Definizione del problema

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Definizione del problema"

Transcript

1 Turnzione dei mezzi (vehicles-scheduling) Definizione del prolem L fse di turnzione dei mezzi e del personle consiste nel pinificre l utilizzo nel tempo (e nello spzio) dei mezzi e del personle in modo d svolgere ttività di trsporto di cui sono noti luoghi e tempi di inizio e fine.

2 Turnzione dei mezzi e del personle L turnzione dei mezzi e del personle è un fse tipicmente di livello opertivo. A livello tttico, si nlizz l domnd di trsporto e si definisce l rete di trsporto, stilendo collegmenti e frequenze/orri stgionli. A livello strtegico si operno invece scelte di lungo periodo come disloczione delle sedi (depositi) e loro dimensionmento, composizione dell flott e loro lloczione presso le sedi. Tipicmente, dt l loro difficoltà, i prolemi di turnzione sono ffrontti sequenzilmente. Turnzione dei mezzi e del personle: fsi Turnzione dei mezzi (Vehicle scheduling) Turnzione del personle Crew scheduling Crew rostering

3 Modelli di turnzione dei mezzi Vehicle Scheduling Prolem (VSP) definizioni Si consideri un servizio di trsporto descritto trmite un insieme V di ttività di trsporto (trip) d effetture con un dt flott di veicoli omogenei prtire d un solo deposito. A ciscun trip è ssocito un luogo e un tempo di inizio e un luogo e tempo di fine. Un turno di un mezzo(lock) consiste in un sequenz mmissiile di trip con inizio e fine nel deposito di residenz. Un turno è mmissiile se tutte le coppie di ttività successive che lo Un turno è mmissiile se tutte le coppie di ttività successive che lo compongo due ttività di trsporto i e j sono comptiili (i j), cioè possono essere eseguiti dllo stesso mezzo.

4 Vehicle Scheduling Prolem (VSP) definizioni (cont.) Il vehicle scheduling produce un insieme di turni dei mezzi (lock) in modo d poter espletre l insieme di ttività di trsporto (trip), minimizzndo un ssegnt funzione oiettivo (d esempio i costi) L complessità del prolem di vehicle scheduling (VSP) dipende dlle eventuli restrizioni di mmissiilità per un turno, d fttori legti ll omogeneità/disomogeneità dei veicoli, ecc. Distinguimo: il cso con un solo deposito (Single Depot:SD-VSP) in cui si ipotizz che tutti i veicoli inizino e finiscono il turno nello stesso luogo (Cpoline o deposito) il cso con un più depositi (Multi Depot:MD-VSP) in cui si ssume l presenz di più depositi in cui è possiile fr terminre i turni IL METODO DEL GRAFO DI COMPATIBILITÀ (SD- VSP) Per rppresentre il prolem SD-VDP si introduce un grfo ciclico G(V, A) conv insieme delle ttività e A coppie delle ttività comptiili. Ad ogni coppi di ttività comptiile (rco) ssocio un costo cij che può essere funzione dell distnz percors, dl costo del crurnte usto, ecc

5 Esempio Supponimo occorr definire l sequenz delle seguenti ttività di trsporto che per ipotesi prtono e inizino nello stesso punto (d esempio: cpoline, deposito): Attività Or di inizio Or di fine Attività Attività Attività Attività Attività Attività Attività Attività Attività Attività Il grfo di comptiilità 8.00 c c c Deposito ,0 8.0 Deposito

6 Soluzione del prolem di VSP L soluzione del prolem può essere individut ricercndo i cmmini dissimili che coprono tutte le ttività, in modo che si minimizzt l somm dei costi degli rchi. Un cmmino rppresent inftti un turno (lock) con costo pri ll somm degli rchi che lo compongono. c d Un possiile soluzione c c c7 c d Deposito ,0 8.0 Deposito

7 (SD- VSP) DEFINIZIONE : dto l orrio di prtenz/rrivo delle corse (S), l funzione di deficit, d(t, k, S) d un generico cpoline k fornisce d ogni istnte t l differenz tr l cumult dei mezzi prtiti (P) d k fino ll istnte t e l cumult dei mezzi rrivti (A) in k fino ll istnte t: d( t, k, S) = P( t, k, S) A( t, k, S) DEFINIZIONE : il mssimo di d(t, k, S) prende il nome di deficit l cpoline k: D ( k, S ) = Mx [ d ( t, k, S )] Teorem dell deficit function : per un dto numero di terminli k l dimensione dell flott è dt d: N ( S) = k D( k, S) Il metodo dell deficit function consente di ridurre il numero di mezzi complessivo necessrio per esercire un prefissto insieme di ttività (Scheduling), ttrverso:. modifiche limitte dell orrio di prtenz di lcune corse (Vrile scheduling). Introduzione di corse vuoto (Dedhed trips- DH) fissto l insieme delle ttività (Fixed Scheduling) Inoltre ttrverso l deficit function è possiile individure dei limiti inferiori ll dimensione dell flott per un dto insieme di corse 7

8 ESEMPIO: riduzione dell dimensione dell flott ttrverso l introduzione di corse vuoto Fixed Schedule - d(,t) d(,t) DH veicoli l cpoline "" Corse vuoto (Dedhed trip) veic tempo NOTA: senz vrire l orrio delle prtenze è possiile ridurre l dimensione dell flott, introducendo un cors vuoto (dedhed DH trips) d (in lu) tempo Time Fixed Schedule d (,t) D()= (i) d(,t) D()= Modifiche llo scheduling Shifts only D()= D()= (ii) Introduzione di corse vuoto only D()= (iii) DH DH D()= Corse vuoto + modifiche llo scheduling Comined shifts nd DH DH Time DH D()= D()= (iv) 8

9 ESERCIZIO Determinre l dimensione dell flott minim ttrverso l introduzione di corse vuoto ESERCIZIO il numero di veicoli necessrio (il deficit) si riduce d 5 medinte l introduzione di tre corse vuoto tempi delle corse vuoto (DH, Ded-Hedings trip)= 9

10 ESERCIZIO clcolre il deficit e cercre di ridurlo medinte l introduzione di corse vuoto Limite inferiore dell dimensione dell flott A prtire dlle funzioni di deficit nei vri cpoline è possiile costruire l funzione g(s,t) che descrive il numero di mezzi simultnemente in esercizio: g ( t,s ) = d( k,t,s ) Il mssimo di tle funzione, nel periodo di riferimento [T,T ] considerto, costituisce un limite inferiore G(S) per l dimensione dell flott, fissto lo scheduling S: k G( S) = mx g( t, S), t [ T, T ], 0

11 Limite inferiore migliorto E un limite inferiore dell dimensione dell flott che consente di verificre, per un dto scheduling S, se è possiile ridurre il numero di veicoli introducendo delle corse vuoto. Per clcolrlo si procede come segue: ) Si modific lo scheduling in modo fittizio prolungndo tutte le corse fino ll istnte corrispondente ll successiv cors in prtenz (d qulunque cpoline) o in su ssenz fino ll fine del periodo di riferimento; ) Si costruisce l funzione g (t,s ) reltiv tle scheduling fittizio, S,e si clcol il mssimo di tle funzione G (S ) ) Se risult G(S)=N(S) o G (S)= N(S) non è possiile ridurre l dimensione dell flott ttrverso l introduzione di corse vuoto ESEMPIO: limite inferiore migliorto () c d 5 d 6 c 8 c 9 7 d d Fine periodo di riferimento g(t) g'(t) 0 0 G = G' = Time Il deficit N(S) per il dto scheduling risult pri 6 (D() = ; D() = D(c) = 0; D(d) = ). Pertnto si può procedere ricercre corse vuoto per ridurre l dimensione dell flott.

Turnazione dei mezzi (vehicles-scheduling)

Turnazione dei mezzi (vehicles-scheduling) Turnzione dei mezzi (vehicles-scheduling) Definizione del prolem L fse di turnzione dei mezzi e del personle consiste nel pinificre l utilizzo nel tempo (e nello spzio) dei mezzi e del personle in modo

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Secondo Modulo di Ricerca Operativa Prova in corso d anno 12 giugno 2000

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Secondo Modulo di Ricerca Operativa Prova in corso d anno 12 giugno 2000 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneri Informtic Secondo Modulo di Ricerc Opertiv Prov in corso d nno giugno Nome: Cognome: Brrre l csell corrispondente: Diplom t Lure t Esercizio

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 5: programmazione multiperiodale modello di flusso CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 5: programmazione multiperiodale modello di flusso CARLO MANNINO Ottimizzzione nell gestione dei progetti Cpitolo 5: progrmmzione multiperiodle modello di flusso CARLO MANNINO Uniersità di Rom L Spienz Diprtimento di Informtic e Sistemistic Richimi: -tglio in un grfo

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

16 Stadio amplificatore a transistore

16 Stadio amplificatore a transistore 16 Stdio mplifictore trnsistore Si consideri lo schem di Figur 16.1 che riport ( meno dei circuiti di polrizzzione) uno stdio mplifictore relizzto medinte un trnsistore bipolre nell configurzione d emettitore

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi su spazi di funzioni, convergenza uniforme

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi su spazi di funzioni, convergenza uniforme Corso di Metodi Mtemtici per l Ingegneri A.A. 2016/2017 Esercizi su spzi di funzioni, convergenz uniforme Mrco Brmnti Politecnico di Milno October 7, 2016 A. Esercizi su spzi vettorili, spzi vettorili

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Introduzione e strumenti

Introduzione e strumenti Introduzione e strumenti Schemi blocchi Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2 Schemi

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Introduzione e strumenti. Schemi a blocchi

Introduzione e strumenti. Schemi a blocchi Introduzione e strumenti Schemi blocchi Schemi blocchi Convenzioni generli ed elementi bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

ESERCIZIO DI ASD DEL 27 APRILE 2009

ESERCIZIO DI ASD DEL 27 APRILE 2009 ESERCIZIO DI ASD DEL 27 APRILE 2009 Dimetro Algoritmi. Ricordimo che un grfo non orientto, ciclico e connesso è un lero. Un lero può essere pensto come lero rdicto un volt che si si fissto un nodo come

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

L offerta della singola impresa: l impresa e la minimizzazione dei costi

L offerta della singola impresa: l impresa e la minimizzazione dei costi L offert dell singol impres: l impres e l minimizzzione dei costi ! Qundo l impres decide il livello di output d produrre per mssimizzre il profitto deve nche preoccuprsi che questo livello di output si

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m Corso di Potenzimento.. 009/010 1 Potenze e Rdicli Dto un numero positivo, negtivo o nullo e un numero intero positivo n, si definisce potenz di se ed esponente n il prodotto di n fttori tutti uguli d

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

In secondo luogo, dovremo registrare il pagamento del maxicanone iniziale. IVA sul maxicanone: x 20% = Canoni leasing IVA nostro credito

In secondo luogo, dovremo registrare il pagamento del maxicanone iniziale. IVA sul maxicanone: x 20% = Canoni leasing IVA nostro credito Esercitzione Lesing (B) Metodo Ptrimonile A) In dt /2006 si stipul un contrtto di lesing per l'cquisizione di un mcchinrio di produzione lle seguenti condizioni: costo complessivo 23.100 (+ IVA 20%) d

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Trasduttori a Stati Finiti

Trasduttori a Stati Finiti Trsduttori Stti Finiti Un Trsduttore Stti Finiti Deterministici è definito dll 7-pl - Alfeto di Ingresso (Alfeto terminle) K- Insieme degli stti δ -funzione (przile) di trnsizione

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi sttistici per l nlisi dei dti Introduzione In ogni esperimento, possono essere presenti diversi fttori di disturo che mplificno l vriilità presente nei dti. In genere, si definisce fttore di disturo

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei Curve e integrli curvilinei E. Polini 13 ottobre 214 curve prmetrizzte Un curv prmetrizzt è un funzione : [, b] R n. Al vrire di t nell intervllo [, b] (con < b) il punto (t) descrive un triettori nello

Dettagli

Il problema delle scorte tomo G

Il problema delle scorte tomo G Il prolem delle scorte tomo G Esercizi corretti: esercizio pg 6; esercizio 3 pg. 59 N. 5 PAG 389; N. 6 PAG. 389; N. 7 PAG 389; N. 8 PAG. 389; N 9 PAG. 390; N. 30 pg 390, N. 3 pg. 390, N. 33 pg. 390. Per

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

I.S.I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I.S.I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico Anno scolstico / Progrmm di MATEMATICA Clsse : B Insegnnte : Ghilrducci Pol I.S.I. E. Fermi - Lucc Istituto Tecnico settore Tecnologico Equzioni e disequzioni di primo grdo : Equzioni intere frtte e letterli

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R Curve prmetriche April 6, 01 Esercizi sulle curve scritte in form prmetric. 1. Elic cilindric Dt l curv di equzioni prmetriche r(t) x(t) = cos t y(t) = sin t t [0, T ], > 0, b R z(t) = bt (0.1) clcolre

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GNIMETRI funzioni goniometriche di ngoli qulsisi rof. Clogero Contrino funzioni goniometriche di ngoli qulsisi er mplire il dominio delle funzioni goniometriche è necessrio che: Si estend il concetto

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Lure di I Livello in Ingegneri Informtic Sede di Mntov 5.02.2004 Prolem I Nel circuito in figur, in cui i genertori funzionno in regime stzionrio, l interruttore viene chiuso nell istnte t = 0. Si determini

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A

UNIVERSITÁ DEGLISTUDIDISALERNO C.d.L. in INGEGNERIA GESTIONALE Ricerca Operativa 12 Gennaio 2009 Prof. Saverio Salerno. Compito A 1. Risolvere i seguenti problemi: 12 Gennio 2009 Compito A () stbilire se il vettore (3, 2, 0) è combinzione convess i u 1 =(3, 0, 6) e u 2 =(3, 3, 3); (b) per il poliero S = (x 1,x 2 ) R 2 :0 x 1 1, 0

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

Programma di matematica Prof.ssa Tacchi Lucia Anno scolastico 2017/2018 classe I A

Programma di matematica Prof.ssa Tacchi Lucia Anno scolastico 2017/2018 classe I A Isi E. Fermi Lucc Progrmm di mtemtic Prof.ss Tcchi Luci nno scolstico 7/8 clsse I Gli insiemi numerici i numeri nturli i numeri interi i numeri rzionli ssoluti i reltivi. Potenze nche con esponente intero

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Esercizio n. 1 Il magazzino merci della Alfa SpA ha subito le seguenti movimentazioni durante l esercizio 200X 0 :

Esercizio n. 1 Il magazzino merci della Alfa SpA ha subito le seguenti movimentazioni durante l esercizio 200X 0 : Esercizio n. 1 Il mgzzino merci dell Alf SpA h subito le seguenti movimentzioni durnte l esercizio 200X 0 : DATA MOVIMENTO QUANTITA PREZZO UNITARIO 01/01 Rimnenze inizili 300 45 04/03 Acquisto 250 53 26/03

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

a a a a a a a-- REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinaria sanitaria, profession&e, tecnica ed amministrathia

a a a a a a a-- REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinaria sanitaria, profession&e, tecnica ed amministrathia ZSAM CCAPORME TERAMO REGOLAMENTO D GRADUAZONE DEGU NCARKH DllRftGENZAU Aree veterinri snitri, profession&e, tecnic ed mministrthi Term o, 4 prile 2017 E E -- ndice PREMESSA.3 ARTICOLO i Criteri generli

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2017/18. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2017/18. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: 7/8 Istituto tecnico settore tecnologico. Clsse II H Progrmm di mtemtic Equioni di primo grdo prmetriche. Disequioni di primo grdo sistemi di disequioni

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

La cinetica chimica studia: 1) la velocità con cui avviene una reazione chimica e i fattori da cui dipende la velocità.

La cinetica chimica studia: 1) la velocità con cui avviene una reazione chimica e i fattori da cui dipende la velocità. Cinetic chimic L termodinmic ci permette di predire se un rezione è spontne o non è spontne oppure se è ll equilibrio. Non d informzione sui tempi di rezione. Un rezione può essere: molto veloce: combustioni,

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica

Laboratorio di Matematica Computazionale A.A Lab. 11 Integrazione numerica Lbortorio di Mtemtic Computzionle A.A. 2008-2009 1 Integrzione numeric Lb. 11 Integrzione numeric Un metodo di integrzione numerico consiste in un formul esplicit che permett di pprossimre il vlore di

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

FISICA DELLA MATERIA CONDENSATA. Proff. P. Calvani e M. Capizzi. II prova di esonero - 24 gennaio 2012

FISICA DELLA MATERIA CONDENSATA. Proff. P. Calvani e M. Capizzi. II prova di esonero - 24 gennaio 2012 FISIC ELL ERI CONENS Proff. P. Clvni e. Cpizzi II prov di esonero - 4 ennio 0 Esercizio. Un cristllo di Pb, l cui densità è 40 /m, h un struttur cubic fcce centrte con bse monotomic. L bnd custic, che

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H

ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolastico: 2016/17. Istituto tecnico settore tecnologico. Classe II H ISTITUTO DI ISTRUZIONE SUPERIORE E.FERMI Anno scolstico: /7 Progrmm di mtemtic Istituto tecnico settore tecnologico. Clsse II H Disequioni di primo grdo sistemi di disequioni e disequioni frtte. Segno

Dettagli

Introduzione alle disequazioni algebriche

Introduzione alle disequazioni algebriche Introduzione lle disequzioni lgebriche Giovnni decide di fre ttività fisic e chiede informzioni due plestre. Un plestr privt chiede un quot d iscrizione nnu di 312, più 2 per ogni ingresso. L plestr comunle

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W:

ovviamente uguale al caso delle due cricche laterali. Nel caso di larghezza finita W: Vengono riportte nel seguito lcune tbelle per il clcolo dei fttori di intensità delle tensioni in modo I utili per eseguire gli esercizi di quest lezione, trtte, con il permesso dell editore, dl testo:

Dettagli

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se Cpitolo 6 Integrli L opertore derivt D ssoci d un funzione f l su derivt: Df f 0 Ci ciedimo se è possiile invertire quest operzione, vle dire trovre un funzione l cui derivt si un funzione ssegnt Definizione

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Daniela Tondini

Daniela Tondini Dniel Tondini dtondini@unite.it Fcoltà di Medicin veterinri CdS in Tutel e benessere nimle Università degli Studi di Termo 1 IDICI DI FORMA Dopo ver nlizzto gli indici di posizione e di vribilità di un

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni. 8 Dicembre 208 Indice Teoremi per l second prov in itinere. Dimostrzioni.

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lucc Istituto Tecnico settore Tecnologico Anno scolstico / Progrmm di MATEMATICA Clsse : II C Insegnnte : Podestà Tiin Divisione tr due polinomi.regol di Ruffini. Teorem del resto. Scomposiione

Dettagli