Compito di matematica Classe III ASA 28 maggio 2015

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Compito di matematica Classe III ASA 28 maggio 2015"

Transcript

1 Compito di matematica Classe III ASA 8 maggio Risolvere le seguenti equazioni e disequazioni esponenziali: 4 x x 1 = 16 x + x 1 x+ = 5 x x+ x = 0 (4 x 1) 49 ( ) x 1 x + 10 x 81 x 1 x x x 16 x + x x x x 1 = 16 x x 1 = 4 = 4 1x + x = 8 x = x + x 1 x+ = 5 x + x x 4 = 5 x x ( 5 ) = 5 x = x = 1 x x+ x = 0 x 8 x x + 4 = 0 Ponendo t = x l equazione diventa: da cui infine (1 + 1 ) 4 = 5 t 8t t + 4 = 0 t 17t + 8 = 0 t = 1 t = 8 x = 1 x = 1 x = 8 x = (4 x 1) 49 4 x x 1 7 Dalla prima disequazione si ottiene 4 x 6 che non ha evidentemente soluzioni; dalla seconda si ottiene 4 x 8 x x x x + ( ) x 1 10 Ponendo t = x, la disequazione diventa: t + 1 t 10 t 10t x + 1 x 10 t da cui 1 x 1

2 [Si noti che è possibile eliminare il denominatore senza studiarne il segno in quanto strettamente positivo] x 81 x x+4 x x + 4 x x x 1 1 x x x 16 x +4 + x x 16 0 x 8 4 x 16 0 N 0 x 8 x D > 0 4 x > 16 x > da cui si ricava infine che la frazione è minore o uguale a 0 per < x. 9 5 x x x x x x 6. Date le funzioni f(x) = a x + b e g(x) = x + : a) determinare a e b in modo che il grafico della funzione f intersechi il grafico della funzione g nei suoi punti di ascissa 0 e 1 b) in corrispondenza dei valori di a e b trovati, risolvere graficamente la disequazione f(x) g(x) c) determinare se esistono valori di x per cui si abbia f[g(x)] = g[f(x)]. a) Poiché g(0) = 0 + = e g(1) = 1 + =, per la condizione richiesta dovrà risultare f(0) = g(0) = e f(1) = g(1) =, ovvero: a 0 + b = a + b = a = 1 a 1 + b = a + b = b = 1 b) In corrispondenza dei valori trovati, il grafico della funzione f(x) si ottiene traslando di un unità verso l alto il grafico della funzione y = x. Il risultato che si ottiene è il seguente:

3 da cui si vede immediatamente che la disequazione proposta è verificata per x 0 x 1. c) Occorre innanzitutto ricavare l espressione di f[g(x)] e di g[f(x)]. Si ha: f[g(x)] = x+ + 1 g[f(x)] = x + e pertanto l equazione proposta equivale a: x+ + 1 = x + 4 x = x + x = che ha evidentemente una ed una sola soluzione, data (come si vedrà prossimamente), dal valore x = log.. Determinare per quali valori di k la funzione f(x) = (9 k ) (k k 6)x è definita x R ed è strettamente crescente. Riscrivendo l equazione nella forma f(x) = [ ] x (9 k ) k k 6 si ricava immediatamente che l andamento di f(x) risulterà strettamente crescente se e solo se l espressione compresa tra le parentesi quadre risulta strettamente maggiore di 1, e ciò a sua volta equivale alle due condizioni: 9 k > 1 0 < 9 k < 1 k k 6 > 0 k k 6 < 0 Risolvendo il primo sistema si ottiene: k < 8 k < k > < k < k < k > < k < Risolvendo il secondo sistema si ottiene: 8 < k < 9 < k < < k < < k < < k < < k < Infine la soluzione cercata è quindi data da < k < < k <. 4. Risolvere graficamente la seguente disequazione: x x > x + x (si consiglia di indicare con x 1, x,... gli eventuali valori di x significativi per determinare la soluzione; è lasciato come facoltativo ricavare l espressione esatta di tali valori, in quanto

4 per alcuni di essi i calcoli possono risultare non particolarmente agevoli, pur non richiedendo strumenti o conoscenze al di là dell ordinario) L equazione y = x x rappresenta una semicirconferenza di centro P (; 0) e raggio 5, posta nel semipiano delle ordinate positive. A questo risultato si può giungere con facilità in vari modi, ad esempio riscrivendo l equazione nella forma y = (x 8)(x + ) ed osservando che la semicirconferenza si estende da x = a x = 8, oppure elevando al quadrato, spostando tutti i termini al primo membro e operando con il consueto metodo del completamento del quadrato per ottenere l equazione della circonferenza completa x + y 6x = 16 (x ) + y = 5 L equazione y = x + rappresenta un iperbole equilatera (funzione omografica) con centro x Q(; 1) ed asintoti x = e y = 1, che attraversa l asse delle ascisse nel punto A( ; 0). La successiva operazione di modulo determina un ribaltamento rispetto all asse x della parte ad esso sottostante. La figura seguente evidenzia che i due grafici hanno in comune il punto A( ; 0) e si intersecano inoltre in tre punti distinti B, C e D con 0 < x B < e < x C < x D < 8. Ponendo, come suggerito dal testo, x 1 = x B, x = x C e x = x D, la disequazione risulta verificata negli intervalli < x < x 1 x < x < x. Volendo determinare esattamente i valori di x 1, x e x si può procedere nel modo seguente (in cui, per semplicità, ci si riferisce all equazione di cui x 1, x e x rappresentano le radici incognite). Innanzitutto si osserva dal grafico che sembra essere x = x C = : sostituendo tale valore nell equazione si verifica che effettivamente ne è una radice. Elevando al quadrato i due membri ed eliminando il denominatore, si ottiene l equazione (x 8)(x + )(x ) = (x + ) Si noti che è possibile operare con una certa disinvoltura, tralasciando cioè le condizioni di esistenza del denominatore e del radicando, in quanto la soluzione grafica della disequazione ha già fornito tutti i dettagli sull esistenza e la localizzazione delle quattro soluzioni reali. Nell equazione così ottenuta si può innanzitutto semplificare il fattore x + (che fornirebbe 4

5 la soluzione x = già nota dall inizio in quanto corrispondente al punto A. Svolgendo i calcoli e riordinando, si ottiene: (8 x)(x 4x + 4) = x + x 1x + 7x 0 = 0 Dal momento che, per quanto osservato in precedenza, anche x = è radice di questa equazione, si può operare un ulteriore fattorizzazione del polinomio (ad esempio mediante la regola di Ruffini) ottenendo infine (x )(x 9x + 10) = 0 x 1, = 9 ± Sull altezza AH di un triangolo equilatero ABC di lato si determini un punto P in modo che sia k la somma dei quadrati delle distanze di P dai tre lati del triangolo. Individuare poi la posizione di P che rende minima tale somma. Dalle proprietà geometriche elementari del triangolo equilatero si ricava immediatamente BH = HC = 1 e AH =. Ponendo poi AP = x (con 0 x ), si ha: e pertanto la relazione richiesta equivale a P H = x P K = P L = x ( ( x ) x) + = k x x + = k L interpretazione analitica del problema conduce al sistema y = x x + y = k 0 x ; k 0 5

6 La prima equazione rappresenta una parabola ( con la concavità rivolta verso l alto, asse di simmetria x = ) e vertice nel punto V ; 1. La seconda equazione rappresenta un fascio (improprio) di rette parallele all asse delle ascisse. Il grafico evidenzia le seguenti situazioni limite: 1) retta r 1 passante per P 1 (0; ): k = [in questo caso si ha x = 0 da cui P A e quindi P H = e P K = P L = 0] ( ) ; ) retta r passante perp : k = [in questo caso si ha x = da cui P H e quindi P H = 0 e P K = P L = ] ) retta r tangente alla parabola nel suo vertice: k = 1 [in questo caso si ha x = da cui P H = P K = P L = ] In conclusione il problema ammette: soluzioni coincidenti per k = 1 soluzioni distinte per 1 < k 1 soluzione per < k 0 soluzioni per k < 1 k > Come si è visto, la somma è minima (e vale 1) quando x = ; in tale situazione si ha P H = P K = P L = ovvero il punto P è equidistante dai tre lati e coincide pertanto con l incentro del triangolo (che è anche baricentro, ortocentro e circocentro trattandosi di un triangolo equilatero). Postilla... olimpica Dato un triangolo qualsiasi, esiste un punto interno al triangolo per il quale risulti minima la somma dei quadrati delle distanze dai tre lati? La risposta è affermativa: si tratta del cosiddetto punto di Lemoine, ovvero il punto d incontro delle tre simmediane del triangolo (rette simmetriche alle mediane rispetto alle bisettrici uscenti dallo stesso vertice). 6

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Compito di matematica Classe III ASA 20 novembre 2014

Compito di matematica Classe III ASA 20 novembre 2014 Compito di matematica Classe III ASA 0 novembre 014 1. Risolvere le seguenti disequazioni irrazionali: 8 x x > 1 x x 1 (x 1) Soluzione (algebrica): La prima disequazione è del tipo A(x) > B(x) e l insieme

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

Compito di matematica Classe III ASA 12 febbraio 2015

Compito di matematica Classe III ASA 12 febbraio 2015 Compito di matematica Classe III ASA 1 febbraio 015 1. Scrivere l equazione delle funzioni il cui grafico è rappresentato nella seguente figura: [Un quadretto = 1] Prima funzione Per x 4 l arco di parabola

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Compito di matematica Classe III ASA 14 maggio 2015

Compito di matematica Classe III ASA 14 maggio 2015 Compito di matematica Classe III ASA 14 maggio 015 1. Data la funzione y = f(x) rappresentata sul piano cartesiano dal grafico sottostante: a) determinare l espressione analitica di f(x) b) disegnare (su

Dettagli

Esercizi riepilogativi sulle coniche verso l esame di stato

Esercizi riepilogativi sulle coniche verso l esame di stato Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Determina il terzo vertice A di un triangolo di cui. l ortocentro

Determina il terzo vertice A di un triangolo di cui. l ortocentro La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un

Dettagli

Verifica del 8 febbraio 2018

Verifica del 8 febbraio 2018 Verifica del 8 febbraio 018 Esercizio 1 (15 punti) Risolvi le seguenti disequazioni: 1 x 1 a) x + 6x + 8 x 3 b) x + 1 + 1 c) d) Esercizio (0 punti) 3 x 8 x 4 x 3 ax 9 Considera la funzione f ( x) = x 3x

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola Premessa: Prepararsi al test per l ammissione all università NON significa provare e riprovare i quesiti che si trovano sui vari siti o libretti ma: fare un primo generale ripasso di ogni argomento citato

Dettagli

x 4 4 e il binomio x 2.

x 4 4 e il binomio x 2. ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio P()

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO 2014-15 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure.

Dettagli

( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(

( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P( ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio

Dettagli

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione

Dettagli

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale CONVITTO NAZIONALE MARIA LUIGIA Classe 3B Liceo Scientifico Anno scolastico 2011-2012 Docente: prof.ssa Paola Perego Disciplina: Matematica MODULO 1 : Funzioni Programma svolto ARGOMENTO CONOSCENZE/CONTENUTI

Dettagli

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1 Matematica 2. e quadratiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 2018-19

Dettagli

Il coefficiente angolare è 3/2 mentre Q ha coordinate (0;0). La retta passa per l origine.

Il coefficiente angolare è 3/2 mentre Q ha coordinate (0;0). La retta passa per l origine. SOLUZIONI ESERCIZI GEOMETRIA ANALITICA ) y Il coefficiente angolare è mentre Q ha coordinate (0;) ) y E necessario passare alla forma esplicita della retta y Il coefficiente angolare è mentre Q ha coordinate

Dettagli

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

CLASSE 3^ A LICEO SCIENTIFICO 25 Febbraio 2015 Geometria analitica: la parabola (recupero per assenti)

CLASSE 3^ A LICEO SCIENTIFICO 25 Febbraio 2015 Geometria analitica: la parabola (recupero per assenti) CLASSE ^ A LICEO SCIENTIFICO 5 Febbraio 05 Geometria analitica: la parabola (recupero per assenti). Dopo aver determinato l equazione della parabola, con asse parallelo all asse y, passante per i punti

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 3Cs. Insegnante: prof.ssa Franca TORCHIA Disciplina: MATEMATICA

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 3Cs. Insegnante: prof.ssa Franca TORCHIA Disciplina: MATEMATICA PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a s 07-08 CLASSE Cs Insegnante: profssa Franca TORCHIA Disciplina: MATEMATICA PROGRAMMA SVOLTO EQUAZIONI E DISEQUAZIONI - Disequazioni e princìpi di equivalenza

Dettagli

TEST PER RECUPERO OFA 10 febbraio 2010

TEST PER RECUPERO OFA 10 febbraio 2010 TEST PER RECUPERO OFA 0 febbraio 00. Quante soluzioni ammette l'equazione sen x( sen x + cos x) = tra 0 e π? nessuna B) una C) due D) tre E) quattro.. Si indichi con ln x il logaritmo naturale (in base

Dettagli

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura).

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura). Macerata 3 febbraio 0 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: y y + + = 0 Per la presenza del valore assoluto dobbiamo

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 010-011 Prova di Matematica : Piano cartesiano e retta Alunno: Classe: C 10.03.011 prof. Mimmo Corrado Dato il triangolo di vertici: 6; 3, ; 1, 4;

Dettagli

Liceo Einstein Milano. Verifica di matematica 10 ottobre 2018

Liceo Einstein Milano. Verifica di matematica 10 ottobre 2018 Liceo Einstein Milano 3G 10 ottobre 2018 1) Risolvi i seguenti sistemi: 2) A) Nel trapezio rettangolo ABCD la base maggiore AB e la base minore CD misurano rispettivamente 15 e 12 e l altezza AD misura

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

x + x + 1 < Compiti vacanze classi 4D

x + x + 1 < Compiti vacanze classi 4D Compiti vacanze classi D Ripassare scomposizioni e prodotti notevoli, metodo di Ruffini, razionalizzazioni, equazioni irrazionali. (Libro di prima e seconda). Recuperare formulario con regole di risoluzione

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S. VIA SILVESTRI 301 ANNO SCOLASTICO 2017-20178 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: -

Dettagli

1. Le due rette y = 3x + 5 e y + 3x = 1. a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti.

1. Le due rette y = 3x + 5 e y + 3x = 1. a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti. 1. Le due rette y = 3x + 5 e y + 3x = 1 a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti. 2. L equazione x 2 = x + 2 a) ha per soluzioni x = 1 e x = 2 b) ha per soluzioni

Dettagli

Anno Accademico Corso di Laurea in Scienze biologiche Prova scritta 1 di Istituzioni di Matematiche del 13 febbraio 2007 COMPITO A

Anno Accademico Corso di Laurea in Scienze biologiche Prova scritta 1 di Istituzioni di Matematiche del 13 febbraio 2007 COMPITO A del 13 febbraio 007 COMPITO A 1. Dire per quali valori del parametro reale λ, il seguente sistema lineare x + y = 1 x + y = x y = λ ammette soluzioni e trovarle.. Siano date le rette r : x + 3y + 3 = 0

Dettagli

y = [Sol. y 2x = 4x Verifica n.1

y = [Sol. y 2x = 4x Verifica n.1 Verifica n.1 disegnare curve, con valori assoluti e radicali luoghi geometrici (con retta, parabola, circonferenza) funzione omografica parabola aree (ellisse, segmento parabolico) formule goniometriche:

Dettagli

Esercizi riepilogativi sulle coniche: problemi geometrici con parametri

Esercizi riepilogativi sulle coniche: problemi geometrici con parametri Esercizi riepilogativi sulle coniche: problemi geometrici con parametri n. 10 pag. 543 In un triangolo rettangolo ABC le misure dei cateti sono AC = 1, BC = 5. Sull ipotenusa AB determina un punto P in

Dettagli

Maturità scientifica 1983 sessione ordinaria

Maturità scientifica 1983 sessione ordinaria Maturità scientifica 198 sessione ordinaria Soluzione a cura di Francesco Daddi 1 Si studi la funzione y = a x 1 e se ne disegni il grafico Si determinino le intersezioni della curva da essa rappresentata

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA CLASSE 3^ A LICEO SCIENTIFICO 3 Agosto 205 Recupero MATEMATICA. Scrivi l equazione della circonferenza passante per i punti ;2 e 2;5 e avente il centro sulla retta di equazione = 2 2. L asse del segmento

Dettagli

Esercitazione 2 - Soluzioni

Esercitazione 2 - Soluzioni Esercitazione - Soluzioni Francesco Davì ottobre 0 Esercizio (a) Si deve avere + x 0 x, che è verificato x R, in quanto il valore del modulo di un espressione non è mai negativo. L espressione al numeratore

Dettagli

I.I.S. Via Silvestri 301 Roma. Liceo Scientifico M. Malpighi. Anno scolastico

I.I.S. Via Silvestri 301 Roma. Liceo Scientifico M. Malpighi. Anno scolastico I.I.S. Via Silvestri 301 Roma Liceo Scientifico M. Malpighi Anno scolastico 2018-19 Programma di MATEMATICA svolto nella classe I sezione A Docente prof.ssa Ornella Masci ALGEBRA NUMERI NATURALI: - Ripetizione

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo

Dettagli

PROGRAMMA FINALE A.S. 2016/2017

PROGRAMMA FINALE A.S. 2016/2017 PROGRAMMA FINALE A.S. 2016/2017 MATERIA CLASSE INDIRIZZO DOCENTE LIBRO DI TESTO Matematica III SCIENTIFICO Ermanno Giuseppe FRABOTTA Leonardo Sasso - La Matematica a Colori - BLU - Vol 3 Blu - Petrini

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osserviamo anzitutto che la funzione g(x) = (ax b)e,-,. è continua e derivabile in R in quanto composizione di funzioni continue e derivabili. Per discutere la presenza di

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

VERIFICA DI MATEMATICA. Classe 3P 02/10/2018

VERIFICA DI MATEMATICA. Classe 3P 02/10/2018 Non utilizzare matita e bianchetto. Classe 3P 02/10/2018 Il punteggio viene attribuito in base alla correttezza e alla completezza nella risoluzione dei quesiti, al metodo risolutivo adottato e alle caratteristiche

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Prof. Ucciardo S. I.T.N. Pozzallo ( RG) Prova scritta del 22/02/2007. nome... cognome... Risolvere i seguenti quesiti : e ordinata positiva.

Prof. Ucciardo S. I.T.N. Pozzallo ( RG) Prova scritta del 22/02/2007. nome... cognome... Risolvere i seguenti quesiti : e ordinata positiva. Prova scritta del /0/007 nome... cognome... Risolvere i seguenti quesiti : 1) Determinare l equazione della retta tangente all ellisse x + 9y = 1 nel suo punto P di ascissa 1 3 e ordinata positiva. ) Dato

Dettagli

4^C - Esercitazione recupero n 8

4^C - Esercitazione recupero n 8 4^C - Esercitazione recupero n 8 1 La circonferenza g passa per B 0, 4 ed è tangente in O 0,0 alla retta di coefficiente angolare m= 4 La parabola l passa per A 4,0 ed è tangente in O a g a Determina le

Dettagli

x > 4 x < x 1 x 2 3 4x Disequazioni frazionarie Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.4 Esercizio no.5 Esercizio no.

x > 4 x < x 1 x 2 3 4x Disequazioni frazionarie Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.4 Esercizio no.5 Esercizio no. Edutecnica.it Disequazioni frazionarie Disequazioni frazionarie Esercizio no. 8 7 9 8 Esercizio no. Soluzione a pag. R. 7 con 9 Soluzione a pag.5 R. Esercizio no. Soluzione a pag.5 8 8 R. [ ] Esercizio

Dettagli

Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1.

Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1. Macerata 9 dicembre 04 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO In un riferimento cartesiano ortogonale è dato il fascio di rette: k + x k y + k + = 0. Determina il centro C del

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018

Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018 Silvia Braschi PROGRAMMA SVOLTO i Matematica 017/018 Geometria Analitica (vol A) Ripasso delle disequazioni di secondo grado intere e fratte Disequazioni di grado superiore al secondo Sistemi di disequazioni

Dettagli

è vietato consultare libri, appunti,...etc e lasciare l aula prima della conclusione della prova

è vietato consultare libri, appunti,...etc e lasciare l aula prima della conclusione della prova Facoltà di Agraria - Anno Accademico 2009-2010 24 febbraio 2010 1) L equazione 2x 3 3x 2 12x + 7 = 0 ha a)1 radice reale e 2 complesse b)nessuna radice reale c)2 radici reali ed 1 complessa d)3 radici

Dettagli

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

MODULI DI MATEMATICA (SECONDO BIENNIO)

MODULI DI MATEMATICA (SECONDO BIENNIO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI MATEMATICA (SECONDO BIENNIO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 MATEMATICA Matematico TERZA

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Corso di MATEMATICA E FISICA per C.T.F. - A. A. 2015/16 Prova "in itinere" Modulo di Matematica NOME

Corso di MATEMATICA E FISICA per C.T.F. - A. A. 2015/16 Prova in itinere Modulo di Matematica NOME Corso di MATEMATICA E FISICA per C.T.F. - A. A. 05/6 Prova "in itinere" Modulo di Matematica 9.0.06 COGNOME NOME Nota: non sempre la risposta esatta è una delle tre risposte indicate come a,b,c. In questo

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento. Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 2010.

Esame di Stato di Liceo Scientifico Corso di Ordinamento. Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 2010. Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 00. Sommario Problema... Punto.... Punto.... Punto.... 4 Punto 4.... 5 Problema... 6 Punto.... 6 Punto.... 7 Punto....

Dettagli

x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( )

x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( ) Macerata 6 marzo 0 classe M COMPITO DI MATEMATICA SOLUZIONE QUESITO Considera il fascio di parabole di equazione: a) Trova eventuali punti base. y = k x + x + P ( 0;) Le curve sostegno del fascio sono

Dettagli

Risolvere la seguente diequazione nell incognita x:

Risolvere la seguente diequazione nell incognita x: Università degli Studi di Catania Corso di Laurea in Scienze Ambientali e Naturali Esercizi proposti - Corso Zero - Risolvere la seguente diequazione nell incognita x: (1) x 2 3x + 2 0, I (2) x 2 x + 1

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

LE DISEQUAZIONI IRRAZIONALI RISOLTE CON LA GEOMETRIA ANALITICA. con il conseguente iter risolutivo.

LE DISEQUAZIONI IRRAZIONALI RISOLTE CON LA GEOMETRIA ANALITICA. con il conseguente iter risolutivo. LE DISEQUAZIONI IRRAZIONALI RISOLTE CON LA GEOMETRIA ANALITICA Le disequazioni irrazionali possono essere risolte anche con l ausilio della geometria analitica. Non è necessario, in questo caso, saperle

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato

Secondo parziale di Matematica per l Economia lettere E-Z, a.a , compito A prof. Gianluca Amato Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia lettere E-Z, a.a. 216 217, compito A prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base Geometria analitica e algebra lineare, anno accademico 9/1 Commenti ad alcuni esercizi 17 Diagonalizzazione di matrici simmetriche Coniche Commenti ad alcuni degli esercizi proposti 17 Diagonalizzazione

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ F a.s. 2013/14 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

Liceo Scientifico Statale Einstein Milano posta certificata: Tel. 02/ Fax. 02/

Liceo Scientifico Statale Einstein Milano posta certificata: Tel. 02/ Fax. 02/ Liceo Scientifico Statale Einstein Milano posta certificata: mips01000g@pec.istruzione.it Tel. 02/5413161 Fax. 02/5460852 CLASSE 3 L A.S. 2018-2019 PROGRAMMA SVOLTO DI MATEMATICA 1. EQUAZIONI E DISEQUAZIONI

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni

Dettagli

a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB.

a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB. VERIFICA DI MATEMATICA SIMULAZIONE GLI INTEGRALI DEFINITI - SOLUZIONI Problema : a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB. Per determinare la posizione di P, affinché

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Corso di MATEMATICA E FISICA per C.T.F. - A. A. 2016/17 Prova in itinere del Modulo di Matematica

Corso di MATEMATICA E FISICA per C.T.F. - A. A. 2016/17 Prova in itinere del Modulo di Matematica Corso di MATEMATICA E FISICA per C.T.F. - A. A. 016/17 Prova in itinere del Modulo di Matematica 08.11.016 COGNOME NOME Anno di corso Matricola Nota: non sempre la risposta esatta è una delle tre risposte

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S

PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 8 Sessione Ordinaria 8 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto d) 5 Problema 6 Punto

Dettagli