Applicazioni fisiche dell integrazione definita



Documenti analoghi
Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Esercizi di Fisica LB: Induzione Elettromagnetica

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

Primo Parziale Fisica Generale T-B

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Note sui circuiti a corrente alternata

CIRCUITI IN REGIME SINUSOIDALE

Esame Scritto Fisica Generale T-B

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso

Applicazioni delle derivate alla Fisica

La corrente alternata

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

0 : costante dielettrica nel vuoto

Esercizi sui Circuiti RC

Capacità ele+rica. Condensatori

Formulario Elettromagnetismo

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Il vettore densità di corrente è solenoidale V=RI

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Secondo Parziale Fisica Generale T-B

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3..

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica

CORSO di AGGIORNAMENTO di FISICA

Potenziale Elettrico

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

INDUZIONE E AUTOINDUZIONE

Q t dq dt. 1 Ampere (A) = 1 C/s. Q t. lim. l A. P = L / t = i V = V 2 /R= R i 2

Fisica II - Ingegneria Biomedica - A.A. 2017/ Appello del 14/6/2018. b) 26.9

Campi elettrici e magnetici variabili nel tempo

GLI AMPLIFICATORI OPERAZIONALI

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE

PROBLEMA N.2 Il motorino elettrico

Extracorrente di chiusura in un circuito

CONDENSATORE ELETTRICO

Lezione 1 Definizione di circuito, delle grandezze circuitali e classificazione dei bipoli. Lezione n.1

Energia accumulata in un condensatore

Cap 31 - Induzione e induttanza Due esperimenti

Q C. opereremo molto lentamente ( adiabaticamente )

Esempi per ingressi costanti

Contenuti dell unità + C A0 L

Le lettere x, y, z rappresentano i segnali nei vari rami.

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

Proprietà dei sistemi ed operatori

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

Circuito equivalente

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Esame Scritto Fisica Generale T-B

Fisica 2 per biotecnologie: Prova in itinere 16 Aprile 2012

Corrente elettrica. Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci. a.a Aprile 2018, Bari

Soluzione di circuiti RC ed RL del primo ordine

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Lez Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza.

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA

Esercizi: circuiti dinamici con generatori costanti

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e:

L induzione elettromagnetica - Legge di Faraday-Lentz

Università degli studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica A.A /2002 Mancini Fabio mtr: 30739

Dipartimento di INFORMATICA Anno Accademico 2015/16 Registro lezioni del docente MIGLIORE ERNESTO

Potenza spesa dalla forza per mantenere la carica in moto con velocita` v D. dp dv

La capacità del condensatore C è la serie del condensatore formato dalla parte con il liquido e della restante parte in vuoto C 1 =

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017

Esercizi di Fisica LB: Circuiti e Correnti Continue

Dipartimento di INFORMATICA Anno Accademico 2016/17 Registro lezioni del docente MIGLIORE ERNESTO

IL MODELLO ESPONENZIALE

Soluzioni del compitino del 21 Maggio 2008

RISONANZA. Fig.1 Circuito RLC serie

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015

Definizione di circuito, delle grandezze circuitali e classificazione dei bipoli

MODULI DI FISICA (QUINTO ANNO)

verificando, in particolare, che si ha un flesso nel punto F (4, Determinare l equazione della retta tangente al grafico nel punto F.

Il circuito a scaletta e la linea di trasmissione

Elettrotecnica - Ing. Biomedica Ing. Elettronica Informatica e Telecomunicazioni (V. O.) A.A. 2013/14 Prova n luglio 2014.

LEZIONE DI ELETTRONICA

Compito di Fisica 2 Ingegneria Elettronica e delle Telecomunicazioni 18 Gennaio 2018

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova Scritta del 11/11/ NOME

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ).

Sistemi Dinamici a Tempo Continuo


Analisi matematica del fenomeno transitorio RL. Transitorio di un circuito RL alimentato a tensione costante: i +

Elettrotecnica - A.A Prova n gennaio 2012

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2012/13. Prova di esame del 17/6/ NOME

Lezione 19 - Induzione elettromagnetica

EFFETTO MAGNETICO DELLA CORRENTE

Misura del rapporto Q/V durante la fase di carica di un Condensatore.

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

23.2 Il campo elettrico

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:


Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Nel circuito di figura con R1=1Ω R2=2Ω ed R3=3Ω calcola la resistenza vista fra i morsetti AB col tasto T nelle tre posizioni 1,2 e 3..

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO.

Transcript:

Applicazioni fisiche dell integrazione definita Edizioni H ALPHA LORENZO ROI

c Edizioni H ALPHA. Aprile 27. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto (.174599416533217, 1.7161296145946) e ingrandito 783.6 volte. itolo: racce frattali.

Indice 1.1 Calcolo del potenziale elettrico di una carica puntiforme...... 2 1.2 Lavoro di carica di un condensatore ed energia immagazzinata.. 4 1.3 Scarica e carica di condensatori... 5 1.4 Correnti di apertura e chiusura... 9 1.5 Energia intrinseca della corrente attraverso una induttanza.... 12 1.6 Valori efficaci delle correnti alternate... 13 1.7 Potenza assorbita e formula di Galileo Ferraris........... 14 1

Applicazioni fisiche dell integrazione definita In questa dispensa vengono presentate alcune semplici applicazioni fisiche dell integrazione definita, inizialmente sulla deduzione del potenziale elettrico di una carica puntiforme e quindi nell ambito dei circuiti elettrici. La trattazione richiede la conoscenza delle tecniche di integrazione delle più semplici equazioni differenziali a variabili separabili. 1.1 Calcolo del potenziale elettrico di una carica puntiforme Allo scopo di ottenere l espressione del E B potenziale elettrico generato da una carica puntiforme Q, calcoliamo il lavoro dr d s della forza elettrica necessario per portare una carica q, lungo un determinato percorso, dalla posizione iniziale individuata dal vettore r A alla posizione A r A r finale r B (fig. 1.1). B La forza di Coulomb agente tra le due cariche è F = k qq Q r 2 u Figura 1.1: con u versore uscente dalla carica sorgente Q e diretto radialmente verso il punto dove si trova la carica q. Il lavoro totale è perciò espresso dall integrale L AB = B A F ds, 2

3 ossia è la somma dei lavori fatti nei tratti infinitesimi ds, dl = F ds, eseguita su tutto il percorso da A a B. Nesegue B L AB = k qq B A r 2 u ds = kqq u ds A r 2. Per la definizione di prodotto scalare, il termine u ds esprime la componente dello spostamento ds lungo la direzione del campo (o del versore radiale) per cui si può identificare con lo spostamento radiale subito dalla carica q. Questo verrà indicato dal differenziale dr (fig. 1.2). Il lavoro L AB diventa rb dr L AB = kqq r A [ = kqq 1 [ kqq = r B [ r 2 = kqq 1 r ( 1 )] r B kqq r A r A ]. ] rb r A = kqq r A kqq r B u dr α Figura 1.2: Come si vede il lavoro della forza elettrica L AB non dipende dal percorso che collega A con B ma solo dalle distanze r A e r B oltreché dal prodotto kqq. Si pone pertanto U P = kqq + c, r P e tale grandezza, detta energia potenziale della carica q nel campo di Q, risulta una funzione della posizione della carica q ediq stessa. Volendo poi eliminare la dipendenza da q si definisce il potenziale elettrico del punto P il rapporto V P = U P q. In termini di quest ultima grandezza fisica, il lavoro si potrà esprimere come L AB = (U B U A )= (qv B qv A ) = q(v B V A )=q(v A V B ) mentre il potenziale elettrico generato da una carica puntiforme Q risulta V P = U ( P q = k qq ) r + c 1 q = k Q r + c. d s

4 In alternativa a tale approccio si può partire anche dalla relazione differenziale E = dv dx che lega il modulo del campo elettrico E alla derivata del potenziale fatta rispetto la variabile spaziale x. Nel nostro caso, poiché il modulo E dipende solo da r (unica coordinata spaziale) risulta E = dv = dv = Edr = k Q dr r 2 dr per cui, integrando entrambi i membri, B A dv = B A k Q r 2 dr da cui il risultato aspettato rb [ 1 V AB = kq r A r 2 dr = kq 1 + 1 ] = k Q k Q. r B r A r B r A 1.2 Lavoro di carica di un condensatore ed energia immagazzinata Calcoliamo l energia elettrostatica posseduta da un condensatore carico ossia anche il lavoro elettrico necessario per disporre le cariche sulle sue armature. Supponiamo che il condensatore sia inizialmente scarico e di caricarlo trasportando gradualmente della carica, per esempio positiva, su un armatura. Nell istante generico t un armatura avrà quindi carica +q(t) e l altra, messa a terra, q(t). Il lavoro necessario per trasportare la carica infinitesima dq è dato da dl = V dq dove il potenziale V è legato alla carica (istantanea) presente sulle armature e alla capacità dalla C = q(t)/v (t) che riscriviamo più sinteticamente come V = q/c. Il lavoro totale si ottiene integrando L dl = = Q Q V dq dove gli estremi di integrazione dell integrale a secondo membro variano dalla carica nulla iniziale alla carica finale Q presente sulle armature. qdq C

5 È immediato ottenere L = 1 C Q qdq = 1 C [ ] q 2 Q 2 = Q2 2C risultato che, definita la d.d.p. V finale tra le armature, può assumere per la legge della capacità elettrica la forma Q V = C = Q = CV, L = 1 2 (C2 V 2 ) 1 C = 1 2 CV 2. Come detto inizialmente, questa relazione esprime pure l energia immagazzinata nel condensatore. Per esempio, se il condensatore è piano con le armature di area A disposte a distanza d, allora C = ɛ A d e tale energia si riscrive come E tot = 1 2 ɛa d V 2. Sapendo che il campo elettrico (uniforme) è legato al potenziale da V = Ed, dalla precedente discende E tot = 1 2 ɛa d E2 d 2 = 1 2 ɛe2 (A d). Poiché A d è il volume della regione spaziale dove il campo E non è nullo (trascuriamo gli effetti di bordo) si può definire una densità volumica di energia elettrostatica rapportando l energia totale con il volume, ottenendo w E = E tot Ad = 1 2 ɛe2. ale risultato, pur dedotto sulla base di una situazione fisica semplice permette di evidenziare un aspetto effettivamente generale: là doveè definito un campo elettrico, esiste sempre una densità spaziale di energia proporzionale al quadrato del modulo del campo. 1.3 Scarica e carica di condensatori Nel circuito di figura 1.3 il condensatore di capacità C è carico ad una differenza di potenziale V.

6 Nell istante iniziale t = si chiude l interruttore S e le armature vengono quindi connesse ad una resistenza R. In tal modo l isolamento tra le armature non èpiù completo e quindi le cariche possono fluire, attraverso il resistore, da un armatura all altra, dando origine ad una corrente elettrica. Convenzionalmente, si assume che cariche positive passino dall armatura positiva (a potenziale maggiore) a quella negativa. Nell istante generico t la d.d.p. ai capi del condensatore è legata alla corrente che attraversa R dalla legge di Ohm, ossia C R V (t) =Ri(t); S per la legge della capacità e per definizione di corrente è anche V (t) = q(t) C e i(t) = dq(t) dt Figura 1.3: dove il segno meno davanti alla derivata della carica è necessario in quanto, mentre la corrente viene rappresentata da un valore positivo, la carica possiede in questa situazione derivata negativa visto che sta diminuendo nel tempo. Allora V (t) =Ri(t) = q(t) C = Rdq dt ossia q C = Rdq dt. Separando ciascuna delle variabili carica e tempo in membri diversi dq q = 1 RC dt si può passare all integrazione tra l istante iniziale nullo e quello finale t Q dq Q q = 1 t dt RC ottenendo ln Q ln Q = 1 ( ) Q RC (t ) = ln = 1 Q RC t. Prendendo l esponenziale di entrambi i membri si giunge alla Q Q = e t/rc e quindi Q(t) =Q e t/rc. La funzione Q(t) è rappresentata nella figura 1.4.

7 Sfruttando la legge della capacità epostoq = CV, la dipendenza temporale del potenziale risulta V (t) = Q(t) C = V e t/rc, mentre quella della corrente corrente si ottiene eseguendo la derivazione I(t) = dq dt = V R e t/rc. Appare quindi evidente come tutte e tre le grandezze, carica Q(t), potenziale V (t) e corrente I(t), segua- q no il medesimo andamento cioè una Q decrescita esponenziale a partire dal valore iniziale. È facile verificare che la quantità τ = RC ha le dimensioni fisiche di un t tempo ed è detta costante di tempo del circuito; essa rappresenta il tempo caratteristico della scarica. Difatti dopo un intervallo di tempo pari a τ (si Figura 1.4: ponga t = τ), la grandezza in esame si è ridotta di un fattore 1 e.3679. La scarica quindi è tanto più lenta o rapida quanto maggiore o minore èiltermine τ = RC. Carica Nel circuito di figura 1.5 il condensatore èini- zialmente scarico. Alla chiusura nell istante t = dell interruttore S il generatore fa affluire cariche sulle armature del condensatore, ai cui capi compare una d.d.p. Applicando la II legge di Kirchhoff all unica maglia esistente discende V = R i(t)+ q(t) C dove q(t) C = V (t) i V R S Figura 1.5: rappresenta la differenza di potenziale ai capi del condensatore. Poiché ora la carica cresce nel tempo, risulta C

8 per cui i(t) = dq(t) dt e quindi V = R dq dt + q C = R dq dt = V q C R dq dt = V C q. C Separando le variabili si ottiene da cui, moltiplicando per 1 dq V C q = dt RC dq q V C = 1 RC dt. Possiamo ora passare all integrazione tra l istante iniziale t = quando la carica sulle armature è nulla e quello finale t quando vale Q(t) Q(t) dq t q V C = 1 RC dt : ricordando che abbiamo ln Q(t) V C V C = t RC b 1 dx =ln b ln a =ln b a x a = Q(t) V C V C = e t/rc e moltiplicando per il termine costante al denominatore V C Q(t) V C = V Ce t/rc = Q(t) =V C [ 1 e t/rc]. Posto V C = Q,conQ carica presente sul condensatore quando la d.d.p. ai suoi capi è V, giungiamo infine alla Q(t) =Q (1 e t/rc )

9 q Q = V C Figura 1.6: t che rappresenta la funzione incognita che si voleva ottenere ossia l andamento della carica al variare del tempo t. La sua rappresentazione grafica è data in figura 1.6 e mostra una crescita asintotica della carica, tendente per t + al valore Q = V C. La d.d.p. ai capi del condensatore (la si ottiene dividendo per la capacità C) segue una legge analoga mentre la corrente è descritta dalla V (t) =V (1 e t/rc ) I(t) = V R e t/rc, che mette in evidenza come I tenda esponenzialmente ad annullarsi I, quando t +. Ancora, la costante di tempo τ = RC fornisce una stima immediata della rapidità di crescita o decrescita di tali grandezze. 1.4 Correnti di apertura e chiusura Nel circuito di figura 1.7 comprendente in aggiunta al generatore di tensione, due resistenze e una induttanza, all istante t = l interruttore S viene chiuso nella posizione A. A S B V R 2 R 1 L V R 1 L Figura: 1.7 Figura: 1.8

1 In tal modo si esclude dal circuito la resistenza R 2 e il circuito diviene pertanto equivalente a quello della figura 1.8, dove rimane la sola resistenza R 1. La presenza di tale resistenza sta a significare che un simile elemento viene sempre coinvolto in un processo di carica scarica in quanto qualsiasi circuito è costituito da conduttori. Applicando la legge di Ohm (o di Kirchhoff) all intero circuito si ha V L di dt = R 1 i o anche V = L di dt + R 1 i. (1.1) In quest ultima espressione la f.e.m. indotta ai capi dell induttore appare come una caduta di potenziale dello stesso segno di quella ohmica. Difatti per la legge di Lenz, il generatore tende a portare l intensità di corrente a un certo valore mentre la f.e.m. indotta si oppone alla variazione. Risolvendo la 1.1 con il metodo della separazione delle variabili I L di dt = R 1i V = t di = 1 dt R 1 i V L = ( ) 1 R1 I V ln = t R 1 R 1 V L = di = dt R 1 i V L 1 R 1 I R 1 I V V R 1 di R 1 i V = t L = e (R 1t)/L e, finalmente, R 1 I V = V e (R 1t)/L R 1 I = V [ 1 e (R 1t)/L ] I = V t 1 e (L/R 1 ). R 1 ale funzione esprime la dipendenza della corrente in funzione del tempo e possiede l andamento di figura 1.9. Sussiste quindi una convergenza asintotica della corrente in quanto questa appare convergere al valore V /R 1 per t + eciò in coerenza con la legge di Ohm. Difatti questo valore non è altro che l intensità della corrente che si avrebbe se fosse L =. La presenza perciò di una induttanza impedisce sostanzialmente una variazione istantanea della corrente ostacolando lo stabilirsi del regime permanente che comunque, in pratica, viene raggiunto dopo un periodo pari a 3 5 costanti di tempo τ = L/R.

11 I V /R 1 Figura 1.9: t Quando si chiude l interruttore nella posizione B (fig. 1.7) il circuito diviene il seguente (fig. 1.1), dove l induttore L è ora carico. L equazione del circuito diviene quindi L B R 2 L di dt + R 2i = in quanto non vi sono generatori di d.d.p. e le condizioni iniziali sono t =,i = I (I = V /R 1 se si considera la situazione asintotica precedente). Separando ancora una volta le variabili discende L di dt I di I i = R 2 i = R t 2 dt L di i ( ) I ln I = R 2 L dt = R 2 L t I = e (R 2t)/L I = I e (R2t)/L. I Figura 1.1: L intensità di corrente decresce ora esponenzialmente con costante di tempo τ = L/R 2 (vedi fig. 1.11). I I Figura 1.11: t

12 1.5 Energia intrinseca della corrente attraverso una induttanza Consideriamo un circuito percorso dalla corrente stazionaria I e determiniamo quale sia la sua energia associata ossia quale sia stato il lavoro elettrico necessario per portare la corrente dal valoreiniziale nullo a quello finalei. Il circuito possiede una induttanza non nulla, L, e una resistenza R. Considerato il generatore di d.d.p. V il circuito è schematizzabile come in figura 1.12. Sappiamo che con l interruttore chiuso e in condi- V R S Figura 1.12: L zioni di regime (si veda la sezione precedente sulle correnti di chiusura), il generatore fornisce una corrente di intensità I = V /R coerente con la legge di Ohm e la presenza dell induttanza sarebbe irrilevante. Per calcolare l energia del sistema in queste condizioni conviene partire dalla situazione di interruttore aperto e calcolare il lavoro fatto dal generatore per giungere alla situazione stazionaria. Poiché ai capi dell induttanza si presenta la f.e.m. V = L(di/dt), per vincerla il generatore dovrà spendere una potenza pari a P = V i = Li di dt. Poiché il lavoro elettrico dw è legato alla potenza da P = dw dt ne discende dw = L i di ossia W dw = I Lidi I W = L idi = W = 1 2 LI2. Questa energia prende il nome di energia intrinseca della corrente. Se l induttanza è costituita da un solenoide di sezione A e lunghezza l allora è anche L = μ N 2 A l per cui l energia intrinseca diviene

13 W = 1 2 μan2 I 2 = 1 l 2 ( μ 2 N 2 l 2 I2 ) ( l A. μ) Sapendo che il campo magnetico B in un solenoide è legato alla corrente dalla discende che W si può riscrivere come B = μ N l I W = 1 Al B2 2 μ. Dato che Al èilvolumeentroilqualeè presente il campo B,è possibile in analogia aquantofatto per il campo elettrico, definire la densità volumica di energia W Al = w B = 1 2μ B2. Ancora una volta, pur partendo da un caso particolare, siamo giunti ad un risultato di validità generale: la densità spaziale di energia è nel caso di campi magnetici proporzionale al modulo quadro del campo B. 1.6 Valori efficaci delle correnti alternate Supponiamo una corrente alternata del tipo I(t) =I sen ωt e si vuole calcolare il suo valore medio nel tempo. Poiché la funzione che la esprime è periodica è sufficiente determinare il valore medio in un intervallo di tempo pari al suo periodo. Allora ricordando il teorema del valor medio integrale si ha I = 1 = I I(t)dt = 1 sen ωt = I ω I o sen ωtdt = I ω [( cos ω)+cos]= I ω Poiché =2π/ω, ω =2π e sen ωt ωdt = I ω [ cos ωt] (1 cos ω). I = I (1 1) =. 2π Il valor medio della corrente è pertanto nullo come d altra parte potevamo aspettarci essendo I alternata.

14 Volendo invece determinare il valor medio della corrente al quadrato (sappiamo che questo diventa importante, per esempio, nella dissipazione per effetto Joule dell energia fornita) la procedura è la seguente: I 2 = 1 = I2 = I2 [ (I sen ωt) 2 dt = I2 sen 2 ωtdt = I2 1 2 dt 1 ] cos 2ωtdt = I2 2 [ 2 1 ] 4ω (sen 2ωt) [ 2 1 4ω = I2 2 I2 (sen 2ω sen ) 4ω 1 cos 2ωt dt 2 ] (cos 2ωt + φ)2ωdt = I2 2 I2 4ω (sen 4π ) = I2 2. Il valor medio trovato permette la definizione del valore efficace della corrente. In particolare I 2 lo si pone uguale al quadrato del valore efficace Ieff 2 = I 2 = I2 2. Pertanto il valore efficace di una corrente (ma anche di qualsiasi altra grandezza fisica variabile in modo sinusoidale nel tempo) è I eff = I 2. 1.7 Potenza assorbita e formula di Galileo Ferraris La potenza assorbita da un circuito percorso dalla corrente I = I sen(ωt + φ) e alimentato da un generatore con d.d.p. V = V sen ωt è data da Il suo valor medio è pertanto P (t) =V I = V sen ωt I sen(ωt + φ). P = 1 V I sen ωt sen(ωt + φ)dt = V I sen ωt sen(ωt + φ)dt. Per le formule goniometriche di Werner vale l identità senωt sen(ωt+φ) = cosφ cos(2ωt + φ) per cui l integrale precedente si riscrive per cui P = V I 1 2 [cos φ cos(2ωt + φ)] dt

15 P = V I cos φdt V I 2 2 = V I 2 [cos φ ] V I 2 1 2ω cos(2ωt + φ)dt = V I 2 cos φ V I 4ω [sen(2ωt + φ)] cos(2ωt + φ)2ωdt = V I 2 cos φ V I [sen(2ω + φ) sen φ] 4ω Essendo comunque sen(2ω + φ) sen φ = sen(4π + φ) sen φ = si giunge alla P = V I 2 cos φ espressione che si può riscrivere in termini dei valori efficaci P = I eff V eff cos φ. e che costituisce la formula di Galileo Ferraris.