Geometria analitica: curve e superfici

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria analitica: curve e superfici"

Transcript

1 Geometria analitica: curve e superfici Sfere Coordinate sferiche e sfere in forma parametrica Sfere, rette e piani Circonferenze nello spazio Circonferenze in forma parametrica Politecnico di Torino 1

2 Sfere come luoghi geometrici Ricordiamo che, dati un punto P 0 nello spazio e un numero reale R > 0, la sfera S (P 0, R ) di centro P 0 e raggio R è il luogo dei punti la cui distanza da P 0 è R Politecnico di Torino 2

3 Equazione della sfera (1/3) Fissato un sistema di riferimento, se 3 P 0 = (x 0, y 0, z 0 ) e R > 0, abbiamo l equazione di S (P 0, R ) riferita a centro e raggio: ( ) ( ) ( ) ( ) 2 0, : = S P R x x y y z z R 5 Equazione della sfera (2/3) La sfera di centro O = (0, 0, 0) e raggio 1 ha equazione x 2 + y 2 + z 2 = 1 (sfera unitaria). La sfera di centro (-1, 2, 3) e raggio 3 ha equazione (x + 1) 2 + (y 2) 2 + (z 3) 2 = Politecnico di Torino 3

4 Equazione della sfera (3/3) Sviluppando i quadrati nell equazione della sfera e ponendo a = -2x 0, b = -2y 0, c = -2z 0, 2 d = x + y + z R otteniamo ( ) S P0, R : x + y + z + ax + by + cz + d = 0. Nell esempio precedente abbiamo (( ) ) S 1,2,3,3 : x + y + z + 2x 4y 6z + 5= 0. 7 Sfere come luoghi di zeri (1/4) ( ) Viceversa consideriamo l insieme E = Z f definito da un equazione del tipo ( ) f x, y = λx + λy + λz + ax + by + cz + d = 0. con λ 0. A meno di dividere per λ possiamo assumere che λ = Politecnico di Torino 4

5 Sfere come luoghi di zeri (2/4) Per completamento dei quadrati abbiamo a a x + ax = x b b y + by = y c c z + cz = z Sfere come luoghi di zeri (3/4) Posto x 0 = a, y 0 = b, z0 = c a + b + c h = d 4 e ( ) ( ) ( ) E : x x + y y + z z h = Politecnico di Torino 5

6 Sfere come luoghi di zeri (4/4) Abbiamo tre casi: Se a 2 + b 2 + c 2 > 4d, allora h > 0 e, posto R = h, E è la sfera di centro P 0 = (x 0, y 0, z 0 ) e raggio R ; Se a 2 + b 2 + c 2 = 4d, allora h = 0 e E è il punto P 0 = (x 0, y 0, z 0 ); Se a 2 + b 2 + c 2 < 4d, allora h < 0 e E =. 11 Esempio Consideriamo la famiglia di insiemi E k definita da E : x + y + z + 2x 4y 6z + k = 0. k Poiché ( ) ( ) ( ) E : x y 2 + z 3 + k 14 = 0. k E k è una sfera di centro (-1, 2, 3) e raggio 14 k se k < 14, coincide col punto (-1, 2, 3) se k = 14 ed è vuoto se k > Politecnico di Torino 6

7 Coordinate sferiche 3 In consideriamo il seguente cambiamento di coordinate x = ρsenϕcosθ y = ρsenϕsenθ z = ρcosϕ con ρ > 0, 0 ϕ π e 0 θ 2 π. La sfera S (O, R ) : x 2 + y 2 + z 2 = R 2 in coordinate sferiche ha equazione ρ = R Politecnico di Torino 7

8 Parametrizzazione della sfera (1/3) La sfera S (P 0, R ) : (x - x 0 ) 2 + (y - y 0 ) 2 + (z - z 0 ) 2 = R 2 di centro P 0 = (x 0, y 0, z 0 ) è l immagine di S (O, R ) tramite la traslazione ( ) t P X = X + P Parametrizzazione della sfera (2/3) Abbiamo la parametrizzazione di S (P 0, R) x = Rsenϕcosθ + x 0 P ( ϕθ, ) = y = Rsenϕsen θ+ y 0, z = R cosϕ + z0 0 ϕ π, 0 θ 2 π. Le coordinate ϕ e θ si dicono rispettivamente latitudine e longitudine Politecnico di Torino 8

9 Parametrizzazione della sfera (3/3) 17 Esempio (1/2) Se P 0 = (2, -5, 1) abbiamo la parametrizzazione di S (P 0, 3) x = 3senϕ cosθ + 2 P ( ϕθ, ) = y = 3senϕsenθ 5 z = 3cosϕ ϕ π, 0 θ 2 π Politecnico di Torino 9

10 Esempio (2/2) P Se S : x 2 + y 2 + z 2 = 1, le seguenti sono parametrizzazioni della semisfera S + = S {z 0}: x = senϕ cosθ, π ϕ θ = y = senϕsen θ, 0 ϕ, 0 θ 2 π, 2 z = cosϕ 1 ( ) x = t 2 2 P2 ( t, u) = y = u, t + u 1. = 2 2 z 1 t u Politecnico di Torino 10

11 Intersezione tra sfere e piani (1/4) Se S è la sfera di centro P 0 e raggio R e Π è un piano, esiste un sistema di riferimento Oxyz tale che Π : z = 0 e P 0 = (0, 0, z 0 ) con z 0 0. Poiché i cambiamenti di riferimento sono isometrie, abbiamo z 0 = d (P 0, Π). 21 Intersezione tra sfere e piani (2/4) In tale sistema di riferimento S ha equazione ( ) = S : x y z z R. Quindi S Π è l insieme delle soluzioni del sistema x + y = R z z = Politecnico di Torino 11

12 Intersezione tra sfere e piani (3/4) Abbiamo tre casi: Se z 0 > R, S Π = ; Se z 0 = R, S Π = {(0, 0, R )} è un punto; Se z 0 < R, S Π = C è la circonferenza contenuta nel piano z = 0 di centro O e raggio R 2 z Intersezione tra sfere e piani (4/4) Dati una sfera S = S (P 0, R ), un piano Π e posto d = d (P 0, Π) si ha: Se d > R, Π èesterno a S ; Se d = R, allora S Πè un punto P e Π è tangente a S in P ; Se d < R, allora S Πèla circonferenza C di centro p Π (P 0 ) (proiezione di P 0 su Π) e raggio 2 2 R d in Π Politecnico di Torino 12

13 Piano tangente Se S = S (P 0, R ) è una sfera e P S, il piano tangente tg p (S ) a S in P è il piano passante per P con direzione ortogonale a P P 0. Infatti in questo caso d (P, Π) = d (P, P 0 ) = R, quindi P = p Π (P 0 ) e d (Q, P 0 ) > R se Q Πe Q P. Dunque S Π = {P }. 25 Esempio Se S : x 2 + y 2 + z 2 2x + 4y 6z + 3 = 0, S ha centro P 0 = (1, -2, 3) e P = (2, -1, 0) S. Poiché P P 0 = (1, 1, -3), ( ) : + 3 1= 0. tg S x y z P Politecnico di Torino 13

14 Intersezione di sfere (1/4) Se S 1 : x 2 + y 2 + z 2 + a 1 x + b 1 y + c 1 z + d 1 = 0 e S 2 : x 2 + y 2 + z 2 + a 2 x + b 2 y + c 2 z + d 2 = 0 sono sfere, S : x + y + z + a x + b y + c z + d = S x + y + z + a2x + b2y + c 2z + d2 = Intersezione di sfere (2/4) Sottraendo la prima equazione alla seconda abbiamo il sistema equivalente x + y + z + a1x + b1y + c1z + d1 = 0 ( a2 a1) x + ( b2 b1) y + ( c 2 c1) z + d2 d1 = 0 Il piano a a x + b b y + c c z + d d = ( ) ( ) ( ) si dice piano radicale di S 1 e S Politecnico di Torino 14

15 Intersezione di sfere (3/4) Siano S 1 = S (P 1, R 1 ), S 2 = S (P 2, R 2 ) e d = d (P 1, P 2 ) con R 1 R 2. Se d > R 1 + R 2 o d < R 1 R 2, S 1 e S 2 sono disgiunte; Se d = R 1 + R 2 o d = R 1 R 2, S 1 e S 2 sono tangenti esternamente o internamente; Se R 1 R 2 < d < R 1 + R 2, S 1 S 2 è una circonferenza. 29 Intersezione di sfere (4/4) Politecnico di Torino 15

16 Esempio (1/2) S 1 : x 2 + y 2 + z 2 2x + 4y 6z 2 = 0 e S 2 : x 2 + y 2 + z 2 2x + 2y 4z 3 = 0, sono le sfere di centri P 1 = (1, -2, 3), P 2 = (1, -1, 2) e raggi R 1 = 4 e R 2 = 3 rispettivamente. Quindi R 1 R 2 = 1 < d (P 1, P 2 ) = 2 < R 1 + R 2 = 7 e S 1 S 2 è una circonferenza C. 31 Esempio (2/2) Il piano radicale di S 1 e S 2 è Π: 2y 2z + 1 = 0, da cui x + y + z x + y z = C : 2 y 2 z + 1 = 0 Osserviamo che si può studiare S 1 S 2 tramite questa rappresentazione Politecnico di Torino 16

17 Intersezione tra sfere e rette (1/2) Se S = S (P 0, R ) è una sfera e r è una retta, possiamo ragionare come nel caso dei piani. Se d (P 0, r ) > R allora S r = e r è esterna a S ; Se d (P 0, r ) = R allora S r è un punto P e r è tangente a S in P ; Se d (P 0, r ) < R allora S r sono due punti e r èsecante S. 33 Intersezione tra sfere e rette (2/2) Osserviamo che una retta r passante per P è tangente a S se e solo se r tg P (S ). Per determinare i punti di intersezione quando esistono, conviene parametrizzare la retta e sostituire nell equazione di S Politecnico di Torino 17

18 Esempio Siano S : x 2 + y 2 + z 2 + 2x 2z 1 = 0 e x = t 1 r : y = t z = t + 1 Sostituendo otteniamo 3t 2 3 = 0, da cui t = ± 1 e S r = {(0, 1, 2), (-2, -1, 0)} Politecnico di Torino 18

19 Circonferenze in forma cartesiana (1/4) Sia S : x 2 + y 2 + z 2 + ax + by + cz + d = 0 la sfera di raggio R e centro P 0. Sia Π : αx + βy + γz + δ = 0 un piano tale che d 0 = d (P 0, Π) < R. Quindi S Π è la circonferenza C di centro 2 2 Q 0 = p Π (P 0 ) e raggio r = R d in Π Circonferenze in forma cartesiana (2/4) Il sistema x + y + z + ax + by + cz + d = αx + βy + γz + δ = 0 rappresenta la circonferenza C in forma cartesiana Politecnico di Torino 19

20 Circonferenze in forma cartesiana (3/4) 39 Circonferenze in forma cartesiana (4/4) Viceversa, assegnati Π : αx + βy + γz + δ = 0, Q 0 = (x 0, y 0, z 0 ) Πe r > 0, la circonferenza C di centro Q 0, raggio r in Π si può rappresentare in forma cartesiana con il sistema ( x x ) + ( y y ) + ( z z ) = r αx + βy + γz + δ = Politecnico di Torino 20

21 Cerchi massimi Se S è la sfera di centro P 0 e raggio R e se Π è un piano tale che P 0 Π, la circonferenza C = S Π si dice cerchio massimo di S in Π. È immediato che C ha centro P 0 e raggio R. 41 Esempio (1/3) S : x 2 + y 2 + z 2 + 2x 2y 2 = 0 èla sfera di centro P 0 = (-1, 1, 0) e raggio R = 2. Se Π : 2x 2y + z + 1 = 0, allora d 0 = d (P 0, Π) = 1 < R e C = S Πè una circonferenza in Π di equazioni = 0 : x y z x y C 2 x 2 y + z + 1 = Politecnico di Torino 21

22 Esempio (2/3) Il raggio di C è 2 2 r = R d0 = 1. Se s : t (2, -2, 1) + (-1, 1, 0) è la retta ortogonale a Π per P 0, il centro di C è Q = s =,, Esempio (3/3) Viceversa, la circonferenza C di centro Q 0 =,, e raggio r = in Π : 2x 2y + z + 1 = 0 si può rappresentare come cerchio massimo in Π della sfera con stessi centro e raggio: : x + + y + z = C x 2y + z + 1= Politecnico di Torino 22

23 Circonferenza per tre punti Se P 0, P 1, P 2 sono punti non allineati, esiste una sola circonferenza C passante per tali punti. Per i = 1, 2 siano: Π il piano per P 0, P 1, P 2 ; M i il punto medio tra P 0 e P i ; Π i il piano per M i con direzione ortogonale P i P 0. Allora C è la circonferenza di centro Q 0 = Π Π 1 Π 2 e raggio R = d (P 0, Q 0 ) in Π. 45 Esempio (1/2) Se P 0 = (1, 1, -2), P 1 = (1, -1, 0), P 2 = (-1, 3, -2), allora Π : x + y + z = 0; P 1 P 0 = (0, -2, 2) e P 2 P 0 = (-2, 2, 0); M 1 = (1, 0, -1) e M 2 = (0, 2, -2). Quindi Π 1 : y z 1 = 0 e Π 2 : x y + 2 = Politecnico di Torino 23

24 Esempio (2/2) Si verifica che Q 0 = Π Π 1 Π 2 = (-1, 1, 0) e R = 2 2. Quindi x y 2 + z 2 = ( ) ( ) C : x + y + z = Retta tangente a una circonferenza Se C = S Πè una circonferenza e se P C, allora la retta tg P (C ) tangente a C in P è l intersezione del piano Π con il piano tangente tg P (S ) alla sfera S in P Politecnico di Torino 24

25 Esempio Se x + y + z z = C : x + y + z = P C e tg P (S ) : x y z 2 = 0, quindi e P = ( 1, 1,0 ), tg P ( C ) 2 0 : x y z = x + y + z = Politecnico di Torino 25

26 Circonferenze in forma parametrica (1/5) 3 Sia C una circonferenza di centro O e raggio R nel piano Π. Poiché O Π, abbiamo Π : ax + by + cz = 0, quindi Π è un sottospazio 3 vettoriale di di dimensione 2. Allora esiste una base ortonormale di Π, cioè una base {X 1, X 2 } tale che X = X = e X X = Circonferenze in forma parametrica (2/5) Se X Π, esistono unici c 1, c 2 X = c 1 X 1 + c 2 X 2. Abbiamo tali che 2 ( ) ( ) X = c X + c X c X + c X = = c X c X c c X X c c Politecnico di Torino 26

27 Circonferenze in forma parametrica (3/5) Si ha che X C se e solo se X Πe X quindi se e solo se 2 = = X c c R Pertanto X C se e solo se X = R cosθ X + Rsen θ X = R 2, ) per θ 0 2 π. 53 Circonferenze in forma parametrica (4/5) In generale, se C è la circonferenza nel piano Π di centro P 0 e raggio R, siano Π 0 il piano parallelo a Π e raggio R e passante per O ; C 0 la circonferenza di centro O e raggio R in Π 0 ; {X 1, X 2 } una base ortonormale di Π Politecnico di Torino 27

28 Circonferenze in forma parametrica (5/5) Se P ( ) ( ) = t X = X + P 0 0 P0 0. t C C è la traslazione di P 0, vale Quindi abbiamo la parametrizzazione di C ( ) = P θ R cosθx Rsen θx P, θ 0, 2 π. 55 Esempio (1/2) Sia C la circonferenza di centro P 0 = (1, -1, 1) e raggio R = 3 in Π : x + y + z -1 = 0. Una base ortonormale di Π 0 : x + y + z = 0 è X 1 1 = ( 1, 1,0 ), X = ( 1,1, 2 ) Politecnico di Torino 28

29 Esempio (2/2) Abbiamo la parametrizzazione 3 3 x = cosθ + senθ C : P ( θ) = y = cosθ + senθ z = 6senθ Politecnico di Torino 29

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici Quadriche Quadriche in forma canonica Quadriche in generale Coni e cilindri Curve nello spazio Coniche nello spazio Coni e cilindri in forma canonica e parametrica

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi).

Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi). La geometria analitica nello spazio: punti, vettori, rette e piani esercizi 1 prof D Benetti Risolvere i seguenti esercizi (le soluzioni sono alla fine di tutti gli esercizi) Esercizio 1 Determina due

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

La circonferenza. Tutti i diritti sono riservati.

La circonferenza. Tutti i diritti sono riservati. La circonferenza Copyright c 008 Pasquale Terrecuso Tutti i diritti sono riservati. L equazione della circonferenza La circonferenza come luogo geometrico....................................... Questioni

Dettagli

Parte 11. Geometria dello spazio II

Parte 11. Geometria dello spazio II Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

1 Rette e piani in R 3

1 Rette e piani in R 3 POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

REGISTRO DELLE ESERCITAZIONI

REGISTRO DELLE ESERCITAZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE ESERCITAZIONI del Corso UFFICIALE di GEOMETRIA A tenute dal prof. Domenico AREZZO nell anno accademico

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler)

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler) Geometria analitica I supplementi sulle rette (M.S. Bernabei & H. Thaler) Siano dati un vettore v = li + mj = (l, m) non nullo e un punto P 0 = x 0, y 0. Cerchiamo la retta r che passa per il punto P 0

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

COORDINATE. DOWNLOAD Il pdf di questa lezione (0227a.pdf) è scaricabile dal sito calvini/scamb/ 27/02/2012

COORDINATE. DOWNLOAD Il pdf di questa lezione (0227a.pdf) è scaricabile dal sito  calvini/scamb/ 27/02/2012 COORDINATE DOWNLOAD Il pdf di questa lezione (0227a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 27/02/2012 LIBRO DI TESTO CONSIGLIATO D. Halliday, R. Resnick, J. Walker FONDAMENTI

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

Capitolo II: Geometria analitica nello spazio

Capitolo II: Geometria analitica nello spazio Liceo Lugano, 0-0 N (Luca Rovelli) Capitolo II: Geometria analitica nello spazio. Convenzioni e idee fondamentali Grazie all introduzione degli assi cartesiani Ox, Oy e Oz, lo spazio tridimensionale viene

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in R n. Piani nello spazio. 19 Dicembre 2016 Indice 1 Prodotto scalare nello spazio 2

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

La circonferenza e la sua equazione

La circonferenza e la sua equazione La circonferenza e la sua equazione 1. I termini Ricordiamo che la circonferenza è una linea chiusa del piano costituita da tutti e soli i punti che hanno una data distanza da un punto fissato. In altri

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002 Compito di Geometria assegnato il 1 Febbraio 2002 Trovare l equazione della conica irriducibile tangente all asse x nel punto A(2, 0), tangente all asse y e passante per i punti B(1, 1) e C(2, 2) Scrivere

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

Corso di Algebra lineare - a.a Prova scritta del Compito A

Corso di Algebra lineare - a.a Prova scritta del Compito A Prova scritta del 23.02.2009 Compito A Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P 1, P 2 e Q i punti di coordinate rispettivamente

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza Liceo Scientifico Michelangelo - Forte dei Marmi Esercizi sulla circonferenza svolti - Classe Terza Esercizio 0. Stabilire se le equazioni x + y x + 3y + e x + y x + 6y 3 rappresentano una circonferenza

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che

LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Si ottiene tagliando un cono con un piano perpendicolare al suo asse. La distanza fra ognuno

Dettagli

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani

Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani Esercizi di geometria analitica negli spazi affini Giorgio Ottaviani Percorse a cavallo duemila chilometri di steppa russa, superó gli Urali, entró in Siberia, viaggió per quaranta giorni fino a raggiungere

Dettagli

Anno 3 Rette e circonferenze

Anno 3 Rette e circonferenze Anno 3 Rette e circonferenze 1 Introduzione In questa lezione esamineremo le reciproche posizioni che possono sussistere tra retta e circonferenza o tra due circonferenze. Al termine della lezione sarai

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio

Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Esercizi di Geometria Affine ed Euclidea del Piano e dello Spazio Sansonetto Nicola 15 aprile 2016 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A 2 (R) dotato del riferimento canonico,

Dettagli

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente

Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente 1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della

Dettagli

1 Preliminari sugli angoli

1 Preliminari sugli angoli 26 Trapani Dispensa di Geometria, 1 Preliminari sugli angoli (Questa seione e inserita per completea ma non e parte del programma del corso) Consideriamo in R 2 la circonferena S 1 di centro (, ) e raggio

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento)

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento) CORSO D LAUREA in ngegneria nformatica (Vecchio Ordinamento) Prova scritta di Geometria assegnata il 19/3/2002 Sia f : R 3 R 4 l applicazione lineare la cui matrice associata rispetto alle basi canoniche

Dettagli

CURVE 2D-3D. x ² + y ² - 1 = 0 è l equazione di una circonferenza di centro O e raggio 1

CURVE 2D-3D. x ² + y ² - 1 = 0 è l equazione di una circonferenza di centro O e raggio 1 CURVE 2D-3D Curve in R² 01 Definizioni. Consideriamo il piano euclideo R² dotato di un sistema di assi cartesiani ortogonali Oxy. Esso sarà chiamato d ora in poi più semplicemente piano cartesiano. L equazione

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non Primo esonero di GEOMETRIA 3 - C. L. Matematica 22 Novembre 2013 1. Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non singolare ( ) α 2. 1 0 (a) Si determini, al variare del

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

2x 2 + 4x 2y + 1 = 2(x 2 + 2x + 1 1) 2y + 1 = 2(x + 1) 2 2(y ) = 0.

2x 2 + 4x 2y + 1 = 2(x 2 + 2x + 1 1) 2y + 1 = 2(x + 1) 2 2(y ) = 0. CONICHE E QUADRICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ : x + y + y + 0 = 0; γ

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Prodotto scalare. Piani e rette nello spazio. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani e rette nello spazio. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in n. Piani e rette nello spazio. 17 Gennaio 2016 Indice 1 Prodotto scalare nello spazio

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Quadriche Esercizi 1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. (a) x + y + z + xy xz yz 6x 4y + z

Dettagli