Lezione 16 (18 dicembre)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 16 (18 dicembre)"

Transcript

1 Lezione 16 (18 dicembre) Funzione logaritmica Funzioni crescenti e decrescenti Funzioni e traslazioni Funzioni pari e dispari Funzioni iniettive, suriettive, bigettive

2 Grafico della funzione logaritmica

3 Esercizi sulle funzioni logaritmiche Determinare il punto di intersezione tra il grafico della funzione f x = log 3 x e la retta di equazione y = 0. Determinare il punto di intersezione tra il grafico della funzione f x = log 3 x e la retta di equazione y = 1. Dire per quali valori di x il grafico della funzione f x = log 2 x sta al di sopra della retta di equazione y = 3. Dire per quali valori di x il grafico della funzione f x = log1 2 equazione y = 3. x interseca la retta di Dire per quali valori di x la funzione f x = log1 x assume valori minori di 3. 2

4 Esercizi per casa Stabilire per quali valori di x il grafico di f x = 1 3 equazione y = 2. x sta al di sotto della retta di Stabilire per quali valori di x il grafico di f x = e x sta al di sopra della retta di equazione y = 2. Stabilire per quali valori di x il grafico di f x = log1 3 equazione y = 2. x sta al di sopra della retta di Stabilire per quali valori di x il grafico di f x = ln x sta al di sotto della retta di equazione y = 2.

5 Esercizi per casa Stabilire per quali valori di x il grafico della funzione f x = 1 3 interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2. sta sotto la retta di equazione y = 1; y = 0; y = 4. Per quali valori di x, la funzione assume valori minori di 3? x

6 Esercizi per casa Determinare il punto di intersezione tra il grafico della funzione f x = e x e la retta di equazione x = 2. Stabilire per quali valori di x il grafico della funzione f x = e x interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2. sta sotto la retta di equazione y = 1; y = 0; y = 3. per quali valori di x la funzione assume valori maggiori di 5

7 Esercizi per casa Determinare il punto di intersezione tra il grafico della funzione f x = log 3 x e la retta di equazione x = 9; x = 0. Stabilire per quali valori di x il grafico della funzione f x = log 3 x interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2. sta sotto la retta di equazione y = 1; y = 0; y = 3. Per quali valori di x, la funzione assume valori maggiori di 2?

8 Esercizi per casa Determinare il punto di intersezione tra il grafico della funzione f x = log1 x e la retta 3 di equazione x = 9; x = 0. Stabilire per quali valori di x il grafico della funzione f x = log1 3 interseca la retta di equazione y = 1; y = 0; y = 2. sta sopra la retta di equazione y = 1; y = 0; y = 2. sta sotto la retta di equazione y = 1; y = 0; y = 3. Per quali valori di x, la funzione assume valori maggiori di 2? x

9 Problema 1 Supponiamo che p t = 20 + e 3t sia la legge che descrive la numerosità di una popolazione al variare del tempo t misurato in mesi. 1. Quanti sono gli individui dopo 2 mesi? 2. Dopo quanto tempo la popolazione raggiunge gli 80 esemplari? 3. Dopo quanto tempo la popolazione supererà i 450 esemplari? Ris: 1. p 2 = 20 + e = e 3t = 80 t 1, e 3t > 450 t > 2

10 Problema 2 Supponiamo che T t = log 2 (t + 1) + 20 sia la legge che descrive la variazione di temperatura in un ambiente in un periodo di tempo t 0,60 minuti. 1. Qual è la temperatura iniziale? 2. Dopo quanto tempo la temperatura supera i 22 gradi? Risultati: 1. T 0 = log 2 (0 + 1) + 20 = log 2 (t + 1) + 20 > 22 t > 3

11 Funzioni iniettive e funzioni suriettive Una funzione f: A B si dice iniettiva se o equivalentemente x 1, x 2 A, x 1 x 2 f x 1 f(x 2 ) x 1, x 2 A, f x 1 = f x 2 x 1 = x 2 Osservazione: Una funzione strettamente monotona su tutto il suo dominio è iniettiva. Una funzione f: A B si dice suriettiva o surgettiva se b B a A: b = f a o equivalentemente se f A = B, ovvero se l immagine coincide col codominio. Una funzione f: A B si dice biiettiva o bigettiva o corrispondenza biunivoca se f è iniettiva e suriettiva.

12 Esercizio Dire se le seguenti funzioni sono uguali. f 1 : R R f 2 : [0, + ) R x x 2 x x 2 f 3 : [0, + ) [0, + ) f 4 : Z Z x x 2 x x 2 f 5 : N Z f 6 : N N x x 2 x x 2 Dire se le funzioni sono iniettive e/o suriettive. f 1, f 4 né iniettiva né suriettiva; f 2, f 5, f 6 iniettiva e non suriettiva; f 3 bigettiva

13 Funzioni e Traslazioni Sia data la funzione f(x) e sia noto il suo grafico, allora Il grafico di f x + y 0 si ottiene traslando il grafico di f(x) verso l alto di y 0 unità Il grafico di f x y 0 si ottiene traslando il grafico di f(x) verso il basso di y 0 unità Il grafico di f x x 0 si ottiene traslando verso destra il grafico di f(x) Il grafico di f x + x 0 si ottiene traslando verso sinistra il grafico di f(x) Esempi: Determinare Dominio e Immagine delle seguenti funzioni: f x = x 2 f x = x 2 3 f x = x 3 2 f x = 3 x f x = 3 x + 2 f x = 3 x+2 f x = log 2 x f x = log 2 x 2 f x = log 2 (x 2)

14 Funzioni crescenti e decrescenti Data una funzione f: D R, con D R, essa è (monotona) crescente se x 1, x 2 D: x 1 < x 2 f x 1 f(x 2 ) strettamente crescente se x 1, x 2 D: x 1 < x 2 f x 1 < f(x 2 ) decrescente se x 1, x 2 D: x 1 < x 2 f x 1 f(x 2 ) strettamente decrescente se x 1, x 2 D: x 1 < x 2 f x 1 > f(x 2 ) Osservazione: Una funzione strettamente monotona su tutto il suo dominio è iniettiva.

15 Esercizio su monotonia e iniettività Date le funzioni f x = 2x + 1 f x = x f x = x + 1 f x = 2 x f x = log 2 x f x = cos x f x = sin x f x = tan x f x = cot x x se x [2, + ) f x = 2 se x 0, 2 f x = x 2 x + 2 se x (, 0] individuare gli intervalli in cui le funzioni sono crescenti e decrescenti dire se sono iniettive nel loro dominio dire, dopo averne determinato l immagine, se sono suriettive considerando R come codominio.

16 Esercizi per casa Disegnare i grafici delle seguenti funzioni e determinare l immagine delle funzioni dal grafico. x 2 se x 4 f x = ቊ x 2 3 se x < 4 x se x 0 f x = ቊ 3 se x < 0 2 se x 1 f x = ቊ log x se x > 1 e x + 1 se x > 0 f x = ቐ 5 se x = 0 x + 1 se x < 0

17 Esercizi per casa Si determini dominio e immagine delle seguenti funzioni. f x = 3x f x = 3x 2 f x = x + 1 f x = x + 1 f x = x f x = x 2 2 f x = cos x + 2 f x = (x 1) 2 f x = cos x + π 2 f x = log x + 1 f x = sin x + 2 x+1 f x = 1 2 f x = sin x + π 2

Sottoinsiemi di Numeri Reali

Sottoinsiemi di Numeri Reali INTERVALLI LIMITATI a,b R Sottoinsiemi di Numeri Reali intervallo chiuso [a,b] = { R : a b} intervallo aperto (a,b) = { R : a < < b} intervallo chiuso a sinistra e aperto a destra [a,b) = { R : a < b}

Dettagli

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015

Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Matematica ed statistica Corso di Laurea in Biotecnologie - anno acc. 014/015 Esercizi sulle funzioni Esercizio 1. Determinare il dominio delle seguenti funzioni: + ; : + ; : + 1 ; : 1 ; : [, + [ 1 ; :

Dettagli

Funzione 1. Matematica con Elementi di Statistica - prof. Anna Torre

Funzione 1. Matematica con Elementi di Statistica - prof. Anna Torre Funzione 1 il concetto di funzione nasce da quello di corrispondenza fra grandezze tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la

Dettagli

Lezione 2. Esempi di funzioni Funzioni iniettive, suriettive, bigettive Funzioni costanti, lineari, quadratiche

Lezione 2. Esempi di funzioni Funzioni iniettive, suriettive, bigettive Funzioni costanti, lineari, quadratiche Lezione 2 Esempi di funzioni Funzioni iniettive, suriettive, bigettive Funzioni costanti, lineari, quadratiche Esempio Misura della circonferenza conoscendo il raggio f: [0, + ) R r 2πr f r = 2πr e chiamando

Dettagli

Noi studiamo funzioni da R R x è la variabile indipendente y è la variabile dipendente

Noi studiamo funzioni da R R x è la variabile indipendente y è la variabile dipendente FUNZIONE Una funzione f definita in X a valori in Y è una corrispondenza che : y=f(x) è l immagine di x attraverso la legge f Il sottinsieme di X a cui la legge f associa un immagine si dice dominio della

Dettagli

Compito di matematica Classe III ASA 14 maggio 2015

Compito di matematica Classe III ASA 14 maggio 2015 Compito di matematica Classe III ASA 14 maggio 015 1. Data la funzione y = f(x) rappresentata sul piano cartesiano dal grafico sottostante: a) determinare l espressione analitica di f(x) b) disegnare (su

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

ESERCITAZIONE 7 : FUNZIONI

ESERCITAZIONE 7 : FUNZIONI ESERCITAZIONE 7 : FUNZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 20 Novembre 2012 Corso di recupero Docente:

Dettagli

Rette 1. Matematica con Elementi di Statistica

Rette 1. Matematica con Elementi di Statistica Rette 1 nel piano cartesiano ogni equazione di primo grado a +b +c = 0 con a e b non contemporaneamente nulli, rappresenta una retta e viceversa ogni retta può essere descritta con un equazione di questo

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

Se una funzione è continua allora è sicuramente derivabile in ogni suo punto? NO. = lim

Se una funzione è continua allora è sicuramente derivabile in ogni suo punto? NO. = lim Se una funzione è continua allora è sicuramente derivabile in ogni suo punto? NO Esempio 1: f x = x in x 0 = 0 f 0 0+h 0 = lim h 0 h h = lim h 0 h non esiste perché i limiti destro e sinistro sono diversi.

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Esercizi relativi al capitolo 2

Esercizi relativi al capitolo 2 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin

Dettagli

Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai limiti

Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai limiti Lezione 17 (20 dicembre) Funzioni composte Funzione inversa (cenni) Introduzione ai iti Funzioni composte Siano g: A B e f: B C due funzioni. Allora si chiama funzione composta la funzione definita da:

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

FUNZIONI E LORO PROPRIETA'

FUNZIONI E LORO PROPRIETA' FUNZIONI E LORO PROPRIETA' Definizione: Dati due insiemi A e B si dice funzione di A in B una qualunque legge che faccia corrispondere ad ogni elemento di A uno ed un solo elemento di B. Si indica con

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA (V anno)

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA (V anno) Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 Risultato atteso individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte).

ESERCIZI SU FUNZIONI. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile in x=0?(motivare le risposte). ESERCIZI SU FUNZIONI. 1) Disegnare il grafico della funzione f : R R così definita y = f(x)= x +1 se x 0 -x 2 +1 se x < 0. La funzione f è una corrispondenza biunivoca? La funzione f è continua e derivabile

Dettagli

PREMESSE DELL ANALISI INFINETISIMALE

PREMESSE DELL ANALISI INFINETISIMALE PREMESSE DELL ANALISI INFINETISIMALE LE PREMESSE DELL ANALISI INFINETISIMALE Insiemi numerici e insiemi di punti Un insieme i cui elementi sono numeri reali è chiamato insieme numerico. Detto R l insieme

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

Esempi di funzione...

Esempi di funzione... Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di

Dettagli

LICEO CLASSICO ANDREA DA PONTEDERA

LICEO CLASSICO ANDREA DA PONTEDERA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classe 5A PROGRAMMA DI MATEMATICA svolto fino al 15 aprile (evidenziate in giallo le aggiunte rispetto al file precedente) Intervallo limitato

Dettagli

Lezione 18 (8 gennaio) Limiti

Lezione 18 (8 gennaio) Limiti Lezione 18 (8 gennaio) Limiti Ripasso f x = ln 3 x 1 D = (1, + ) ln 3 x 1 + x 1 = ln 3 1 + 1 = ln 3 = ln(+ ) = + 0 + ln 3 x + x 1 = ln 3 + 1 = ln 3 + = ln(0+ ) = 1 Esempi di forme indeterminate x + x3

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili.

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili. OBIETTIVO DELLA RICERCA SCIENTIFICA MODELLO DEL FENOMENO NATURALE stabilire se esistono relazioni tra le quantità che si ritengono essenziali per la descrizione di un fenomeno. è una costruzione ideale

Dettagli

Soluzione Traccia A. 14 febbraio 2013

Soluzione Traccia A. 14 febbraio 2013 Soluzione Traccia A 1 febbraio 21 ESERCIZIO 1. Dopo aver disegnato il grafico della circonferenza di equazione x 2 + y 2 2x = trovare le eventuali intersezioni con la retta di equazione 2x y + 2 =. Per

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA Progettazione modulare Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x))

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x)) Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f (g()) notazione funzionale = f (g()) La composizione ha senso se il valore g() appartiene al

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

Funzioni Reali di Variabile Reale

Funzioni Reali di Variabile Reale Funzioni Reali di Variabile Reale Lezione 2 Prof. Rocco Romano 1 1 Dipartimento di Farmacia Università degli Studi di Salerno Corso di Matematica, 2017/2018 Prof. Rocco Romano (Università Studi Salerno)

Dettagli

Secondo appello 2004/ Tema 1

Secondo appello 2004/ Tema 1 Secondo appello 2/25 - Tema Esercizio Risolvere l equazione di variabile complessa z 2 (z z)2 + (Re z) [ Im (z 2 ) ] =, () e disegnare le soluzioni sul piano di Gauss. Poniamo z = + i. Si ottiene che deve

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2013/2014 Univ. Studi di Milano D.Bambusi, C.Turrini (Univ. Studi di Milano) Istituzioni di Matematiche 1 / 19 index 1 D.Bambusi, C.Turrini (Univ. Studi

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Recupero 16 Dicembre 2013

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Recupero 16 Dicembre 2013 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Recupero 6 Dicembre 03 Cognome: Nome: Matricola: Es.: 6 punti Es.(a): 3 punti Es.(b): 5 punti Es.(c): punti Es.3: 4 punti Totale. Sia F

Dettagli

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)).

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)). FUNZIONI Siano X e due insiemi. Def. Una funzione f definita in X a valori in è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in. Def. L insieme è detto codominio di

Dettagli

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 =

Esercizi sui limiti. lim. lim. lim. lim. log(x 4) + 5x = + + = + 6) x2 4 = 2 = Limiti e continuità Risoluzione di forme indeterminate con polinomi Ordine di infinito e confronto di infiniti Alcuni iti notevoli Funzioni continue Esercizi sui iti ( 3 + 3) = (10 + 3 32 ) = 57 ( + 2

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

f x = cos(5x 2 + 3) f t = sin(6x + 4)

f x = cos(5x 2 + 3) f t = sin(6x + 4) f x = 3x 5 + 3 x f t = 3t 4 e t f x = x2 +3x 5ex f t = 2t + 7 cos t 4 f x = cos(5x 2 + 3) f t = sin(6x + 4) g x = ln(x 2 + 3) h x = 3x 2 + 5 sin (7x + 9) g t = e x2 +cos(2x) h x = 3e3x x 6 f t = tan(3t)

Dettagli

Matematica 1 mod. A per Matematica Esempi di quiz

Matematica 1 mod. A per Matematica Esempi di quiz Matematica 1 mod. A per Matematica Esempi di quiz 1. Sia x un numero reale. Allora x 3: è uguale a 3x 2. può essere diverso da 3x 2. è sempre un numero irrazionale. 2. Sia S l insieme delle soluzioni della

Dettagli

Capitolo 3. Le funzioni elementari

Capitolo 3. Le funzioni elementari Capitolo 3 Le funzioni elementari Uno degli scopi di questo capitolo è lo studio delle funzioni reali di variabile reale, ossia funzioni che hanno come dominio un sottoinsieme di R e codominio R. Lo studio

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0.

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0. FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. PSfrag replacements X Y Def. L

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Generalità sulle funzioni Docente:Alessandra Cutrì Definizione di funzione Dati due insiemi X e Y, una funzione f : X Y è una legge che ad ogni elemento x X associa un unico elemento y = f (x) Y ES: X

Dettagli

FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI. 4 Liceo Scientifico a.s. 2017/18

FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI. 4 Liceo Scientifico a.s. 2017/18 FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI 4 Liceo Scientifico a.s. 2017/18 FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI Presentiamo il grafico delle funzioni elementari e delle funzioni che si ottengono trasformando

Dettagli

Programmazione disciplinare: Matematica 5 anno

Programmazione disciplinare: Matematica 5 anno Programmazione disciplinare: Matematica 5 anno Modulo 1/Ripasso: Funzione reale di variabile reale CONTENUTI Funzione fra due insiemi. Funzione reale di variabile reale: definizione e classificazione.

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Pagina 1 Generalità sulle funzioni Definizione: Dati due insiemi A e B, si definisce funzione una relazione che associa ad ogni elemento di A uno e un solo elemento di B. Osservazione: Dalla definizione

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

Nozioni di base - Quiz - 2

Nozioni di base - Quiz - 2 Nozioni di base - Quiz - Rispondere ai seguenti quesiti (una sola risposta è corretta).. L insieme delle soluzioni della disequazione (a) (0, ) (, + ) (x ) log(x) x + 0 è: (b) [, ] (c) (d) (e) (, + ) (0,

Dettagli

Equazioni differenziali del I ordine. y = y 2 y(0) = 1 e stabilire il più ampio intervalo in cui è definita la soluzione.

Equazioni differenziali del I ordine. y = y 2 y(0) = 1 e stabilire il più ampio intervalo in cui è definita la soluzione. Equazioni differenziali del I ordine 1. Risolvere il seguente problema di Cauchy: y = y 2 y(0) = 1 2. Determinare l integrale generale della seguente equazione differenziale: y = (1 )(1 y). 3. Risolvere

Dettagli

Questionario di Analisi Matematica

Questionario di Analisi Matematica Questionario di Analisi Matematica 1) f(x) è una funzione monotona crescente, continua in R, f(4) = -3, f(5) = 13/2. Quali delle seguenti affermazioni sono vere? La funzione ha almeno uno zero nell'intervallo

Dettagli

Appunti di Matematica

Appunti di Matematica Appunti di Matematica Studio della funzione irrazionale 9 x 2 f(x) = x 1 Massimo Pasquetto I.P.S.E.O.A. Angelo Berti classe 5AS 23 Settembre 2016 massimo dot pasquetto at infinitum dot it Appunti di Matematica

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Risolvere esattamente due tra gli esercizi seguenti. Le risposte non motivate non saranno prese

Dettagli

Programmazione disciplinare: Matematica 5 anno

Programmazione disciplinare: Matematica 5 anno Programmazione disciplinare: Matematica 5 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Funzione fra due insiemi. di Saper riconoscere se una relazione è anche

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2010/2011 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Proprietà elementari dei sottoinsiemi

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n 0 ottobre 008 A. MARTINI Castelranco Veneto (TV) Relazioni e Funzioni. Insieme delle parti. Partizione di un insieme 3. Prodotto cartesiano 4. Deinizione di relazione 5. Deinizione di unzione 6. Funzioni

Dettagli

Tratto da L. Curcio-J. De Tullio "ELEMENTI DI ANALISI", Esculapio (2016)

Tratto da L. Curcio-J. De Tullio ELEMENTI DI ANALISI, Esculapio (2016) Tratto da L. Curcio-J. De Tullio "ELEMENTI DI ANALISI", Esculapio (2016) PREMESSA In questo capitolo analizzeremo le funzioni elementari e quelle derivanti da queste tramite l applicazione di semplici

Dettagli

Modello di un fenomeno

Modello di un fenomeno Funzioni Modello di un fenomeno Un modello è una costruzione ideale basata su alcune caratteristiche essenziali del fenomeno, dette variabili. Un modello è ovviamente una approssimazione del fenomeno che

Dettagli

FUNZIONI NUMERICHE. Funzione numerica

FUNZIONI NUMERICHE. Funzione numerica Funzione numerica FUNZIONI NUMERICHE Una funzione si dice numerica se gli insiemi A e B sono insiemi numerici, cioè N (insieme dei numeri naturali), Z (insieme dei numeri relativi), Q (insieme dei numeri

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzioni Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente x quando esiste un legame di natura qualsiasi che ad ogni valore di x faccia corrispondere

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B Funzioni Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y = () y viene chiamato immagine di e indicato anche

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Grafici di funzioni 1 / 13

Grafici di funzioni 1 / 13 Grafici di funzioni 1 / 13 Grafico di una funzione 2 / 13 Siano A,B R. Grafico di una funzione 2 / 13 Siano A,B R. Data una funzione f : A B, il suo grafico é il sottoinsieme Γf di R 2 definito da Γf =

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k Esercizi Analisi Foglio - 9/09/208 Dimostrare che per ogni a, b e per ogni n N si ha: n a n b n = (a b) a n j b j j= Dimostrare che per ogni n N si ha: n j 2 = j= n(n + )(2n + ) 6 Dimostrare che per ogni

Dettagli

Esercitazione 2 - Soluzioni

Esercitazione 2 - Soluzioni Esercitazione - Soluzioni Francesco Davì ottobre 0 Esercizio (a) Si deve avere + x 0 x, che è verificato x R, in quanto il valore del modulo di un espressione non è mai negativo. L espressione al numeratore

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r.

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r. Testo 1 ESONERO I 1) Calcolare le seguenti espressioni log 3 135 log 3 5 = log 5 1 125 + log 4 256 = 2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la

Dettagli

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x).

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x). Funzioni Esercizio Siano f, g due funzioni definite da fx) = x x 2, gx) = ln x Trovare l insieme di definizione di f e g 2 Determinare le funzioni composte f g e g f, precisandone insieme di definizione

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo

Dettagli

Funzioni continue. quando. se è continua x I.

Funzioni continue. quando. se è continua x I. Funzioni continue Definizione: f() si dice continua in 0 D f quando (*) 0 f () f ( 0 ) Definizione: f() si dice continua in I D f se è continua I. Avevamo già dato questa definizione parlando del f ().

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Docente Maria Polo Dipartimento di Matematica e Informatica, Via Ospedale 72 - Cagliari. tel

Docente Maria Polo Dipartimento di Matematica e Informatica, Via Ospedale 72 - Cagliari.   tel LAUREA IN SCIENZE NATURALI (CLASSE L-3) LAUREA IN SCIENZE GEOLOGICHE (CLASSE L-34) Lezioni del I semestre A.A. 011/01 Matematica con elementi di statistica (I parte) - 5 crediti 40 ore di lezione rontale

Dettagli

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15.

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15. Esercizi proposti di goniometria 1. Un settore circolare, in un cerchio di raggio 14 cm, ha area uguale a 42π cm 2. Determina la misura in gradi, primi e secondi dell angolo al centro corrispondente. 2.

Dettagli

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli