Generalità e note di teoria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Generalità e note di teoria"

Transcript

1 Capitolo 1 Generalità e note di teoria In questo capitolo sono riportate alcune note delle teorie utilizzate, riguardanti: Verifiche di resistenza. Dati del problema e convenzioni. Ipotesi fondamentali. Stati di deformazione limite ultimi della sezione. Legami costitutivi dei materiali. Dominio di rottura nello spazio. Studio delle risorse ultime della sezione. Coefficiente di sicurezza. Pro_VLim Capitolo 1 Pag. 1

2 Generalità e note di teoria Generalità Il programma PRO_VLIM, e' una applicazione Windows 95/NT/ 98 per l' analisi delle sezioni in c.a. soggette a presso-tensoflessione deviata. Caratteristica del programma e' quella di unire un alto livello di interattività ad un sofisticato algoritmo di calcolo, realizzando uno strumento potente, affidabile, semplice e produttivo. Le possibilità del programma comprendono: Lo studio del dominio di rottura della sezione (superficie Mxu, Myu, Nu) rappresentato per una più facile interpretazione con curve a sforzo normale o rapporto tra i momenti costante; Lo studio del percorso ( accrescimento delle sollecitazioni ) per pervenire ad uno stato limite per la sezione secondo le usuali modalita' proporzionale, a regime flettente definito ed a regime assiale definito; Lo studio della resistenza della sezione con le Tensioni Ammissibili; La caratterizzazione geometrica e meccanica della sezione e l' impostazione del calcolo sono guidate da menu e finestre di dialogo di facile utilizzo e conformi allo standard delle applicazioni Windows 95/NT/ 98. I risultati delle analisi effettuate (sollecitazioni e deformazioni) sono agevolmente controllabili con l' ausilio grafico e riportati in una chiara ed esaustiva relazione di calcolo redatta ai sensi delle CNR 10024/86 Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo. Le modalità operative sono state ideate ed integrate nel sistema secondo una logica intuitiva e di facile apprendimento; particolare attenzione e' stata dedicata alle funzioni di modifica e correzione consentendo così la realizzazione dello strumento ideale per la progettazione di sezioni in c.a. Note di teoria Verifiche di resistenza Si ammette che una struttura abbia raggiunto uno stato limite quando essa (o uno dei suoi elementi costitutivi) non può più svolgere le funzioni, o non soddisfa più le condizioni per le quali è stata realizzata. Nel caso degli stati limite ultimi ciò corrisponde al raggiungimento del valore estremo della capacità portante. Sollecitazione composta di flessione e sforzo normale allo stato limite ultimo Dati del problema e convenzioni La geometria della sezione è descritta mediante una poligonale nel piano X, Y, che racchiude la sezione; nel caso di sezioni circolari piene (o cave), la geometria è definita univocamente dal raggio (o raggi). Le armature sono puntiformi, descritte da un area Afi e da una coppia di coordinate Xfi, Yfi. Le componenti del momento sono definite attorno agli assi X e Y, rispettivamente Mx positivo orario per chi osserva dal verso positivo dell asse e My positivo antiorario per chi osserva dal verso positivo dell asse; l azione assiale è positiva se di compressione. Il sistema di forze si suppone ridotto nel baricentro geometrico della sezione di calcestruzzo. Ipotesi fondamentali Le ipotesi assunte relativamente ai criteri di calcolo per la valutazione delle sollecitazioni limite ultime, di un assegnata sezione in c.a., sono le seguenti: Deformazione delle fibre proporzionale alla distanza dall asse neutro della sezione (conservazione delle sezioni piane); Aderenza perfetta fra acciaio e calcestruzzo fino alla dilatazione limite dell acciaio del 10 ; Resistenza a trazione del calcestruzzo trascurabile; Nel caso di flessione composta retta l asse neutro è definito da un solo parametro, ad es. la sua distanza x dal baricentro della sezione. Nel caso di flessione composta deviata l asse neutro è definito da due parametri, ad es. la sua inclinazione β e la sua distanza x dal baricentro della sezione, i cui domini di variabilità sono: β = (0, 2π); x = (-, + ). Per quanto riguarda la curvatura Γ essa potrà variare in (0, Γmax) dove Γmax è dipendente dalle caratteristiche del materiale. Qualora ci si limiti a considerare gli stati di rottura, la posizione dell asse neutro e la curvatura sono legate tra loro, per cui il problema da tridimensionale (incognite β, x, Γ) diventa bidimensionale per la flessione composta deviata (incognite β, x) e da bidimensionale (incognite x, Γ) a monodimensionale per la flessione composta retta (incognita x). Capitolo 1 Pag. 2 Pro_VLim

3 Stati di deformazione limite ultimi della sezione Data una generica sezione S, si possono considerare due piani caratteristici, il piano della sezione stessa P ed il piano E della sezione deformata. L intersezione tra P ed E, genera l asse neutro; l angolo tra P ed E è la curvatura Γ. Le posizioni che può assumere il piano E, considerando stati di rottura, dipendono dalle limitazioni sulle deformazioni del calcestruzzo e dell acciaio (punti A e B di figura), fissate dalle normative. Le configurazioni ammissibili del piano E si ottengono per rotazione attorno ai tre punti A, B, C di figura. Il segmento a rappresenta lo stato di deformazione limite ultimo della sezione per puro sforzo normale di trazione, la dilatazione limite dell acciaio in questa condizione è pari al 10. Ruotando il piano E attorno al punto A (allungamento massimo dell acciaio), questo arriva a toccare il punto B, accorciamento massimo del calcestruzzo pari al 3.5. In questa configurazione (segmento b) è sfruttata interamente la resistenza del calcestruzzo. Ruotando il piano E attorno al punto B, si raggiunge la configurazione del segmento c nella quale si ha la sezione interamente reagente. Infine si ruota ancora in senso antiorario attorno al punto C, identificato dall intersezione del piano B-D con il piano che definisce l accorciamento uniforme nel caso di compressione centrata. La rotazione attorno al punto A individua gli stati di rottura provocati dalla crisi dell acciaio; la rotazione attorno ai punti B e C individua invece gli stati di rottura da attribuire al calcestruzzo. In figura sono riportate con tratto marcato le posizioni limite che può raggiungere il piano E. Legami costitutivi dei materiali Calcestruzzo: si adotta il diagramma parabola-rettangolo suggerito dalla normativa, rappresentato in figura, definito da un arco di parabola di secondo grado passante per l origine, avente asse parallelo a quello delle tensioni, e da un segmento di retta parallelo all asse delle deformazioni tangente alla parabola nel punto di sommità. Il diagramma è espresso dalla seguente equazione: σ = 0.85 fcd [2 (ε / εο) (ε / εο)2] σ = 0.85 fcd 0 ε εο εο ε εr dove: fcd = massima tensione di compressione di progetto; εr = accorciamento massimo del cls; εo = accorciamento massimo per compressione centrata; La normativa (D.M. 09/01/1996) fissa i valori di fcd, εr, εo pari a: fcd = 0.83 x Rck / γm εr = 3.5 εo = 2 La rottura sopraggiunge, secondo lo schema adottato, quando la deformazione, con σc = 0.85 fcd, attinge il valore limite (convenzionale) εr = 3.5. Acciaio: Si adotta per l acciaio ordinario un diagramma σ - ε di tipo elastico perfettamente plastico, con rami simmetrici in trazione ed in compressione come Pro_VLim Capitolo 1 Pag. 3

4 rappresentato in figura, dove i parametri fyd, εr sono fissati dalla normativa: fyd = fyk/γf εr = 10 dove: fyk = resistenza caratteristica di snervamento γf = coefficiente di riduzione della resistenza dell acciaio Al solito il diagramma di calcolo si ottiene da quello caratteristico mediante una affinità parallela alla tangente iniziale con il coefficiente definito dalle normative. Dominio di rottura nello spazio Il numero dei possibili stati di rottura, Pru = (Nru, Mxru, Myru) è 2 (duplice infinità), dipendendo dai due parametri dell asse neutro β, x. Al variare di β ed x nel loro insieme di definizione il punto Pru descrive una superficie detta dominio di rottura, che delimita gli stati di sollecitazione ammissibili (interni al dominio) da quelli non ammissibili (esterni al dominio) vedi figura seguente. La definizione analitica del dominio di rottura richiede il calcolo delle seguenti funzioni: N = N(β, x) Pu = Mx = Mx(β, x) x(-, + ) b(0, 2π) My = My(β, x) che in generale può essere eseguito solo per via numerica. Si consideri la sezione generica della figura seguente. Siano X, Y due generici assi ortogonali passanti per il baricentro geometrico della sezione. Fissata la posizione dell asse neutro n, e quindi β ed x è nota la parte di calcestruzzo reagente. Per quanto detto si è in grado di valutare le deformazioni e di calcolare le risultanti N, Mx, My. Si ha: N = B σc da + Afi σf Mx = B σc y da + Afi σf y My = B sc x da + Afi σf x Dal punto di vista operativo si calcolano gli integrali rispetto ad un riferimento con origine in G e con l asse X parallelo all asse neutro; le azioni così trovate si trasformano nel riferimento X, Y: Mx = Mx cos(β) - My sen(β) My = Mx sen(β) + My cos(β) Studio delle risorse ultime della sezione Nel paragrafo precedente si è visto come si possa ottenere un punto Pru = Pru(β, x) del dominio di rottura. Per una descrizione completa degli stati ultimi di una sezione ne occorrerebbero 2. Da un punto di vista operativo è possibile valutare le risorse ultime di una sezione determinando una combinazione di sollecitazioni che genera un punto appartenente alla superficie limite del dominio, oppure un insieme di punti che generano curve appartenenti alla superficie limite del dominio. Nel primo caso il punto viene ottenuto per accrescimento delle sollecitazioni secondo le seguenti modalità: incremento proporzionale delle sollecitazioni N, Mx, My; incremento di N con Mxu e Myu assegnati; incremento di Mx, My con Nu e Mx/My assegnato; Nel secondo caso si rappresenta il dominio di rottura con sezioni piane, siano esse curve meridiane o curve di livello con N = cost. Si hanno così le curve d interazione: curve parallele con N = cost; Mx, My variabili Capitolo 1 Pag. 4 Pro_VLim

5 Si opera la ricerca del dominio di rottura della sezione, superficie Mx, My, N, sezionando quest ultima con un piano a Nu costante; in questo modo si ottiene una curva (ad N = Nu costante) che definisce un dominio di rottura piano. La frontiera di questo dominio individua tutte le condizioni di rottura della sezione con sforzo normale assegnato. curve meridiane con Mx/My = cost; N variabile Si opera la ricerca del dominio di rottura della sezione, superficie Mx, My, N, sezionando quest ultima con un piano avente il valore del rapporto Mx/My costante; in questo modo si ottiene una curva N, Mx/My che definisce un dominio di rottura piano. La frontiera di questo dominio individua tutte le condizioni di rottura della sezione con assegnato rapporto Mx/My. Coefficiente di sicurezza Il coefficiente di sicurezza permette di valutare se il punto generato dal vettore sollecitazione di componenti N, Mx, My, applicato ad una sezione è interno o esterno al dominio di rottura della sezione stessa. Ad esempio considerando il caso generale di flessione composta: il vettore sollecitazione abbia componenti No, Mxo, Myo; per controllare la sua ammissibilità basterà verificare che: γ = OP / OPo 1 dove O è l origine dello spazio N, Mx, My cui è riferito il dominio e P è l intersezione della retta OPo con il dominio stesso. Il coefficiente γ definito, rappresenta il cosiddetto coefficiente di sicurezza proporzionale ossia valutato nell ipotesi di accrescimento proporzionale delle azioni applicate sino a rottura. Nel caso l accrescimento delle sollecitazioni venga effettuato mantenendo N = cost. oppure M = cost., si valutano rispettivamente i coefficienti di sicurezza ad azione assiale costante (momento flettente variabile) e ad azione flettente costante (azione assiale variabile). Il percorso da adottare per ottenere il coefficiente di sicurezza di interesse, dipende dalla natura delle sollecitazioni applicate alla sezione e dalla loro correlazione. Pro_VLim Capitolo 1 Pag. 5

Esempi guidati. Questo capitolo presenta alcuni esempi guidati sull applicazione del programma PRO_VLIM. Verranno presentati i seguenti esempi:

Esempi guidati. Questo capitolo presenta alcuni esempi guidati sull applicazione del programma PRO_VLIM. Verranno presentati i seguenti esempi: Capitolo 4 Esempi guidati Questo capitolo presenta alcuni esempi guidati sull applicazione del programma PRO_VLIM. Verranno presentati i seguenti esempi: Analisi di una sezione rettangolare in c.a. soggetta

Dettagli

Istituto Tecnico per Geometri Corso di Costruzioni Edili

Istituto Tecnico per Geometri Corso di Costruzioni Edili Istituto Tecnico per Geometri Corso di Costruzioni Edili Prof. Giacomo Sacco LEZIONI SUL CEMENTO ARMATO Sforzo normale, Flessione e taglio CONCETTI FONDAMENTALI Il calcestruzzo ha una bassa resistenza

Dettagli

Strutture in Acciaio:

Strutture in Acciaio: Strutture in Acciaio: i Verifica degli elementi strutturali STATI LIMITE DI ESERCIZIO STATI LIMITE ULTIMI DELLE SEZIONI (RESISTENZA DELLE SEZIONI) Si possono considerare due stati limite: 1. Stato

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

VERIFICA OPERE IN C.A. CORPO "A"

VERIFICA OPERE IN C.A. CORPO A VERIFICA OPERE IN C.A. CORPO "A" 1 VERIFICA PIASTRA FONDALE...3 VERIFICA RESTANTI OPERE IN C.A...9 VERIFICHE SLE...11 2 VERIFICA PIASTRA FONDALE Verifica a flessione Stati limiti La piastra fondale presenta

Dettagli

Dalle tensioni ammissibili agli stati limite

Dalle tensioni ammissibili agli stati limite Dalle tensioni ammissibili agli stati limite Flessione composta Spoleto, 21 maggio 2004 Aurelio Ghersi Verifica di sezioni soggette flessione composta 1 Verifica tensioni ammissibili h d c n A s x σ c

Dettagli

Dalle tensioni ammissibili agli stati limite

Dalle tensioni ammissibili agli stati limite Dalle tensioni ammissibili agli stati limite Flessione composta Spoleto, 21 maggio 2004 Aurelio Ghersi Verifica di sezioni soggette flessione composta Verifica tensioni ammissibili c A s σ c max σ s /

Dettagli

ESERCIZI SVOLTI. 2 Il calcestruzzo armato 2.4 La flessione composta

ESERCIZI SVOLTI. 2 Il calcestruzzo armato 2.4 La flessione composta ESERCIZI SVOLTI Costruire la frontiera del dominio di resistenza della sezione rettangolare di mm con armatura simmetrica A s,tot + 6, copriferro mm, impiegando calcestruzzo classe C /. Resistenza di calcolo

Dettagli

Documento #: Doc_a8_(9_b).doc

Documento #: Doc_a8_(9_b).doc 10.10.8 Esempi di progetti e verifiche di generiche sezioni inflesse o presso-tensoinflesse in conglomerato armato (rettangolari piene, circolari piene e circolari cave) Si riportano, di seguito, alcuni

Dettagli

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE I: ANALISI A FIBRE

DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE I: ANALISI A FIBRE Valutazione e riduzione della vulnerabilità sismica di edifici esistenti in c.a. Roma, 29-3 maggio 28 DOMINI DI CURVATURA DI SEZIONI IN C.A. IN PRESSOFLESSIONE DEVIATA. PARTE I: ANALISI A FIBRE Di Ludovico

Dettagli

idomini MANUALE UTENTE

idomini MANUALE UTENTE idomini MANUALE UTENTE Introduzione al software per la determinazione dei domini di resistenza di sezioni in cemento armato e cemento armato rinforzato con FRP. COPYRIGHT idomini e tutta la relativa documentazione

Dettagli

La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione Estrusione e trafilatura La forgiatura

La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione Estrusione e trafilatura La forgiatura La deformazione plastica La deformazione plastica Lavorazioni per deformazione Il processo di laminazione Estrusione e trafilatura La forgiatura 2 2006 Politecnico di Torino 1 Obiettivi della lezione Valutare

Dettagli

5.1 Il metodo semiprobabilistico per gli stati limite ultimi

5.1 Il metodo semiprobabilistico per gli stati limite ultimi Geostru Software www.geostru.com geostru@geostru.com CAPITOLO 5 METODO DEGLI STATI LIMITE ULTIMI 5.1 Il metodo semiprobabilistico per gli stati limite ultimi Le brevi note che seguono riguardano i principali

Dettagli

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ Università degli studi di Cagliari Dipartimento di Ingegneria Strutturale Corso di aggiornamento Unità 4 PIASTRE IN C.A. E INSTABILITÀ RELATORE: Ing. Igino MURA imura@unica.it 25-26 Giugno 2010 - Instabilità:

Dettagli

Leonardo Principato Trosso

Leonardo Principato Trosso Leonardo Principato Trosso Software per il calcolo con i metodi delle tensioni ammissibili e agli stati limite ai sensi del D.M. 14 gennaio 2008 * Solai in cemento armato, ferro, legno e a piastra * Sbalzi

Dettagli

MATERIA Meccanica, Macchine ed Energia. DIPARTIMENTO DI Meccanica

MATERIA Meccanica, Macchine ed Energia. DIPARTIMENTO DI Meccanica Anno scolastico: 2014-2015 Classe: 4^BMM MATERIA Meccanica, Macchine ed Energia Insegnante: Gaspare Di Como Insegnante Compresente: Francesco Porco DIPARTIMENTO DI Meccanica PROGRAMMAZIONE SVOLTA MODULO

Dettagli

IL METODO DEGLI STATI LIMITE Esempi di verifica

IL METODO DEGLI STATI LIMITE Esempi di verifica Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 374/003) POTENZA, 004 IL METODO DEGLI STATI LIMITE Esempi di verifica Dott. Ing.. Marco VONA DiSGG, Università di Basilicata

Dettagli

Verifica di una struttura esistente

Verifica di una struttura esistente Il metodo agli Stati Limite per la verifica delle strutture in c.a. Giovanni A. Plizzari Università di Bergamo Paolo Riva Università di Brescia Corso Pandini Bergamo, 14-15 Novembre, 2003 Verifica di una

Dettagli

LEZIONE N 7 IL CEMENTO ARMATO PRECOMPRESSO Generalità

LEZIONE N 7 IL CEMENTO ARMATO PRECOMPRESSO Generalità LEZIONE N 7 IL CEMENTO ARMATO PRECOMPRESSO Generalità Introduzione al cemento armato precompresso (c.a.p.) Gli stati di coazione e il concetto di pre-sollecitazione Lo stato di precompressione nel c.a.p

Dettagli

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI Alcune proprietà della deformata dei portali Si esaminano nel seguito alcune proprietà della deformata dei portali. Queste proprietà permettono

Dettagli

PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO

PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO PROGRAMMA DETTAGLIATO CORSO INTEGRATO DI TECNICA DELLE COSTRUZIONI: COSTRUZIONI IN CEMENTO ARMATO E ACCIAIO 1 LEZIONE COSTRUZIONI IN CEMENTO ARMATO ARGOMENTI 1. Introduzione Presentazione del corso 2.

Dettagli

STRUTTURE IN CEMENTO ARMATO - V

STRUTTURE IN CEMENTO ARMATO - V Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì STRUTTURE IN CEMENTO ARMATO - V AGGIORNAMENTO 22/09/2012 DOMINIO DI RESISTENZA Prendiamo in considerazione la trave rettangolare

Dettagli

Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è

Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è Lo studio del campo di tensione e di deformazione esistente in una qualsiasi struttura, in conseguenza dell applicazione di sollecitazioni esterne, è di fondamentale importanza per poterne definire il

Dettagli

RESISTENZA DEI MATERIALI TEST

RESISTENZA DEI MATERIALI TEST RESISTENZA DEI MATERIALI TEST 1. Nello studio della resistenza dei materiali, i corpi: a) sono tali per cui esiste sempre una proporzionalità diretta tra sollecitazione e deformazione b) sono considerati

Dettagli

Capitolo 4 CALCOLO DELLE SEZIONI

Capitolo 4 CALCOLO DELLE SEZIONI Capitolo 4B - Stati limite ultimi 51 Capitolo 4 CALCOLO DELLE SEZIONI 4.1 Trazione Il comportamento sotto carico crescente di un pezzo di acciaio è ricavabile dalla prova a trazione effettuata con apposite

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni 1 Flessione composta tensoflessione Risposta della sezione Campo elastico σ + A I Risposta della sezione Al limite elastico el, Per calcolare el, : σ A + el, I f f + el,

Dettagli

Proprietà elastiche dei corpi

Proprietà elastiche dei corpi Proprietà elastiche dei corpi I corpi solidi di norma hanno una forma ed un volume non facilmente modificabili, da qui deriva la nozioni di corpo rigido come corpo ideale non deformabile. In realtà tutti

Dettagli

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile e Ambientale Università di Trieste Piazzale Europa 1, Trieste Sistemi di travi Corsi di Laurea in

Dettagli

GLI STATI LIMITE DI ESERCIZIO

GLI STATI LIMITE DI ESERCIZIO Corso sulle Norme Tecniche per le costruzioni in zona sismica (Ordinanza PCM 3274/2003, DGR Basilicata 2000/2003) POTENZA, 2004 GLI STATI LIMITE DI ESERCIZIO Prof. Ing. Angelo MASI DiSGG, Università di

Dettagli

Certificazione di produzione di codice di calcolo Programma CAP3

Certificazione di produzione di codice di calcolo Programma CAP3 1 Certificazione di produzione di codice di calcolo Programma CAP3 1) CARATTERISTICHE DEL CODICE Titolo programma : CAP3 - Travi precompresse ad armatura pretesa, Metodo agli stati limite. Autore : ing.

Dettagli

PROCESSI DI FORMATURA PLASTICA DI LAMIERE: PIEGATURA

PROCESSI DI FORMATURA PLASTICA DI LAMIERE: PIEGATURA PROCESSI DI FORMATURA PLASTICA DI LAMIERE: PIEGATURA 1 PIEGATURA È uno tra i più comuni metodi di lavorazione delle lamiere Utilizzata sia come processo a sé stante, sia in combinazione con altre operazioni

Dettagli

Sforzo normale e flessione

Sforzo normale e flessione Capitolo 4 Sforzo normale e flessione La condizione di sollecitazione più generale che produce tensioni normali è la combinazione di sforzo normale e flessione. La flessione semplice, esaminata nel capitolo

Dettagli

L Unità didattica in breve

L Unità didattica in breve L Unità didattica in breve Trasmissione del moto mediante ruote dentate Si definisce ingranaggio l accoppiamento di due ruote dentate ingrananti fra loro, montate su assi la cui posizione relativa resta

Dettagli

75 CAPITOLO 6: PROVE EDOMETRICHE CAPITOLO 6: PROVE EDOMETRICHE

75 CAPITOLO 6: PROVE EDOMETRICHE CAPITOLO 6: PROVE EDOMETRICHE 75 CAPTOLO 6: PROVE EDOMETRCE CAPTOLO 6: PROVE EDOMETRCE La prova edometrica è una prova di compressione assiale senza deformazione laterale, serve a determinare le caratteristiche di comprimibilità dei

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Tecniche di rinforzo con materiali innovativi

Tecniche di rinforzo con materiali innovativi Interventi di recupero del patrimonio edilizio, Roma, 29.1.09 Tecniche di rinforzo con materiali innovativi Zila Rinaldi Università di Roma Tor Vergata Dip. di Ingegneria Civile Introduzione Perchè si

Dettagli

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti;

Per prima cosa si determinano le caratteristiche geometriche e meccaniche della sezione del profilo, nel nostro caso sono le seguenti; !""##"!$%&'((""!" )**&)+,)-./0)*$1110,)-./0)*!""##"!$%&'((""!" *&)23+-0-$4--56%--0.),0-,-%323 -&3%/ La presente relazione ha lo scopo di illustrare il meccanismo di calcolo che sta alla base del dimensionamento

Dettagli

Verifiche di sicurezza di una costruzione 1/2

Verifiche di sicurezza di una costruzione 1/2 Verifiche di sicurezza di una costruzione 1/2 Le costruzioni devono soddisfare opportuni requisiti di sicurezza nei confronti della loro capacità portante Capacità portante Attitudine di una struttura

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Comportamento sotto carico di esercizio delle strutture in C.A.

Comportamento sotto carico di esercizio delle strutture in C.A. Università degli Studi di Bologna Facoltà di Ingegneria D.I.S.T.A.R.T. Comportamento sotto carico di esercizio delle strutture in C.A. Appunti dai seminari tenuti dal ing. Ferretti XVII ciclo del dottorato

Dettagli

COEFFICIENTI BETA. per sezioni in cemento armato SEZIONI RETTANGOLARI E SEZIONI A T ITALO MARCHIONNI

COEFFICIENTI BETA. per sezioni in cemento armato SEZIONI RETTANGOLARI E SEZIONI A T ITALO MARCHIONNI ITALO MARCHIONNI COEFFICIENTI BETA per sezioni in cemento armato SEZIONI RETTANGOLARI E SEZIONI A T * Trattazione teorica completa Coeffi cienti Beta e relative grandezze correlate per sezioni rettangolari

Dettagli

Sommario. Sommario Riferimenti bibliografici e normativi

Sommario. Sommario Riferimenti bibliografici e normativi Manuale dell utente PRO_VLIM Versione Windows 2000/NT-ME/9x Release: 05/10/2007 Sommario Sommario Riferimenti bibliografici e normativi Capitolo 1 - Generalità e note di teoria Pag. Verifiche di resistenza

Dettagli

Via Emilia Ovest, 21/A 42048 Rubiera (R.E.) Tel. 0522/629909; fax. 626229 e.mail: pfollo@tin.it - P.IVA 01207970359 C.F.

Via Emilia Ovest, 21/A 42048 Rubiera (R.E.) Tel. 0522/629909; fax. 626229 e.mail: pfollo@tin.it - P.IVA 01207970359 C.F. Via Emilia Ovest, 1/A 4048 Rubiera (R.E.) Tel. 05/69909; fax. 669 e.mail: pfollo@tin.it - P.IVA 0107970359 C.F. FLLPLA48L06I496U MONTANTE PER ANCORAGGIO DISPOSITIVI INDIVIDUALI CONTRO LA CADUTA DAI TETTI,

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

LEZIONI N 9, 10, 11 E 12 COSTRUZIONI DI ACCIAIO: IPOTESI DI BASE E METODI DI VERIFICA

LEZIONI N 9, 10, 11 E 12 COSTRUZIONI DI ACCIAIO: IPOTESI DI BASE E METODI DI VERIFICA LEZIONI N 9, 10, 11 E 12 COSTRUZIONI DI ACCIAIO: IPOTESI DI BASE E METODI DI VERIFICA L acciaio da carpenteria è una lega Fe-C a basso tenore di carbonio, dall 1 al 3 per mille circa. Gli acciai da costruzione

Dettagli

Operazioni sui vettori Scomposizione di un vettore F in un vettore e in una coppia

Operazioni sui vettori Scomposizione di un vettore F in un vettore e in una coppia Operazioni sui vettori Scomposizione di un vettore F in un vettore e in una coppia F (non baricentrico) = F (baricentrico) + Momento orario F. b F (diretto verso il basso) = vettore spostato a sinistra

Dettagli

TENSIONE INTERNA E DEFORMAZIONE PROVA DI TRAZIONE E NOMATIVA DIAGRAMMA SFORZO-DEFORMAZIONE DEFORMAZIONI REALI, ELASTICITA, TENACITA

TENSIONE INTERNA E DEFORMAZIONE PROVA DI TRAZIONE E NOMATIVA DIAGRAMMA SFORZO-DEFORMAZIONE DEFORMAZIONI REALI, ELASTICITA, TENACITA PROVA DI TRAZIONE (UNI EN ISO 6892-1) 1 INDICE TENSIONE INTERNA E DEFORMAZIONE PROVA DI TRAZIONE E NOMATIVA DIAGRAMMA SFORZO-DEFORMAZIONE RISULTATI DELLA PROVA DEFORMAZIONI REALI, ELASTICITA, TENACITA

Dettagli

ARGOMENTI DI TECNICA DELLE COSTRUZIONI INDICE

ARGOMENTI DI TECNICA DELLE COSTRUZIONI INDICE Giuseppe Stagnitto Erica Barzoni ARGOMENTI DI TECNICA DELLE COSTRUZIONI Applicazioni ed approfondimenti del Corso di FONDAMENTI DI TECNICA DELLE COSTRUZIONI Appunti a cura degli studenti INDICE I - RICHIAMI

Dettagli

Forze elastiche e Molla elicoidale versione 1.02 preliminare

Forze elastiche e Molla elicoidale versione 1.02 preliminare Forze elastiche e Molla elicoidale versione 1.02 preliminare MDV April 18, 2015 1 Elasticità L elasticità è la proprietà dei corpi soldi di tornare nella loro forma originale dopo avere subito una deformazione

Dettagli

RELAZIONE STRUTTURALE

RELAZIONE STRUTTURALE RELAZIONE STRUTTURALE DESCRIZIONE DELL OPERA. Si prevede di realizzare una passerella pedonale in acciaio per l accesso secondario alla grotta. La struttura è costituita da due travi parallele in acciaio

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

Formule per la verifica ed il progetto del rinforzo in FRP di pilastri rettangolari soggetti a pressoflessione deviata

Formule per la verifica ed il progetto del rinforzo in FRP di pilastri rettangolari soggetti a pressoflessione deviata Formule per la verifica ed il progetto del rinforzo in FRP di pilastri rettangolari soggetti a pressoflessione deviata Giorgio Monti, Silvia Alessandri Università di Roma La Sapienza Contenuti Approccio

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Tecnologia dei Materiali e Chimica Applicata

Tecnologia dei Materiali e Chimica Applicata Franco Medici Giorgio Tosato Tecnologia dei Materiali e Chimica Applicata Complementi ed esercizi Copright MMIX ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo,

Dettagli

RELAZIONE DI CALCOLO SCALA

RELAZIONE DI CALCOLO SCALA RELAZIONE DI CALCOLO SCALA La presente relazione è relativa alla verifica con il metodo delle tensioni ammissibili di una scala di collegamento verticale, del tipo a soletta rampante, realizzata in c.a.

Dettagli

LEZIONI N 24 E 25 UNIONI SALDATE

LEZIONI N 24 E 25 UNIONI SALDATE LEZIONI N 24 E 25 UNIONI SALDATE Le saldature si realizzano prevalentemente con il metodo dell arco elettrico, utilizzando elettrodi rivestiti, che forniscono il materiale di apporto. Il collegamento è

Dettagli

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

NORMATIVA DI RIFERIMENTO La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente: Sono illustrati con la presente i risultati dei calcoli che riguardano il progetto della scala in c.a da realizzarsi nel rifugio Cima Bossola in località Marciana NORMATIVA DI RIFERIMENTO La normativa

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli

Strutture in acciaio. Unioni

Strutture in acciaio. Unioni Strutture in acciaio Unioni Tipologie di unioni Chiodi o bulloni Sono puntuali Indeboliscono le sezioni Ripristinano solo parzialmente la continuità Si eseguono in opera con relativa facilità Saldatura

Dettagli

Horae. Horae Software per la Progettazione Architettonica e Strutturale VERIFICHE SEZIONI IN ACCIAIO

Horae. Horae Software per la Progettazione Architettonica e Strutturale VERIFICHE SEZIONI IN ACCIAIO VERIFICHE SEZIONI IN ACCIAIO - Classiicazione e veriica sezioni - Modelli sismo-resistenti dissipativi per le strutture in acciaio - Veriiche per gli elementi dissipativi - Applicazione della Gerarchia

Dettagli

Appunti di Costruzioni Edili

Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Progetto e verifica a flessione semplice, a taglio e a sforzo normale Acciaio, legno, calcestruzzo armato. - Metodo agli stati limite 1 1. ACCIAIO 1.1 Caratteristiche

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Le unioni. modulo D L acciaio. Unioni con chiodi

Le unioni. modulo D L acciaio. Unioni con chiodi 1 Le unioni Le unioni hanno la funzione di collegare i vari elementi strutturali per formare la struttura, oppure, se questa è di grandi dimensioni, di realizzare in officina i componenti principali che

Dettagli

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO

MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMI RESISTENTI IN ELEMENTI NON ARMATI A TAGLIO MECCANISMO RESISTENTE A PETTINE Un elemento di calcestruzzo tra due fessure consecutive si può schematizzare come una mensola incastrata nel corrente

Dettagli

CRITERI DI RESISTENZA DEI MATERIALI

CRITERI DI RESISTENZA DEI MATERIALI CRITERI DI RESISTENZA DEI MATERIALI Tutti i materiali da costruzione rimangono in campo elastico sino ad una certa entità delle sollecitazioni su di essi agenti. Successivamente, all incrementare dei carichi,

Dettagli

TRASMISSIONE AD INGRANAGGI. Università degli Studi di Bergamo Corso di Laurea in Ingegneria Meccanica Prof. Sergio Baragetti

TRASMISSIONE AD INGRANAGGI. Università degli Studi di Bergamo Corso di Laurea in Ingegneria Meccanica Prof. Sergio Baragetti TRASMISSIONE AD INGRANAGGI Corso di Laurea in Ingegneria Meccanica Prof. Sergio Baragetti GEOMETRIA DELLE RUOTE DENTATE La geometria delle ruote dentate si fonda sul modulo, m, dato da Dal modulo dipendono

Dettagli

Horae. Horae Software per la Progettazione Architettonica e Strutturale

Horae. Horae Software per la Progettazione Architettonica e Strutturale 1 IL MATERIALE X-LAM Nel programma CDSWin il materiale X-LAM pu ò essere utilizzato solo come elemento parete verticale. Quindi, dal punto di vista strutturale, il suo comportamento è prevalentemente a

Dettagli

6. Unioni bullonate. 6.1 Tecnologia delle unioni bullonate. 6.1.1 Classificazione dei bulloni. (aggiornamento 24-09-2009)

6. Unioni bullonate. 6.1 Tecnologia delle unioni bullonate. 6.1.1 Classificazione dei bulloni. (aggiornamento 24-09-2009) 6. Unioni bullonate (aggiornamento 24-09-2009) 6.1 Tecnologia delle unioni bullonate 6.1.1 Classificazione dei bulloni NTC - D.M. 14-1-2008 1 N.B. Il primo numero x 100 = f ub il secondo per il primo =f

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - II AGGIORNAMENTO 12/12/2014 Fondazioni dirette e indirette Le strutture di fondazione trasmettono

Dettagli

CALCOLO TEORICO DELLE CONNESSIONI

CALCOLO TEORICO DELLE CONNESSIONI CALCOLO TEORICO DELLE CONNESSIONI Relatore: INDICE: Connettori metallici a gambo cilindrico alle tensioni ammissibili Approccio di calcolo agli stati limite - Teoria di Johansen - Formule proposte dalle

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

Strutture Miste: Acciaio - Calcestruzzo

Strutture Miste: Acciaio - Calcestruzzo UNIVERSITA DEGLI STUDI DI MESSINA DIPARTIMENTO di INGEGNERIA CIVILE Strutture Miste: Acciaio - Calcestruzzo A. Recupero Introduzione A stretto rigore andrebbero definite strutture miste in acciaiocalcestruzzo

Dettagli

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche

Nel cemento armato si valorizzano le qualità dei due materiali: calcestruzzo e acciaio, che presentano le seguenti caratteristiche CEMENTO ARMATO METODO AGLI STATI LIMITE Il calcestruzzo cementizio, o cemento armato come normalmente viene definito in modo improprio, è un materiale artificiale eterogeneo costituito da conglomerato

Dettagli

BOZZA. a min [mm] A min =P/σ adm [mm 2 ]

BOZZA. a min [mm] A min =P/σ adm [mm 2 ] ezione n. 6 e strutture in acciaio Verifica di elementi strutturali in acciaio Il problema della stabilità dell equilibrio Uno degli aspetti principali da tenere ben presente nella progettazione delle

Dettagli

--- durezza --- trazione -- resilienza

--- durezza --- trazione -- resilienza Proprietà meccaniche Necessità di conoscere il comportamento meccanico di un certo componente di una certa forma in una certa applicazione prove di laboratorio analisi del comportamento del componente

Dettagli

IL RITORNO ELASTICO NELLA PIEGATURA DI LAMIERE D ACCIAIO: RILEVAMENTO SPERIMENTALE ED ANALISI DEI RISULTATI

IL RITORNO ELASTICO NELLA PIEGATURA DI LAMIERE D ACCIAIO: RILEVAMENTO SPERIMENTALE ED ANALISI DEI RISULTATI IL RITORNO ELASTICO NELLA PIEGATURA DI LAMIERE D ACCIAIO: RILEVAMENTO SPERIMENTALE ED ANALISI DEI RISULTATI Relatore: Prof. Antoniomaria Di Ilio Laureando: Dario Zulli 1 Il processo di piegatura rappresenta

Dettagli

PROPRIETÀ DEI MATERIALI

PROPRIETÀ DEI MATERIALI ESERCITAZIONE 1 PROPRIETÀ DEI MATERIALI SONO LE GRANDEZZE IL CUI VALORE DESCRIVE IL COMPORTAMENTO DEL MATERIALE IN PRESENZA DELLE DIVERSE SOLLECITAZIONI E CONDIZIONI DI SERVIZIO COSTITUISCONO L ELEMENTO

Dettagli

Esempio guida n. 1: Progettazione di un telaio tridimensionale in c.a. (modellazione in 3 minuti)

Esempio guida n. 1: Progettazione di un telaio tridimensionale in c.a. (modellazione in 3 minuti) Esempio guida n. 1: Progettazione di un telaio tridimensionale in c.a. (modellazione in 3 minuti) In questa semplice esercitazione di progettazione viene eseguito il calcolo completo di una struttura in

Dettagli

Parte I: Basi del progetto

Parte I: Basi del progetto XV XVII Introduzione Prefazione Parte I: Basi del progetto 3 CAP. 1 - LA CONCEZIONE STRUTTURALE 3 1.1 Carattere di una costruzione 5 1.2 La forma tecnica della costruzione in calcestruzzo armato 11 1.3

Dettagli

ALCUNE NOTE SULLA MODELLAZIONE FEM DELLE PLATEE DI FONDAZIONE IN C.A.

ALCUNE NOTE SULLA MODELLAZIONE FEM DELLE PLATEE DI FONDAZIONE IN C.A. Paolo Varagnolo Giorgio Pilloni ALCUNE NOTE SULLA MODELLAZIONE FEM DELLE PLATEE DI FONDAZIONE IN C.A. Ingegneri liberi professionisti Padova luglio 2010 ------------------------- Nella progettazione esecutiva

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Le molle. M. Guagliano

Le molle. M. Guagliano Le molle M. Guagliano Introuzione Le molle sono organi meccanici che hanno la proprietà i eformarsi molto sotto carico, ma rimaneno nel campo elastico el materiale i cui sono costituite, ovvero non accumulano

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Utilizza i TIRAFONDI PEIKKO!

Utilizza i TIRAFONDI PEIKKO! Sostituisce la brochure del 10/ 01 05 / 06 Utilizza i TIRAFONDI PEIKKO! www.peikko.it 1. DESCRIZIONE DEL SISTEMA... 3 2. DIMENSIONI E MATERIALI... 4 3. PRODUZIONE... 5 3.1 Metodi di produzione... 5 3.2

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3)

(7) Nel calcolo della resistenza di un collegamento ad attrito il coefficiente di attrito µ dipende: (punti 3) Domande su: taglio, flessione composta e collegamenti. Indica se ciascuna delle seguenti affermazioni è vera o falsa (per ciascuna domanda punti 2) (1) L adozione di un gioco foro-bullone elevato semplifica

Dettagli

BOZZA. Materiale muratura e verifiche per carichi verticali. Luca Salvatori. Dipartimento di Ingegneria Civile e Ambientale. Università di Firenze

BOZZA. Materiale muratura e verifiche per carichi verticali. Luca Salvatori. Dipartimento di Ingegneria Civile e Ambientale. Università di Firenze BOZZA Materiale muratura e verifiche per carichi verticali Luca Salvatori Dipartimento di Ingegneria Civile e Ambientale Università di Firenze Materiale Muratura 1 Il materiale muratura Materiale complesso

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Indice. Parte 1 Fondamenti 2. 1 Introduzione 3. 3 Analisi dei carichi e delle tensioni e deformazioni 65. 2 Materiali 29

Indice. Parte 1 Fondamenti 2. 1 Introduzione 3. 3 Analisi dei carichi e delle tensioni e deformazioni 65. 2 Materiali 29 Romane.pdf 19-09-2008 13:20:05-9 - ( ) Prefazione all edizione italiana Ringraziamenti Simboli xxi xix Parte 1 Fondamenti 2 1 Introduzione 3 xvii 1 1 Il progetto 4 1 2 La progettazione meccanica 5 1 3

Dettagli

Relazione di fine tirocinio. Andrea Santucci

Relazione di fine tirocinio. Andrea Santucci Relazione di fine tirocinio Andrea Santucci 10/04/2015 Indice Introduzione ii 1 Analisi numerica con COMSOL R 1 1.1 Il Software.................................... 1 1.1.1 Geometria................................

Dettagli

Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio

Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio PIANO DI LAVORO DEL DOCENTE anno scolastico 2015/2016 Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio MATERIA Progettazione, Costruzioni e Impianti classe e indirizzo 3A CTT n. ore settimanali:

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Le eventuali riproduzioni di tutto o parte del presente documento dovranno riportarne ben evidenziato l autore qui sotto riportato.

Le eventuali riproduzioni di tutto o parte del presente documento dovranno riportarne ben evidenziato l autore qui sotto riportato. ANALISI DELLA SEZIONE Programma AS per personal computer Manuale introduttivo (Marzo 2010) Sono vietate le riproduzioni non autorizzate Le eventuali riproduzioni di tutto o parte del presente documento

Dettagli

DISPENSA DI GEOMETRIA

DISPENSA DI GEOMETRIA Il software di geometria dinamica Geogebra GeoGebra è un programma matematico che comprende geometria, algebra e analisi. È sviluppato da Markus Hohenwarter presso la Florida Atlantic University per la

Dettagli

Capitolo Sedicesimo CENNO SULLE SUPERFICI

Capitolo Sedicesimo CENNO SULLE SUPERFICI Capitolo Sedicesimo CENNO SULLE SUPERFICI 1. L A N O Z I O N E D I S U P E R F I C I E In tutto il Capitolo, chiameremo dominio un sottoinsieme di  2 che sia la chiusura di un aperto connesso. Sono tali,

Dettagli