Localizzazione di un terremoto

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Localizzazione di un terremoto"

Transcript

1 Localizzazione di un terremoto Epicentro e meccanismo focale del terremoto del 21 giugno 213, magnitudo 5.2 avvenuto in Lunigiana 1 (h>ps://ingvterremoa.wordpress.com/tag/evento- sismico- lunigiana/)

2 Un esempio semplice viene fornito dal metodo dei cerchi che si basa sui daa proveniena da 3 stazioni. Questo metodo fornisce le coordinate epicentrali. 2

3 La differenza dei tempi di arrivo delle onde S e delle onde P è funzione della distanza ipocentrale d i e dipende dalle cara>erisache del mezzo di propagazione. 3

4 Assumiamo un mezzo omogeneo e isotropo. Il tempo di arrivo di un onda P alla stazione i- esima è dato da: ( t ) A P = t + t P t P = d i α in cui t P è il tempo origine dell evento, t P è il tempo di percorso dell onda P dall ipocentro alla stazione, definito da: in cui d i è la distanza ipocentrale e α è la velocità delle onde P Analogamente per le onde S: t A ( ) S = t + t S t S = d i β 4

5 Si avrà: Da cui: ( t A ) S ( t A ) P = t + d i β t d i α " 1 = d ì β 1 % $ ' # α & d i = Δt i $ α β ' & ) % α β ( Misurando le differenze Δt i ad almeno 3 stazioni, è possibile calcolare le distanze ipocentrali d i, assumendo note le velocità α e β. L epicentro si dovrà trovare all intersezione delle 3 circonferenze di raggio d i (i = 1,, 3) 5

6 LimiA: Modello omogeneo 3 sole stazioni sismiche è distribuzione spaziale delle stazioni Profondità dell evento? Tempo origine dell evento? 6

7 Disposizione Areale delle stazioni 7

8 distanza ipocentrale (d i ) o distanza epicentrale (D i )? Il problema della profondità focale (h): h i = d i 2 D i 2 8

9 Localizzazione ipocentrale Il problema consiste nel determinare le coordinate spaziali ed il tempo di accadimento (tempo origine) del terremoto. ( x H, y H, z H,t ) H Questo significa cercare la soluzione a un problema inverso. 9

10 PROBLEMA DIRETTO Fissato un ipocentro, calcolare il tempo di percorso ipocentro - stazione di una fase sismica, per un paracolare modello di velocità PARAMETRI MODELLO DATI SIMULATI PROBLEMA INVERSO Ricavare i parametri ipocentrali dai daa, cosatuia dai tempi di arrivo alle stazioni, sulla base di un modello di velocità DATI. MODELLO PARAMETRI 1

11 Supponiamo che n stazioni sismiche poste alle coordinate x i : x i ( x i, y i, z ) i (i = 1, n) Abbiano registrato il terremoto. DATI tempi di arrivo delle fasi sismiche (P e S) alle stazioni t i oss (i = 1,, n) n = n. di stazioni 11

12 Il tempo di primo arrivo alla stazione i- esima dipende dal tempo origine del terremoto (t H ) e dal tempo di percorso ipocentro- stazione (T i ) : t i oss = t H +T i ( x H, y H, z H, x i, v( x, y, z) ) (1) Il tempo di percorso ipocentro- stazione dipende, oltre che dalle coordinate dell ipocentro e della stazione, dal modello di velocità del mezzo. 12

13 INCOGNITE (parametri) cordinate ipocentrali ( x, y, z,t ) H H H H Per risolvere il problema inverso, di determinare i parametri (coordinate ipocentrali) a parare dai daa (tempi di arrivo alle stazioni), procediamo a>raverso i seguena puna:. scelta del modello iniziale 1. definizione della soluzione di prova (parametri iniziali) 2. ricerca delle perturbazioni ai parametri e linearizzazione del sistema di equazioni 3. imposizione della condizione ai minimi quadraa e calcolo delle perturbazioni ai parametri correzione dei parametri di prova e ritorno al punto 1

14 . MODELLO Consideriamo un esempio di localizzazione ipocentrale, ipoazzando un mezzo di propagazione omogeneo, con velocità di propagazione v. In tal caso il raggio sarà una linea re>a 14

15 In tal caso la (1) diviene: t i = t H + ( x i x H ) 2 + y i y H v ( ) 2 + ( z i z H ) 2 (i = 1,, n) (2) Il sistema di equazioni (2) è un sistema non lineare di n equazioni in 4 incognite. Perché possa essere risolto, deve essere: Nel caso in cui: n 4 n > 4 Il sistema sarà sovradeterminato e viene risolto mediante un metodo staasaco, essendo le equazioni sogge>e ad errori. 15

16 t i = t + ( x i x H ) 2 + y i y H v ( ) 2 + ( z i z H ) 2 (i = 1,, n) (2) Definiamo il ve>ore m contenente le incognite del problema : m ( x H, y H, z H,t ) H (4) 16

17 Per determinare il ve>ore m bisogna: linearizzare il problema migliorare iteraavamente la sama di m 1. Fissiamo una soluzione iniziale di prova: m ( x H, y H, z H,t ) H a>raverso cui è possibile calcolare i tempi di arrivo alle stazioni t calc, sulla base del modello di velocità noto a priori: t i calc = t i = t H + ( x i x ) 2 H + ( y i y ) 2 H + ( z i z ) 2 H v (5) 17

18 A meno di non essere paracolarmente fortunaa, i tempi di arrivo così calcolaa t calc non coincideranno con quelli osservaa t oss : 2. Δd i = t i oss t i calc Si procede quindi alla ricerca di perturbazioni ai parametri che definiscono il modello iniziale, in modo da o>enere daa predeg (t calc ) il più possibile prossimi ai daa osservaa (t oss ): (6) m j +δm j = m j 1 (j = 1,, 4) m j 1 = parametri ipocentrali alla prima iterazione m j = parametri ipocentrali iniziali δm j = perturbazioni Il subscri>o, 1, corrisponde al numero di iterazione nella 18 procedura.

19 Come si calcolano queste perturbazioni ai parametri del modello? Riscriviamo il sistema di equazioni (5) : t i calc = t i = t H + ( x i x ) 2 H + ( y i y ) 2 H + ( z i z ) 2 H v (i = 1, n) (7) Le equazioni dei tempi di arrivo possono essere linearizzate possono essere linearizzate mediante espansione in serie di Taylor al primo ordine della funzione Δd i calcolata per il modello iniziale m. 19

20 Ricorda: La serie di Taylor di una funzione f calcolata in un punto x è espressa dalla somma di una serie di termini: f ( x + h) = f ( x ) + f (1) ( x ) 1! In cui h definisce un intorno del punto x. h + f (2) ( x ) 2! h Nel nostro caso la funzione in quesaone è il tempo di arrivo (t i ) calcolato nel punto (x H, y H,z H, t H ). Si tra>a di una funzione a 4 variabili. Per ciascuna di esse h rappresenta la perturbazione alla 2 coordinata ipocentrale iniziale.

21 L espansione in serie di Taylor al primo ordine delle funzioni t i, consente anche di linearizzare le equazioni. t i ( x H, y H, z H,t ) H = t H + ( x i x ) 2 H + ( y i y ) 2 H + ( z i z ) 2 H v (7) t i t i + 4 j=1 t i m j Δm j (8) La differenza tra tempi osservaa e tempi predeg (5) così diviene: Δd i = t i oss t i calc 4 j=1 t i Δm j m j (9) 21

22 Che forma hanno queste derivate? G i1 = t i x = 1 v G i2 = t i y = 1 v G i3 = t i z = 1 v x i x H ( x i x H ) 2 + ( y i y H ) 2 + ( z i z H ) 2 y i y H ( x i x H ) 2 + ( y i y H ) 2 + ( z i z H ) 2 z i z H ( x i x H ) 2 + ( y i y H ) 2 + ( z i z H ) 2 G i4 = t i t =1 avendo posto: G ij = t i m j (i = 1,, n; j = 1,, 4) (9) 22

23 Pertanto il sistema di equazioni (9) potrà scriversi nella forma: Δd i = t i oss t i calc G i1 Δm 1 + G i2 Δm 2 + G i3 Δm 3 + G i3 Δm 3 che in forma matriciale diviene: Δd = GΔm (1) La (1) è una equazione matriciale che rappresenta un sistema di n equazioni lineari, dove n è il numero di daa: " $ $ $ $ $ $ # Δd 1 Δd 2.. Δd n % " ' $ ' $ ' $ ' = $ ' $ ' $ & # G 11 G 12 G 13 G 14 G 21 G 22 G 23 G G n1 G n2 G n3 G n4 %" ' $ ' $ ' $ ' $ ' $ ' $ &# Δm 1 Δm 2.. Δm n % ' ' ' ' ' ' & (11) 23

24 In generale il numero di daa osservaa (tempi di arrivo alle stazioni) è maggiore del numero dei parametri da samare, pari a 4, il che rende il sistema di equazioni sovradeterminato. 3. Per risolvere il sistema di equazioni: Δd = GΔm (1) o, equivalentemente: Δd i = G i1 Δm 1 + G i2 Δm 2 + G i3 Δm 3 + G i4 Δm 4 (i=1,, n) si cerca la soluzione ai minimi quadraa. 24

25 A tale scopo definiamo la funzione scarto (e): e i = ( G i1 Δm 1 + G i2 Δm 2 + G i3 Δm 3 + G i4 Δm ) 4 Δd i (i=1,, n) (11) Questa funzione rappresenta la differenza tra il Δd osservato e quello calcolato mediante approssimazione di Taylor. Definiamo ancora lo scarto quadraaco: ( ) = e i 2 E = e T e n i=1 (12) 25

26 n E = 2 e i = i=1 n i=1 ( G i1 Δm 1 + G i2 Δm 2 + G i3 Δm 3 + G i4 Δm 4 Δd ) 2 i La condizione ai minimi quadraa è che: n E = e 2 = min i i=1 (13) n i=1 ( G i1 Δm 1 + G i2 Δm 2 + G i3 Δm 3 + G i3 Δm 3 Δd ) 2 i = min (14) 26

27 La condizione è soddisfa>a per: n E = 2 e i = min i=1 (13) E Δm 1 = E Δm 2 = E Δm 3 = E Δm 4 = (14) Abbiamo così o>enuto un sistema di 4 equazioni in qua>ro incognite. Le funzioni contengono gli elemena della matrice G e le differenze Δd i 27

28 Si dimostra che la soluzione del problema inverso lineare ai minimi quadran è data da: Δm = ( G T G) 1 G T Δd (15) 28

29 4. Una volta che il ve>ore Δm (perturbazioni ai parametri iniziali) viene calcolato, possiamo correggere i parametri iniziali: x 1 = x H + Δm 1 y 1 = y H + Δm 2 z 1 = z H + Δm 3 t 1 = t H + Δm 4 I nuovi parametri (x H1, y H1, z H1, t H1 ) vengono usaa per ripetere il processo. Il processo iteraavo viene ripetuto finchè Δd diviene sufficientemente piccolo. 29

30 Ricapitolando il metodo per trovare la soluzione del problema inverso della sama dei parametri ipocentrali: Definizione del modello di velocità Definizione delle equazioni che legano i parametri ai daa: t i oss = t H +T i Linearizzazione delle equazioni ( x H, y H, z H, x i, v( x, y, z) ) (i = 1, n) Soluzione ai minimi quadraa del sistema di n eq. in 4 incognite: Δm = ( G T G) 1 G T Δd Δd = GΔm 3

31 La matrice di risoluzione Viene introdo>a per avere una sama della bontà della soluzione ai minimi quadraa. Il problema inverso è espresso nella forma generale da: La soluzione ai minimi quadraa è data da: Definiamo la matrice: d = Am m est =! " A T A # 1 $ A T d oss!a T 1 " A# $ A T = A a Inversa generalizzata di A. 31

32 In che modo la sama dei parametri m est predice i daa? d pre = daa predeg d obs = daa osservaa d pre = Am est m est =! " A T A # 1 $ A T d oss = AA -a d oss = Nd obs N =! " AA -a # $ matrice di risoluzione Nel caso in cui N = I è d pre = d obs I = matrice idenatà 32

Localizzazione di una esplosione

Localizzazione di una esplosione XXIII Ciclo di Dottorato in Geofisica Università di Bologna Corso di: Il problema inverso in sismologia Prof. Morelli Localizzazione di una esplosione Paola Baccheschi & Pamela Roselli 1 INTRODUZIONE Problema

Dettagli

Raggi sismici nella Terra

Raggi sismici nella Terra Raggi sismici nella Terra Jacopo Barbati luglio 23 Sommario Localizzazione della sorgente di un terremoto La localizzazione della sorgente di un terremoto richiede il calcolo della distanza epicentrale..

Dettagli

Il metodo delle osservazioni indirette

Il metodo delle osservazioni indirette Il metodo delle osservazioni indirette Teoria della stima ai minimi quadrati Il criterio di massima verosimiglianza Sia data una grandezza η e si abbiano n osservazioni indipendenti l i (i=1,...,n) di

Dettagli

Esercizi-equazioni Esercizi equazioni di stato:

Esercizi-equazioni Esercizi equazioni di stato: Esercizi-equazioni Esercizi equazioni di stato: 1. Determinare le equazioni di stato per il seguente sistema termico: Esercizi 2, 1 Hp. Modellistica a) Trascuriamo la temperatura di parete : Si scrive

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

TERREMOTI. PAOLO BALOCCHI v. 2015

TERREMOTI. PAOLO BALOCCHI v. 2015 PAOLO BALOCCHI v. 2015 DEFINIZIONE TERREMOTO è un movimento brusco e repentino provocato da un'improvviso rilascio di energia in un punto profondo della Litosfera; da questo punto si propagano in tutte

Dettagli

Risoluzione del tensore momento: applicazione alla rete sismica Irpinia Seismic Network

Risoluzione del tensore momento: applicazione alla rete sismica Irpinia Seismic Network Risoluzione del tensore momento: applicazione alla rete sismica Irpinia Seismic Network M. Michele (1), A. Emolo (2), S. Custodio (3) (1) Università degli Studi di Bari «Aldo Moro» (2) Università degli

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo a Proprietà Letteraria Riservata

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale

Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale 1 Moto vario nelle correnti a superficie libera Nozione elementare di onda In termini generali un'onda consiste nella propagazione di un segnale attraverso un mezzo (nella fattispecie un liquido) con una

Dettagli

RETI TOPOGRAFICHE. 1. Premessa

RETI TOPOGRAFICHE. 1. Premessa RETI TOPOGRAFICHE 1. Premessa Una rete topografica è costituita da un insieme di punti, detti vertici della rete, connessi fra di loro da un insieme di misure di distanze e di angoli azimutali e zenitali;

Dettagli

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D)

ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI. (Visione 3D) ESTRAZIONE DI DATI 3D DA IMMAGINI DIGITALI () Calibrazione intrinseca Spesso risulta utile calibrare la sola componente intrinseca di un sistema di visione (matrice K), e non si dispone di oggetti di forma

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

Sismica a Rifrazione: fondamenti. Sismica rifrazione - Michele Pipan

Sismica a Rifrazione: fondamenti. Sismica rifrazione - Michele Pipan Sismica a Rifrazione: fondamenti 1 Sismica a Rifrazione: fondamenti Onde P ed S (2) Velocita delle Onde P: Velocita delle Onde S : Definiamo poi il rapporto di Poisson σ come 2 λ Sismica a Rifrazione:

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Progetto di Geometria Computazionale: simulazione del movimento ondoso di un fluido utilizzando Kass e Miller

Progetto di Geometria Computazionale: simulazione del movimento ondoso di un fluido utilizzando Kass e Miller Progetto di Geometria Computazionale: simulazione del movimento ondoso di un fluido utilizzando Kass e Miller Stefano Ceroni, Sara Toia Luglio 2011 1 Introduzione Il metodo di Kass e Miller [1] per la

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

0.6 Moto rotazionale intorno ad un asse fisso

0.6 Moto rotazionale intorno ad un asse fisso 0.6.0. Moto rotazionale intorno ad un asse fisso 25 0.6 Moto rotazionale intorno ad un asse fisso Premessa Questa esperienza riguarda lo studio del comportamento di un corpo (volano) libero di ruotare

Dettagli

Che cos è un terremoto?

Che cos è un terremoto? TERREMOTI Che cos è un terremoto? Un terremoto, o sisma, è un'improvvisa vibrazione del terreno prodotta da una brusca liberazione di energia da masse rocciose situate in profondità (tra 10 e 700 Km);

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica:

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica: . SU ALCUNI OPERAORI DI DERIVAZIONE Alcune operazioni tipiche dell analisi matematica hanno un diretto riscontro in termini matriciali. Consideriamo ad esempio una forma lineare: f() l l + l +..l n n ;

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Risoluzioni di alcuni esercizi

Risoluzioni di alcuni esercizi Risoluzioni di alcuni esercizi Reti topografiche, trasformazioni di coordinate piane In una poligonale piana il punto è nell origine delle coordinate, l angolo (in verso orario fra il semiasse positivo

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Esercizi 2, 1. continuo. Modelli in equazioni di stato Linearizzazione. Prof. Thomas Parisini. Fondamenti di Automatica

Esercizi 2, 1. continuo. Modelli in equazioni di stato Linearizzazione. Prof. Thomas Parisini. Fondamenti di Automatica Esercizi 2, 1 Esercizi sistemi dinamici a tempo continuo Modelli in equazioni di stato Linearizzazione Equazioni di stato: Esercizi 2, 2 1. Determinare le equazioni di stato per il seguente sistema termico:

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Terremoto Abruzzo 06 aprile 2009 ore 03:32

Terremoto Abruzzo 06 aprile 2009 ore 03:32 Terremoto Abruzzo 06 aprile 2009 ore 03:32 Paolo Federici, Bergamo 29/04/2009 Premessa Terremoto Abruzzo 06 aprile 2009 ore 03:32 Localizzazione e sequenza sismica Meccanismo Spostamenti superficiali Accelerazione

Dettagli

REPORT SULLA SEQUENZA SISMICA CON EPICENTRO NEL COMUNE DI CASTELFIORENTINO (AGGIORNAMENTO: Ore del 25/10/2016)

REPORT SULLA SEQUENZA SISMICA CON EPICENTRO NEL COMUNE DI CASTELFIORENTINO (AGGIORNAMENTO: Ore del 25/10/2016) REPORT SULLA SEQUENZA SISMICA CON EPICENTRO NEL COMUNE DI CASTELFIORENTINO (AGGIORNAMENTO: Ore 21.00 del 25/10/2016) Alle ore 18.53 del 25/10/2016 è stato registrato un evento sismico di ML (Magnitudo

Dettagli

1 S/f. M = A t = A + CT = 1 S f

1 S/f. M = A t = A + CT = 1 S f Ot Una lente sottile con focale f 50 mm è utilizzata per proiettare su di uno schermo l immagine di un oggetto posto a 5 m. SI determini la posizione T dello schermo e l ingrandimento che si ottiene La

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Topografia e cartografia digitale

Topografia e cartografia digitale Prof. Fausto Sacerdote Topografia e cartografia digitale Capitolo 4. Reti topografiche dispense del corso Modulo Professionalizzante Corso per Tecnico in Cartografia Tematica per i Sistemi Informativi

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Teorema di Thevenin generalizzato

Teorema di Thevenin generalizzato Teorema di Thevenin generalizzato Si considerino due reti elettriche lineari, A e B, aventi rispettivamente N A e N B nodi interni. Esse si interfacciano attraverso n (n 3) fili di collegamento, in cui

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Equazioni differenziali lineari a coefficienti costanti

Equazioni differenziali lineari a coefficienti costanti Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.

Dettagli

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3 Esercizio 1 Esercitazioni del 11 marzo 213 Ricerca della parametrizzazione di una curva γ in R 3 Fornire una parametrizzazione per l arco di curva γ appartenente alla superficie di equazione z = 2y 2 x

Dettagli

Capitolo 10. La media pesata Calcolo della media pesata

Capitolo 10. La media pesata Calcolo della media pesata Capitolo 0 La media pesata Supponiamo che una stessa grandezza sia stata misurata da osservatori differenti (es. velocità della luce) in laboratori con strumenti e metodi di misura differenti: Laboratorio

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni Algebriche Le equazioni algebriche sono equazioni del tipo P(x) = 0 dove P è un polinomio di grado n cioé P(x) = a 1 x n + a 2 x n

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b, Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine

Dettagli

Teoria del disco attuatore

Teoria del disco attuatore Prima di affrontare l argomento nel particolare e nacessario fare un po di teoria. Teoria del disco attuatore L elica iinvestita dal vento puo essere assimilata come un disco che separa il flusso in moto.

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

8 Metodi iterativi per la risoluzione di sistemi lineari

8 Metodi iterativi per la risoluzione di sistemi lineari 8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

y 5z = 7 y +8z = 10 +3z = 3

y 5z = 7 y +8z = 10 +3z = 3 Sistemi lineari Sistemi lineari in tre incognite; esempi tipici Tre equazioni incognite x, y, z Consideriamo il seguente sistema di tre equazioni lineari nelle tre x 2y +6z = 11 x +3y 11z = 18 2x 5y +20z

Dettagli

Meccanismi focali della sismicità recente ai Campi Flegrei

Meccanismi focali della sismicità recente ai Campi Flegrei Meccanismi focali della sismicità recente ai Campi Flegrei Mario La Rocca(1), Danilo Galluzzo(2) 1) Università della Calabria, Cosenza; 2) Istituto Nazionale di Geofisica e Vulcanologia Osservatorio Vesuviano,

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

PROPAGAZIONE DELLE ONDE SISMICHE

PROPAGAZIONE DELLE ONDE SISMICHE PROPAGAZIONE DELLE ONDE SISMICHE faglia epicentro ipocentro o fuoco Ipocentro: punto in cui ha origine la scossa sismica o rilascio di energia Epicentro: intersezione della verticale all ipocentro con

Dettagli

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE

UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE ESAME DI MECCANICA solo PRIMA PARTE Versione A Corso di Laurea in Ingegneria Biomedica 28 Gennaio 2015 Esercizio 1 Del meccanismo in figura,

Dettagli

MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO

MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO Scopo dell esperienza è lo studio della propagazione delle onde sonore all interno di un tubo, aperto o chiuso, contenete aria o altri gas. Si verificherà

Dettagli

Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato.

Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato. Propagazione delle piene: generalità Consideriamo come piena solo l innalzamento del livello causato da un aumento delle portate nel corso d acqua considerato. La propagazione dell onda di piena dipende

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x.

Esercizi 3. cos x ln(sin x), ln(e x 1 x ), ln( x 2 1), x sin x + x cos x + x, x 3 2x + 1. x 2 x + 2, x cos ex, x 2 e x. I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8 Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria

Dettagli

La circonferenza. Tutti i diritti sono riservati.

La circonferenza. Tutti i diritti sono riservati. La circonferenza Copyright c 008 Pasquale Terrecuso Tutti i diritti sono riservati. L equazione della circonferenza La circonferenza come luogo geometrico....................................... Questioni

Dettagli

Alcune primitive. Francesco Leonetti (1) 5 giugno 2009

Alcune primitive. Francesco Leonetti (1) 5 giugno 2009 Alcune primitive Francesco Leonetti ) 5 giugno 009 Introduzione La risoluzione di alcune equazioni differenziali ci ha mostrato come sia importante la capacità di trovare le primitive di funzioni assegnate.

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Alma Mater Studiorum Università degli Studi di Bologna

Alma Mater Studiorum Università degli Studi di Bologna Alma Mater Studiorum Università degli Studi di Bologna Facoltà di Scienze Matematiche Fisiche e Naturali Dipartimento di Fisica Dottorato di Ricerca in Geofisica XIX ciclo Sviluppo di metodologie di localizzazione

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Markov Chains and Markov Chain Monte Carlo (MCMC)

Markov Chains and Markov Chain Monte Carlo (MCMC) Markov Chains and Markov Chain Monte Carlo (MCMC) Alberto Garfagnini Università degli studi di Padova December 11, 2013 Catene di Markov Discrete dato un valore x t del sistema ad un istante di tempo fissato,

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Integrazione delle equazioni del moto

Integrazione delle equazioni del moto Giorgio Pastore - note per il corso di Laboratorio di Calcolo Integrazione delle equazioni del moto In generale, le equazioni del moto della meccanica newtoniana si presentano nella forma di sistemi di

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli