scheda 1. Concavo e convesso Scheda 1 Concavo e convesso Scheda 2 Concavità Fig.1 Concavità rivolta verso l alto Concavità rivolta verso il basso Fig.3 Concavità rivolta verso l alto Fig.2 Concavità rivolta verso il basso Fig.4 Scheda

Dettagli

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16 Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o

Dettagli

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( ) l insieme dei valori che la variabile può assumere affinché la funzione f ( ) abbia significato. Vediamo di individuare alcune

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli