Piano cartesiano. O asse delle ascisse

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Piano cartesiano. O asse delle ascisse"

Transcript

1 Piano cartesiano E costituito da due rette orientate e perpendicolari tra di loro chiamate assi di riferimento. Il loro punto di intersezione O si chiama origine del riferimento. L asse orizzontale è detto asse delle ascisse e quello verticale asse delle ordinate. asse delle ordinate O asse delle ascisse Si fissa una unità di misura; non è detto che sia la stessa per entrambi gli assi quindi, per esempio, sull asse delle ascisse l unità di lunghezza può essere rappresentata da un quadratino e sull asse delle ordinate da due quadratini. In fisica, a ciascun asse si dà un nome che indichi la grandezza rappresentata dall asse e, tra parentesi, la corrispondente unità di misura. Per esempio, l asse delle ascisse potrebbe rappresentare il tempo e la corrispondente unità di misura potrebbe essere il secondo, e quindi sull asse si dovrebbe scrivere t(s). Ogni punto del piano è rappresentato da una coppia ordinata di numeri reali i quali vengono detti coordinate del punto, e vengono indicate tra parentesi tonde. Le lunghezze delle distanze del punto dagli assi determinano i valori assoluti delle coordinate. il primo elemento della coppia è detto ascissa del punto e corrisponde, in modulo, alla distanza del punto dall asse delle ordinate. Se la proiezione del punto: è nulla: l ascissa è nulla; si trova sul semiasse negativo dell asse delle ordinate: l ascissa è negativa; si trova sul semiasse positivo dell asse delle ordinate: l ascissa è positiva; il primo elemento della coppia è detto ordinata del punto e corrisponde, in modulo, alla distanza del punto dall asse delle ascisse. Se la proiezione del punto: è nulla: l ordinata è nulla; si trova sul semiasse negativo dell asse delle ascisse: l ordinata è negativa;

2 si trova sul semiasse positivo dell asse delle ascisse: l ordinata è positiva; Per esempio, il punto P ha coordinate (1,2), mentre il punto Q ha coordinate (2,-1) s(m) 1m P O Q t(s) 1s I due assi cartesiani dividono lo spazio in quattro parti o quadranti. Sono ordinati, in senso antiorario, nel modo seguente: II quadrante I quadrante III quadrante IV quadrante Domanda: Qual è la caratteristica delle coordinate dei punti dei vari quadranti?

3 Caso 1: grafico di una retta Grafico di una funzione Supponete di avere un corpo che, al passare del tempo, si sposti in linea retta rispetto all origine di un sistema di riferimento spazio/tempo che avete scelto. Per esempio, una macchina che si muove lungo la direzione Cagliari-Sassari: possiamo considerare positivo il verso da Cagliari a Sassari lo zero del sistema di riferimento spaziale può essere Cagliari lo zero del tempo è considerato l istante in cui parte il cronometro. Cagliari 0 Elmas 10 km Sassari Supponete che il legame tra lo spostamento e il tempo trascorso sia dato dalla relazione s=s 0 +v 0 t (1) dove s 0 è la posizione che il corpo occupa all istante 0 (nel nostro esempio la macchina potrebbe trovarsi a Elmas all istante zero, quindi s 0 =10 km ), mentre v 0 è la velocità costante del corpo. La (1) è una uguaglianza che, dati s 0 e v 0, è verificata per infinite coppie di valori di t e di s. In effetti, è una equazione di primo grado con due incognite. Ad un certo istante t corrisponde uno spostamento s e, viceversa, un certo spostamento s si ottiene in un istante determinato t. Poiché v 0 è costante (è una ipotesi fatta all inizio), il rapporto Δs/Δt è costante. COn il simbolo Δ si intende una differenza tra due grandezze: Δ s è uno spostamento (posizione finale posizione iniziale), mentre Δt è un intervallo di tempo (istante finale-istante iniziale). Disegnare il grafico dello spazio in funzione del tempo significa determinare in un piano cartesiano (con asse delle ascisse corrispondente al tempo e l asse delle ordinate corrispondente allo spostamento) le coordinate degli infiniti punti che soddisfano l equazione (1). Per esempio, se s 0 fosse uguale a 10 chilometri e v 0 fosse uguale a 20 chilometri all ora, la (1) sarebbe: s=10 km+20(km/h)t (2) Un punto del piano che soddisfa l equazione è, per esempio, P(1,30). Infatti, se sostituisco a t il valore 1 e a s il valore 30 ottengo che 30= ossia 30=30 che è, appunto, una uguaglianza vera. Il punto

4 Q(2, 80), al contrario, non soddisfa l equazione: facendo le sostituzioni otterrei 80= ossia 80=50 che è una uguaglianza falsa. Per disegnare il grafico tengo conto che Δs/Δt è costante: i punti che soddisfano a questa relazione stanno su una retta. Poiché all istante t=0 secondi s=s 0, significa che la retta NON passa per l origine, bensì per il punto A(0,s 0 ) (nel nostro esempio A(0,10)). Per determinare la pendenza è sufficiente determinare un altro punto qualunque. Per fare ciò, assegno a t un valore qualunque (per esempio 2) e determino di conseguenza il corrispondente valore di s: s=10km+20(km/h) 2h=50 km Quindi un altro punto è Q(2,50). Si può allora disegnare la retta: s (km) 10 km Q 1 h A t (h) Tutti gli infiniti punti che stanno sulla retta rossa sono tutti e i soli punti che soddisfano l equazione (2). Questo significa che, per esempio, se volessi sapere dove si trova il punto dopo 3 h, dovrei sostituire t=3h nella (2) e determinare il valore di s che soddisfa l equazione s=10 km+20(km/h) 3h e troverei s=70 chilometri. In effetti, a occhio, sembra proprio che il punto R(3,70) si trovi sulla retta rossa. Se avessi trovato, per esempio, s=100, il grafico mi avrebbe segnalato la presenza di un errore, perché il punto di coordinate (3,100) chiaramente NON appartiene alla retta. Viceversa, se volessi sapere a quale ora arriverei a Sassari, distante 250 chilometri da Cagliari, dovrei sostituire nella (2) a s il valore 250 km e dovrei risolvere l equazione considerando t come incognita. Troverei t=12 h (provare per credere) e, se prolungassi il grafico, troverei che il punto (250,12) effettivamente sta sulla retta. Caso 2: grafico di una parabola Considerate lo stesso scenario di prima (macchina che si sposta in linea retta lungo la direzione Cagliari-Sassari, con lo stesso sistema di riferimento), ma che ora il moto sia uniformemente accelerato.

5 La (1) è sostituita dalla seguente relazione: s=s 0 +v 0 t + (½)at 2 (3) In questo caso, v 0 è la velocità che ha la macchina nell istante 0 del mio sistema di riferimento temporale. Per esempio, se s 0 fosse uguale a 10 chilometri e v 0 fosse uguale a 20 chilometri all ora e a fosse uguale a 8 km/h 2, la (1) sarebbe: s=10 km+20(km/h)t +(1/2)8(km/h 2 )t 2 (2) In questo caso il rapporto tra Δs/Δt NON è costante: man mano che passa il tempo diventa sempre più grande (dopo un certo istante), ossia percorre spostamenti sempre maggiori a parità di intervallo di tempo considerato. Il grafico corrispondente è una parabola, con concavità verso l alto se a è positivo e con concavità verso il basso se a è negativo. Per disegnarla si procede per punti, ma non bastano più 2 punti, ne servono almeno tre. Come potete verificare, se t= 0h, s=10 km (punto B); se t=1h, s=34 km (punto A); se t=2h, s=66 km (punto C).

6 Caso 3: grafico di un moto rettilineo uniforme e di un moto uniformemente accelerato Vogliamo ora studiare i moti di due oggetti che hanno moti indipendenti, uno rettilineo uniforme e l altro uniformemente accelerato. Un unico grafico che riporti il comportamento di entrambi gli oggetti può aiutare a risolvere problemi complessi. Esempio: prima di tutto si deve stabilire il sistema di riferimento spazio-temporale. COme al solito, intendiamo che la direzione del moto è quella che unisce Cagliari e Sassari, il verso del sistema è positivo da Cagliari a Sassari, e lo zero del sistema spaziale è sistemato a Cagliari. Le due auto si muovono in base alle leggi orarie seguenti: macchina A: s=80km -10(km/h)t. Per semplicità non indichiamo le unità di misura, quindi: s=80-10 t (eq.a) macchina B: s=30+1,5 t +2 t 2 (eq.b) Il grafico relativo alla macchina A è una retta con pendenza negativa, mentre il grafico di B è una parabola: Cosa ci dice questo grafico? le due auto si incontrano a circa 51 km da Cagliari dopo circa 3 ore dalla partenza del cronometro (punto A del grafico). Per valutare esattamente le coordinate del punto A bisogna uguagliare la s dell eq. A e la s dell eq. B: t= 30+1,5 t +2 t 2 Si deve perciò risolvere una equazione di secondo grado. Provate a risolverla e analizate i valori ottenuti: perché ci sono due soluzioni distinte? a quali s corrispondono?

7 la macchina A arriva a Cagliari dopo circa 8 ore. Per valutare esattamente il momento dell arrivo bisogna risolvere l equazione eq.a sostituendo a s il valore 0, e ricavando il corrispondente valore di t: ossia t=8 0= t Problema 1: Data la situazione dell esempio precedente: 1. determinare in quali istanti le due auto sono distanti 19 km. 2. dove si trovano le due auto quando sono distanti 19 km Impostazione della soluzione: Dal grafico e dalle equazioni del moto si può notare che le due auto inizialmente sono distanti 50 km. SUccessivamente, fino a circa 3h (per la precisione, 2.89 h) si avvicinano, dopodiché si allontanano nuovamente. Chiedere in quali istanti si trovano ad una distanza di 19 km significa determinare in quali istanti la distanza dall origine dell auto A meno la distanza dall origine dell auto B vale 19 km (o, anche, vale -19 km, nel caso in cui B sia davanti ad A). Le espressioni delle due distanze sono date, rispettivamente, dall eq. A e dall eq. B. Quindi: (80-10t)-( 30+1,5t +2 t 2 )=19 (eq.p1) (80-10t)-( 30+1,5t +2 t 2 )=-19 Queste sono equazioni di secondo grado in t e, ciascuna, avrà due soluzioni reali e distinte: a quali punti corrispondono (tenete conto che la parabola continua anche per t<0 )? Una volta determinati i due valori di t che ci interessano, si sostituiscono questi valori alla espressione dello spostamento. Problema 2: Due nuotatori A e B partono nello stesso istante, rispettivamente, dal blocco di partenza e da 3.0 metri più avanti. Percorrono una vasca da 50m. Il nuotatore A ha una velocità costante di 2,0 m/s, mentre B ha una velocità costante di 1.8 m/s. 1. Disegnare il grafico che rappresenti la situazione 2. Determinare il tempo di arrivo dei nuotatori 3. Determinare, se esiste, il momento in cui A sorpassa B 4. Determinare, se esiste, il momento in cui A è davanti a B di 3.0 m Impostazione della soluzione: 1. Poiché la velocità è costante, le equazioni del moto dei due nuotatori sono del tipo s=s 0 +v 0 t. Bisogna scegliere un sistema di riferimento (per esempio, lo zero del tempo si ha alla partenza, lo

8 zero dello spostamento coincide con la posizione del blocco di A). Per determinare l inclinazione della retta si prendono due istanti qualunque e si determina il corrispondente spostamento. 2. Il tempo di arrivo corrisponde all istante in cui lo spostamento rispetto all origine è 50m 3. Il momento del sorpasso si ha quando A si trova dove si trova B, ossia entrambi si trovano nello stesso punto rispetto all origine del sistema di riferimento 4. La differenza tra la posizione di A e quella di B deve essere pari a 3.0. SI imposta quindi un equazione del tipo: spostamento di A- spostamento di B=3.0m Questa è un equazione in cui compare solo t. Bisogna poi verificare che il valore di t ottenuto non sia superiore al tempo impiegato per arrivare al traguardo. Se così fosse significherebbe che quella distanza si sarebbe ottenuta oltre l arrivo (e così è, in effetti ;-) )

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo FISICA Serie 3: Cinematica del punto materiale II I liceo Le funzioni affini Una funzione f è detta una funzione del tempo se ad ogni istante t associa il valore di una grandezza fisica f a quell istante,

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

B6. Sistemi di primo grado

B6. Sistemi di primo grado B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Cominciamo con qualche esempio. I) Rette parallele agli assi cartesiani Consideriamo la retta r in figura: i punti della retta hanno sempre ordinata uguale a 3. P ( ;3) Q

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

LA RETTA NEL PIANO CARTESIANO

LA RETTA NEL PIANO CARTESIANO LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

CINEMATICA. M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) (Cinematica Moto rettilineo uniforme M.R.U.)

CINEMATICA. M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) (Cinematica Moto rettilineo uniforme M.R.U.) M-Lezione 13c Cinematica Moto rettilineo uniforme (MRU) Un moto si dice rettilineo uniforme quando il corpo percorre spazi uguali in uguali intervalli di tempo, muovendosi in linea retta. In questo caso

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

DUE MOTI UNIFORMEMENTE ACCELERATI PARTICOLARI

DUE MOTI UNIFORMEMENTE ACCELERATI PARTICOLARI DUE MOTI UNIFORMEMENTE ACCELERATI PARTICOLARI a cura di Vitali Marina realizzato con la supervisione del Prof. Fabio Breda I.S.I.S.S. M. Casagrande, Pieve di Soligo, a.s. 015-016 Abstract. Dati due corpi

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

Il moto. Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto

Il moto. Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto Il moto Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto Traiettoria: è il luogo dei punti occupati dall oggetto nel suo movimento Spazio percorso:

Dettagli

Test sull ellisse (vai alla soluzione) Quesiti

Test sull ellisse (vai alla soluzione) Quesiti Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

Geometria analitica piana

Geometria analitica piana Geometria analitica piana 1. La geometria analitica Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame tra enti algebrici ed enti

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 3B Appunti sulla Cinematica di un Punto Materiale Riccardo Fabbri 1 (Dispense ed esercizi su www.riccardofabbri.eu) Il Moto

Dettagli

CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi. SINTESI E APPUNTI Prof.ssa Elena Spera

CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi. SINTESI E APPUNTI Prof.ssa Elena Spera CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi SINTESI E APPUNTI Prof.ssa Elena Spera 1 SISTEMI DI RIFERIMENTO Il moto è relatio Ogni moto a studiato dopo aere fissato un sistema di riferimento,

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA ESERCIZIO n. 1 - Equilibrio di mercato e spostamenti delle curve di domanda e di offerta La quantità domandata di un certo bene è descritta dalla seguente funzione: p (D) mentre la quantità offerta è descritta

Dettagli

Esercizi di Calcolo e Biostatistica con soluzioni

Esercizi di Calcolo e Biostatistica con soluzioni 1 Esercizi di Calcolo e Biostatistica con soluzioni 1. Date le funzioni f 1 (x) = x/4 1, f 2 (x) = 3 x, f 3 (x) = x 4 2x, scrivere a parole le operazioni che, dato x in modo opportuno, permettono di calcolare

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano note a cura di Luigi Carlo Oldani - novembre 9 A technique ceases to be a trick and becomes a method only when it has been encountered enough times to seem natural. W.J.LeVeque,

Dettagli

MOVIMENTO - MOTO RETTILINEO UNIFORME DOMANDE ESERCIZI 1. Cosa significa dire che un oggetto è in movimento?

MOVIMENTO - MOTO RETTILINEO UNIFORME DOMANDE ESERCIZI 1. Cosa significa dire che un oggetto è in movimento? 1. Cosa significa dire che un oggetto è in movimento? 2. Quali grandezze fisiche si utilizzano per descrivere come un oggetto si muove? 3. Cosa significa dire che il movimento è un concetto relativo? 4.

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016

Dettagli

La velocità. Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it

La velocità. Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it La velocità Isabella Soletta - Liceo Fermi Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

GEOMETRIA ANALITICA Prof. Erasmo Modica

GEOMETRIA ANALITICA Prof. Erasmo Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

determina il valore del parametro corrispondente alla retta del fascio che individua sugli assi cartesiani un triangolo di area pari a 4.

determina il valore del parametro corrispondente alla retta del fascio che individua sugli assi cartesiani un triangolo di area pari a 4. Compito di Matematica / Classe 3Dsa / 20-dicembre-17 / Alunno: ES. 1. Studia i fasci di rette dati dalle equazioni: α: kx + y + k 1 = 0, con k R; β: h + 1 x + 1 h y + h 1 = 0, con h R e determina l equazione

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

Appunti: il piano cartesiano. Distanza tra due punti

Appunti: il piano cartesiano. Distanza tra due punti ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Il movimento dei corpi

Il movimento dei corpi 1 Per stabilire se un corpo si muove oppure no è necessario riferirsi a qualcosa che sicuramente è fermo. È necessario scegliere un sistema di riferimento. 1. Un passeggero di un treno in moto appare fermo

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

D3. Parabola - Esercizi

D3. Parabola - Esercizi D3. Parabola - Esercizi Traccia il grafico delle seguenti parabole e trova i punti d incontro con l asse e con l asse graficamente e/o algebricamente. 1) = ++ (0;)] ) = -+1 ( + 3 ;0), ( 3 ;0), (0;1)] 3)

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari) Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari). Piano cartesiano Per piano cartesiano si intende un piano dotato

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Lettura Moto uniformemente accelerato

Lettura Moto uniformemente accelerato Moto uniformemente accelerato Le cose che devi già conoscere per svolgere l attività Le definizioni di velocità media e di accelerazione media e la legge oraria del moto uniformemente accelerato. Come

Dettagli

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine.

LA RETTA. La retta è un insieme illimitato di punti che non ha inizio, né fine. LA RETTA La retta è un insieme illimitato di punti che non ha inizio, né fine. Proprietà: Per due punti del piano passa una ed una sola retta. Nel precedente modulo abbiamo visto che ad ogni punto del

Dettagli

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 1 Unità di misura Cinematica Posizione e sistema di riferimento....... 3 La velocità e il moto rettilineo uniforme..... 4 La velocità istantanea... 5 L accelerazione 6 Grafici temporali.

Dettagli

Elementi di matematica - dott. I. GRASSI

Elementi di matematica - dott. I. GRASSI Gli assi cartesiani e la retta. Il concetto di derivata. È ormai d uso comune nei libri, in televisione, nei quotidiani descrivere fenomeni di varia natura per mezzo di rappresentazioni grafiche. Tali

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti CENNI DI CINEMATICA.1 GENERALITÀ La cinematica studia il moto dei corpi in relazione allo spazio ed al tempo indipendentemente dalle cause che lo producono. Un corpo si muove quando la sua posizione relativa

Dettagli

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela

Dettagli

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Relazioni. t (h) 1 2 3

Relazioni. t (h) 1 2 3 Relazioni In matematica si chiama relazione fra due insiemi una legge che collega elementi del primo insieme a elementi del secondo insieme. ES Se prendiamo l insieme delle persone e l insieme dei cani,

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5?

3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5? QUESITI 1 FUNZIONI 1. (Da Medicina e Odontoiatria 201) Data la funzione f ( x ) = x 6, quale delle seguenti risposte rappresenta la sua funzione inversa? 1 x a) f ( x ) = + 6 1 x b) f ( x ) = 2 1 x c)

Dettagli

Nome.Classe Data.. V=0. g= 9,81 m/s 2. H max. V0= 23,0 m/s

Nome.Classe Data.. V=0. g= 9,81 m/s 2. H max. V0= 23,0 m/s SOLUZIONI VERIFICA di Fisica-A 1- Un moto segue la seguente legge: v=1,5 + 0,80*t (v è espressa in m/s e t in s) Di che tipo di moto si tratta? Quanto vale la velocità del corpo al tempo 0s? Quanto vale

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Y = ax 2 + bx + c LA PARABOLA

Y = ax 2 + bx + c LA PARABOLA LA PARABOLA La parabola è una figura curva che, come la retta, è associata ad un polinomio che ne definisce l'equazione. A differenza della retta, però, il polinomio non è di primo grado, ma è di secondo

Dettagli

FISICA. Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione;

FISICA. Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione; FISICA Serie 6: Cinematica del punto materiale V I liceo Esercizio 1 Alcuni esempi Fai un esempio di...: a)...un corpo in moto per il quale siano negative sia la velocità sia l accelerazione; b)...un corpo

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

7 Geometria analitica piana: retta, parabola, iperbole equilatera, circonferenza

7 Geometria analitica piana: retta, parabola, iperbole equilatera, circonferenza 7 Geometria analitica piana: retta, parabola, iperbole equilatera, circonferenza Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame

Dettagli

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica? Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una

Dettagli

Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 2010/2011 Prof. C. Perugini

Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 2010/2011 Prof. C. Perugini Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 010/011 Prof. C. Perugini Esercitazione n.1 1 Obiettivi dell esercitazione Ripasso di matematica Non è una lezione di matematica! Ha lo scopo

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura. UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli