Serie numeriche. Riccarda Rossi. Analisi I. Università di Brescia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Serie numeriche. Riccarda Rossi. Analisi I. Università di Brescia"

Transcript

1 Serie numeriche Riccarda Rossi Università di Brescia Analisi I

2 Sommatoria Siano Con il simbolo I : insieme finito di indici (a i ) i I famiglia finita di numeri, al variare di i in I indichiamo la somma di tutti i numeri a i, al variare di i in I. i I a i

3

4 Definizione Sia data {a n } R. Costruiamo una nuova successione {s n } in questo modo s 0 := a 0, s 1 := a 0 + a 1, s 2 := a 0 + a 1 + a 2,... s n = a a n = n k=0 a k,... Supponiamo che {s n } non oscilli. Chiamiamo il lim n s n somma della serie e lo denotiamo con i simboli a n, n=0 n a n

5 Definizione Sia data {a n } R. La successione {s n } è detta successione delle somme parziali o ridotte della serie. Si dice che - la serie converge se {s n } converge; - la serie diverge (a + o a ) se {s n } diverge (a + o a ): scriveremo anche a n = + n=0 o a n = n=0 - la serie oscilla se lim n s n La proprietà di essere convergente, divergente o oscillante si dice anche carattere della serie.

6 Attenzione alla notazione

7 N.B.: non confondere {a n } con {s n } : s n = n k=0 a k

8

9 Osservazione: Una serie n a n risulta convergente se e solo se la successione delle somme parziali {s n } è una successione di Cauchy.

10

11 Esempio 1 Consideriamo a n = 1, n N.

12

13 Esempio 2 Consideriamo a n = ( 1) n, n N.

14

15 Esempio 3: la serie geometrica Sia q R. Consideriamo a n = q n, n N Chiamiamo serie geometrica di ragione q la serie + n=0 q n = q 0 + q 1 + q 2 + q (con la convenzione 0 0 = 1 se q = 0). Calcoliamo le ridotte della serie:

16

17

18 Calcolo della somma di una serie: ( ) 1 n = n=0 = 2. Calcoliamo n=1 ( ) 1 n 2 Calcoliamo n=2 ( ) 1 n 2

19 In generale: se modifichiamo l indice a partire dal quale sommo la serie n=0 a n n= k il carattere della serie non cambia. CAMBIA il valore della SOMMA. a n In generale: se modifichiamo i primi m termini di {a n }, il carattere della serie n a n non cambia. CAMBIA il valore della SOMMA.

20 Serie telescopiche Una serie + n=0 a n si dice telescopica, se esiste {b n } tale che a n = b n b n+1. Allora n s n = (b k b k+1 ) k=0 Quindi lim s n = b 0 lim b n+1 = b 0 n + n + lim n + b n determino immediat. carattere serie (dipende da lim n + b n ) calcolo la somma della serie = b 0 lim n + b n

21 Esempio: la serie di Mengoli Notare che Quindi Ora + n=0 + n=0 1 (n + 1)(n + 2) 1 (n + 1)(n + 2) = 1 n n (n + 1)(n + 2) = ( 1 n ) n + 2 s n = n k=0 Quindi, + 1 (n + 1)(n + 2) n=0 n=0 ( 1 k ) = 1 1 k + 2 n + 2

22 Dalla teoria dei limiti di successioni, otteniamo risultati su legami fra serie e operazioni. Teorema di linearità Siano {a n } e {b n } R e sia c R. Se le due serie n a n e n b n sono convergenti, allora anche n (a n + b n ) e n ca n lo sono e si ha: + n=0 (a n + b n ) = + n=0 + n=0 ca n = c a n + + n=0 a n. + n=0 b n, Vale anche per serie divergenti, pur di non avere forme indeterminate.

23

24 Condizione necessaria per la convergenza di una serie Sia n a n una serie convergente. Allora lim a n = 0 n + Dimostrazione:

25

26 Se lim a n 0, allora la serie + n + n=0 a n non converge. Che la successione sia infinitesima è solo una condizione necessaria, e non sufficiente!!! Per esempio: la serie armonica + n=1 diverge, ma lim n + a n = lim n + 1 n = 0. 1 n

27 La serie armonica generalizzata: + n=1 1, con α R. nα Si ha che - per α > 1 la serie CONVERGE - per α 1 la serie DIVERGE

28 Serie a termini non negativi Per serie a termini non negativi intendiamo + n=0 a n, tale che a n 0 n N. Osservazione fondamentale: in questo caso, la successione {s n } delle somme parziali è crescente: infatti Allora la serie NON È OSCILLANTE!!

29 In particolare, - n a n converge se {s n } è limitata (cioè se sup n N s n < + ) - n a n diverge se {s n } non è limitata (cioè se sup n N s n = + )

30 Teorema Sia + n=0 a n una serie a termini non negativi. Allora: 1. la successione delle somme parziali {s n } è crescente; 2. la serie + n=0 a n non oscilla e si ha + n=0 a n = sup s n = sup n N n N n a k. k=0 Osservazione La tesi continua a valere se + n=0 a n è una serie termini definitivamente non negativi, cioè n 0 N : n n 0 a n 0.

31 Cosa succede se + n=0 a n è una serie a termini (definitivamente) non positivi???

32 Criteri di convergenza per serie a termini non negativi Sappiamo che + n=0 a n con a n n N (oppure n n 0 ) converge oppure diverge. criteri per stabilire il carattere di + n=0 a n. 1. Criterio del confronto Siano n a n e n b n a termini non negativi, tali che m N : n m 0 a n b n. Allora, 1. se n b n converge, anche n a n converge. 2. se n a n diverge, anche n b n diverge.

33 Esempi: 1. La serie + 2 n n n=1 CONVERGE.

34 2. La serie + n=1 2 + sin(n) n 1/2 DIVERGE.

35 3. La serie + n=2 1 log n DIVERGE.

36 Più in generale, la serie + n=2 1 n ln(n) λ, con λ R - per λ > 1 CONVERGE - per λ 1 DIVERGE

37 2. Criterio del confronto asintotico Siano n a n e n b n due serie a termini non negativi, con e tali che b n > 0 n m, a n lim = L [0, + ]. n + b n Allora 1. se L ]0, + [, n a n converge se e solo se n b n converge; 2. se L = 0 e n b n converge, allora n a n converge; 3. se L = + e n b n diverge, allora n a n diverge.

38 Esempi: 1. La serie n=1 arctan(n) n 1/3 DIVERGE.

39 2. La serie n=0 3n 5 + 3n 3 + 5n n 6 + n 7 + n Verifico la condizione necessaria: CONVERGE.

40 Applico il criterio del confronto asintotico

41 3. La serie + n=0 1 n! CONVERGE.

42 4. La serie n=2 1 log(n) 6 DIVERGE

43 E se l avessimo confrontata con???? + n=1 1 n 6 (CONVERGENTE)

44 3. Criterio asintotico del rapporto Sia {a n } una successione (definitivamente) strettamente positiva, cioè a n > 0 n N (o per n n 0 ). Inoltre, a n+1 lim n + a n = L [0, + ]. Allora 1. se L < 1, la serie n a n converge ; 2. se L > 1, allora la serie n a n diverge ; 3. se L = 1, allora il criterio è inefficace.

45 Esempi: 1. Sia c > 0. La serie + n=0 c n n! CONVERGE.

46 2. Sia q > 0. Consideriamo n Osserviamo che, per ogni β > 0 q n, con β > 0. nβ lim n + a n+1 a n

47 Quindi - per q < 1, la serie converge per ogni β > 0. - per q > 1, la serie diverge per ogni β > 0. Per q = 1, ci riduciamo alla serie armonica generalizzata n 1, con β > 0. nβ

48 SE a n+1 lim = 1, n + a n il criterio NON DICE NULLA. La serie n a n può convergere o divergere. Infatti, - la serie e + n=1 1 n ln(n) DIVERGE lim n + a n+1 a n

49 - la serie e + n=1 lim n + a n+1 a n 1 n 2 DIVERGE

50 4. Criterio asintotico della radice Sia {a n } R una successione (definitivamente) non negativa, cioè a n > 0 n N (o per n n 0 ). Inoltre, lim n + n an = L [0, + ]. Allora 1. se L < 1, allora la serie n a n converge ; 2. se L > 1, allora la serie n a n diverge ; 3. se L = 1, allora il criterio è inefficace.

51 Esempi: 1. La serie x n n n CONVERGE x > 0. n=1

52 2. Consideriamo la serie n=1 n 3 x n. Quindi converge se 1 x < 1 x > 1 diverge se 1 x > 1 x < 1 Se x = 1, ritrovo la serie n=1 n3, divergente.

53 Proposizione Sia a n > 0 per ogni n > 0 (o definitivamente). Se a n+1 lim = L, n + a n allora anche lim n + n an = L. In particolare se il criterio del rapporto risulta inefficace (L = 1), allora lo è anche quello della radice.

54 Per esempio, nel caso della serie armonica generalizzata n=1 1 n α - per α > 1 la serie CONVERGE - per α 1 la serie DIVERGE

55 5. Criterio di condensazione di Cauchy Sia {a n } una successione decrescente e non negativa (definitivamente). Allora le due serie a n converge SE E SOLO SE n 2 n a 2 n converge. n Applicazione per stabilire il carattere di n 1 n α

56 Esaminiamo le serie con termini di segno variabile criteri di convergenza???? Un primo risultato generale è Teorema Data {a n } R, supponiamo che la serie n a n sia convergente. Allora: 1. anche n a n è convergente 2. n a n n a n.

57 Dimostrazione: 1. Osserviamo che a n = b n c n con b n = max(a n, 0), c n = max( a n, 0) b n è detta parte positiva di a n e denotata (a n ) + c n è detta parte negativa di a n e denotata (a n )

58

59

60

61 Definizione: Convergenza assoluta Sia {a n } R. La serie n a n si dice - assolutamente convergente se è convergente la serie n a n. - semplicemente convergente è convergente la serie n a n ma NON la serie n a n.

62 Esempio n=0 3 n n! ASSOLUTAMENTE convergente

63 Esempio n=2 ( 1) n n ln(n) SEMPLICEMENTE convergente

64 Esempio n=0 cos(nπ) 2 n2 ASSOLUTAMENTE convergente

65 Esempio n=2 cos(nπ) ln(n) 1/2 SEMPLICEMENTE convergente

66 SERIE NOTEVOLI ognuna delle serie seguenti converge assolutamente per i valori di x specificati per ognuna delle serie seguenti è nota la SOMMA della serie le formule seguenti sono DA MEMORIZZARE + n=0 x n = 1, x R, x < 1; 1 x

67 + n=0 x n n! = ex x R; + n=0 ( 1) n x 2n (2n)! = cos x x R; + n=0 ( 1) n+1 x 2n+1 (2n + 1)! = sin x x R;

68 + n=1 ( 1) n+1 x n n = log(1 + x) x R : 1 < x 1; + n=0 ( 1) n x 2n+1 (2n + 1) = arctan x x R : 1 x 1; + n=0 x 2n (2n)! = cosh x, x R + n=0 x 2n+1 = sinh x x R (2n + 1)!

69 Serie di segno alterno ( 1) n a n, dove a n 0 n N (o definitivamente). n Criteri di convergenza?? convergenza assoluta convergenza della serie, quindi a n converge ( 1) n a n converge. n n

70 E se n a n diverge??? Si può dimostrare la convergenza di n ( 1)n a n applicando il Teorema (Criterio di Leibniz) Si consideri n ( 1)n a n, con a n 0 n N (o definitivamente). Supponiamo che 1. {a n } sia una successione decrescente; 2. {a n } sia una successione infinitesima, cioè lim n + a n = 0. Allora la serie n ( 1)n a n è convergente. Inoltre, detta {s n } la successione delle somme parziali, si ha che: (i) {s 2n } (la successione delle somme parziali con indice pari) è decrescente; (ii) {s 2n+1 } (la successione delle somme parziali con indice dispari) è crescente; + (iii) vale la seguente stima: s n ( 1) k a k a n+1 n N k=0

71 Dimostrazione (della prima parte). Passo 1: usiamo il fatto che a n è decrescente: si ha (1) {s 2n }, la successione delle somme parziali con indice pari, è decrescente, infatti

72 (2) {s 2n+1 }, la successione delle somme parziali con indice dispari, è crescente. Si dimostra ragionando esattamente come per {s 2n }. Passo 2: {s 2n } è limitata, infatti: (1) è superiormente limitata in quanto decrescente: s 2n s 0 ; (2) è inferiormente limitata in quanto Analogamente si dimostra che {s 2n+1 } è superiormente limitata, quindi limitata.

73 Passo 3: (1) {s 2n } decrescente e limitata {s 2n } converge a L = inf n s 2n ; (2) {s 2n+1 } crescente e limitata {s 2n+1 } converge a L = sup n s 2n+1 ; (3) Siccome s 2n+1 s 2n e lim n a n = 0, concludiamo che 0 = lim n (s 2n+1 s 2n ) = lim n s 2n+1 lim n s 2n = L L. (4) Allora {s 2n } e {s 2n+1 } convergono a stesso limite L (5) Quindi tutta {s n } converge a L, cioè + n=0 ( 1)n a n è convergente.

74

Serie Numeriche. Docente:Alessandra Cutrì

Serie Numeriche. Docente:Alessandra Cutrì Serie Numeriche Docente:Alessandra Cutrì Definizione di Serie Somma formale di un numero infinito di addendi. È un operazione che è in stretta relazione con quella di integrale improprio. data un successione

Dettagli

Serie a termini di segno non costante

Serie a termini di segno non costante Serie a termini di segno non costante Definizione (Convergenza semplice e assoluta) Se una serie converge, cioè la sua somma esiste ed è finita, si dice anche che la serie converge semplicemente: an =

Dettagli

SERIE NUMERICHE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Serie numeriche cap5c.pdf 1

SERIE NUMERICHE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Serie numeriche cap5c.pdf 1 SERIE NUMERICHE c Paola Gervasio - Analisi Matematica - A.A. 208/9 Serie numeriche cap5c.pdf Serie numerica Definizione. Sia a k : N R una successione definita per k k 0. La sommatoria (di infiniti addendi)

Dettagli

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo. Facoltà di Ingegneria Civile e Industriale Analisi Matematica 1 Serie numeriche (Parte 2) Dott. Ezio Di Costanzo ezio.dicostanzo@sbai.uniroma1.it Definizione Data la serie + n=0 a n si definisce resto

Dettagli

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1.

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1. 44 Roberto Tauraso - Analisi 2 e quindi la somma parziale s N è uguale a N N s N n(n + ( n n + n N n n N+ n n N +. n2 N n N n n + dove nell ultimo passaggio si sono annullati tutti i termini opposti tranne

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

a j n + convergente divergente irregolare.

a j n + convergente divergente irregolare. Serie numeriche Definizione Data una successione reale {a j } + successione delle somme parziali n esime come: n s n a j, jj il cui limite, per n + : jj R, si definisce la s lim s n n + jj a j è detto

Dettagli

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1 46 Roberto Tauraso - Analisi 2 Esempio 3.6 Determinare il carattere della serie Applichiamo il criterio del rapporto: n n. a n+ a n (n +! nn (n + nn (n + n+ (n + n n n+ (n + ( n + n e. n Dato che e

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni Analisi A 1 / 35 Definizione Una successione a valori reali è una funzione f : N R

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Serie numeriche Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi

Dettagli

Successioni numeriche (II)

Successioni numeriche (II) Successioni numeriche (II) Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni (II) Analisi A 1 / 52 Forme indeterminate associate a funzioni razionali fratte:

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Successioni Analisi Matematica 1 1 / 48 Definizione Una successione a valori reali è

Dettagli

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n:

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n: Serie numeriche.6 Esercizi. Scrivere il termine generale a n delle seguenti successioni e calcolare a n: a),, 4, 4 5,... b), 9, 4 7, 5 8,... c) 0,,,, 4,.... Studiare il comportamento delle seguenti successioni

Dettagli

Analisi Matematica 1 Trentaduesima lezione. Serie

Analisi Matematica 1 Trentaduesima lezione. Serie Analisi Matematica 1 Trentaduesima lezione Serie prof. Claudio Saccon Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://saccon.blog.dma.unipi.it Ricevimento:

Dettagli

Serie di funzioni: esercizi svolti

Serie di funzioni: esercizi svolti Serie di funzioni: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. seguenti serie di funzioni: Studiare la convergenza normale, uniforme,

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI

SUCCESSIONI E SERIE NUMERICHE E DI FUNZIONI SERIE NUMERICHE Si consideri una successione di elementi. Si definisce serie associata ad la somma Per ogni indice della successione, si definisce successione delle somme parziali associata a la somma

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Serie di funzioni. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di funzioni. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di funzioni Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di funzioni Analisi Matematica 2 1 / 20 Serie di funzioni Sia I un intervallo di R

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA f = 2 arctan 2) log e 2 αx α sin x + 2x + x 6 + x + n n 2 log n xe x dx al variare di a R x a e x dx Tempo: due ore e mezza Viene corretto solo ciò che è scritto sul foglio intestato È vietato tenere

Dettagli

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Serie numeriche, serie di potenze, serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorato di analisi 1 Alen Kushova Collegio Volta 1 / 9 Introduzione Serie Serie Geometrica Criterio del confronto (anche asintotico) Criterio del rapporto e della radice Criterio della convergenza assoluta

Dettagli

Soluzioni foglio 8. Pietro Mercuri. 13 novembre 2018

Soluzioni foglio 8. Pietro Mercuri. 13 novembre 2018 Soluzioni foglio 8 Pietro Mercuri novembre 08 Esercizio Determinare il carattere delle seguenti serie numeriche, cioè dire se sono convergenti, divergenti o indeterminate. Nel caso siano convergenti, calcolare

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor

Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor Capitolo 6 Serie numeriche Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor f(x) = nx k=0 f (k) (x 0 ) (x x 0 ) k + o((x x 0 ) n

Dettagli

ESERCIZI A TEST SULLE SERIE. (con soluzioni) N.B. delle 4 risposte elencate una sola è corretta

ESERCIZI A TEST SULLE SERIE. (con soluzioni) N.B. delle 4 risposte elencate una sola è corretta ESERCIZI A TEST SULLE SERIE (con soluzioni) N.B. delle 4 risposte elencate una sola è corretta . E data la serie: dove a R. Allora: ( ) 3a n +a (a) se a = la serie converge a (b) se a = 3 la somma della

Dettagli

Analisi Matematica 1 Trentaquattresma lezione. Serie

Analisi Matematica 1 Trentaquattresma lezione. Serie Analisi Matematica 1 Trentaquattresma lezione Serie prof. Claudio Saccon Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://saccon.blog.dma.unipi.it

Dettagli

Federico Lastaria. Analisi e Geometria 1. Numeri reali 1/25

Federico Lastaria. Analisi e Geometria 1. Numeri reali 1/25 Massimi e minimi Definizione (Massimo) Sia X R un sottoinsieme non vuoto. Si dice che M R è il massimo di X (e si scrive M = max X ) se: M X ; x X, x M. Definizione (Minimo) Sia X R un sottoinsieme non

Dettagli

Esercizi svolti. Esercizio 1.1 Verificare se è soddisfatta la condizione necessaria, e nel caso non lo sia osservare che la serie non può convergere:

Esercizi svolti. Esercizio 1.1 Verificare se è soddisfatta la condizione necessaria, e nel caso non lo sia osservare che la serie non può convergere: Serie numeriche Esercizi svolti Serie numeriche. Condizione necessaria Esercizio. Verificare se è soddisfatta la condizione necessaria, e nel caso non lo sia osservare che la serie non può convergere:.

Dettagli

Limiti di funzioni di una variabile

Limiti di funzioni di una variabile Capitolo 6 Limiti di funzioni di una variabile 6.1 Limiti all infinito La definizione di ite data per le successioni si può immediatamente trasportare al caso di una funzione definita in un qualunque insieme

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

VERSIONE PRELIMINARE Lezioni di Analisi Matematica 3 corso di Laurea in Fisica a.a

VERSIONE PRELIMINARE Lezioni di Analisi Matematica 3 corso di Laurea in Fisica a.a Lezioni di Analisi Matematica 3 corso di Laurea in Fisica a.a. 2005-06 G. Molteni, M. Vignati Notazioni I vettori di R n e le funzioni a valori in R n sono indicate in grassetto, per cui si dirà v R n

Dettagli

ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie

ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA I Corso di laurea in Ingegneria Elettrotecnica A.A: 2018/2019 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA I Corso di laurea in Ingegneria Elettrotecnica A.A: 2018/2019 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA I Corso di laurea in Ingegneria Elettrotecnica A.A: 2018/2019 Codocente: Dott. Salvatore Fragapane Lezione 1-28/09/2018, dalle 10.00 alle 12.00 in aula 7 - Numeri

Dettagli

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI Consideriamo l insieme R = R {, + } ottenuto aggiungendo all insieme dei numeri reali i simboli e +. Introduciamo in

Dettagli

Serie numeriche. 1 Nozioni generali

Serie numeriche. 1 Nozioni generali Serie numeriche Nozioni generali Con il concetto di serie si affronta il problema di dare un senso alla somma di infiniti addendi ordinati in successione. Data una successione (a k ) k N di numeri reali,

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Principali insiemi di numeri

Principali insiemi di numeri Principali insiemi di numeri N = {0,1,2,...} insieme dei numeri naturali o anche interi non negativi Z = N { 1, 2, 3,...} insieme dei numeri interi Q = { n m } : n,m Z, m 0 insieme dei numeri razionali

Dettagli

Successioni Numeriche

Successioni Numeriche Successioni Numeriche 1. Siano ( ) e (b n ) due successioni positive tali che lim = lim b n = l IR. A. log log b n per n +. B. e an e bn per n +. 2. Sia ( ) una successione convergente e (b n ) una successione

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

ESERCIZI DI ANALISI MATEMATICA 1, FOGLIO 5 LAUREA IN INGEGNERIA TLC., INFO. E ORG. UNIVERSITA DEGLI STUDI DI TRENTO

ESERCIZI DI ANALISI MATEMATICA 1, FOGLIO 5 LAUREA IN INGEGNERIA TLC., INFO. E ORG. UNIVERSITA DEGLI STUDI DI TRENTO ESERCIZI DI ANALISI MATEMATICA, FOGLIO 5 LAUREA IN INGEGNERIA TLC., INFO. E ORG. UNIVERSITA DEGLI STUDI DI TRENTO prof. F. Serra Cassano, F. Bigolin Limiti di funzioni Esercizio. (Polinomi) Sia f() un

Dettagli

Tre serie fondamentali

Tre serie fondamentali Tre serie fondamentali Discuteremo ora brevemente, ma con tante figure, il comportamento di tre serie particolari. Capire il comportamento di ciascuna delle tre serie dovrebbe aiutare molto la comprensione

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09 UNIVERSITA DEL SALENTO Prova scritta di ANALISI MATEMATICA I 19/01/09 1 Determinare sup/inf max/min) e insieme dei punti di accumulazione del seguente insieme: E = {x R e x 5e x + 6) arctan x 1 x) < 1}

Dettagli

Nozioni di base - Quiz - 2

Nozioni di base - Quiz - 2 Nozioni di base - Quiz - Rispondere ai seguenti quesiti (una sola risposta è corretta).. L insieme delle soluzioni della disequazione (a) (0, ) (, + ) (x ) log(x) x + 0 è: (b) [, ] (c) (d) (e) (, + ) (0,

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2017/18)

Diario del corso di Analisi Matematica 1 (a.a. 2017/18) Diario del corso di Analisi Matematica 1 (a.a. 2017/18) 22 settembre 2017 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 25 settembre

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 15/04/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 15/04/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 5/04/03 D.BARTOLUCCI, D.GUIDO. Integrali Impropri Esercizio. (CRITERIO DEL CONFRONTO). Dimostrare che se f : (a, b] R e g(x) : (a, b] R sono integrabili

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

Correzione del compito di Analisi 1 e 2 del giorno 09/06/2017

Correzione del compito di Analisi 1 e 2 del giorno 09/06/2017 Correzione del compito di Analisi e 2 del giorno 9/6/27 Stra Federico 5 giugno 27 Esercizio Studiare, al variare di α R e R, la convergenza assoluta e la convergenza semplice della serie n n sin/n cos/n

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica (1 modulo) - a.a.

Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica (1 modulo) - a.a. Corso di Laurea in Ingegneria per l Ambiente e il Territorio - sede distaccata di Latina Corso di Analisi Matematica ( modulo) - a.a. 00/04 APPUNTI INTEGRATIVI SUI CRITERI DI CONVERGENZA PER LE SERIE Serie

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione.

Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati siano stati dimostrati a lezione. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - C. Vagnoni 1 Nota: A meno che non sia specificato diversamente, si intende che i teoremi, lemmi, proposizioni sotto menzionati

Dettagli

Matematica. 12. Serie. Giuseppe Vittucci Marzetti 1

Matematica. 12. Serie. Giuseppe Vittucci Marzetti 1 Matematica 2. Serie Giuseppe Vittucci Marzetti Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 208-9 Dipartimento

Dettagli

Calcolo differenziale II

Calcolo differenziale II Calcolo differenziale II Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate (II) Analisi Matematica 1 1 / 36 Massimi e minimi Definizione Sia A R, f

Dettagli

Soluzione esercizi 28 ottobre 2011

Soluzione esercizi 28 ottobre 2011 ANALISI Soluzione esercizi 8 ottobre 0 4.. Esercizio. Siano α e β due numeri reali tali che la loro somma e la loro differenza siano razionali: provare che allora essi sono entrambi razionali. Il teorema

Dettagli

Analisi Matematica I

Analisi Matematica I Università di Pisa - orso di Laurea in Ingegneria Edile-Architettura Analisi Matematica I Pisa, settembre omanda La funzione f : R R definita da f(x) = x + e x A) non è né iniettiva né surgettiva ) è iniettiva

Dettagli

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A SOLUZIONI COMPITO del /0/0 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A Esercizio Osserviamo che la serie proposta è a termini di segno

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Esercizi di Analisi Matematica I. Andrea Corli e Alessia Ascanelli

Esercizi di Analisi Matematica I. Andrea Corli e Alessia Ascanelli Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli 6 settembre 5 ii Indice Introduzione v Nozioni preinari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k,

k=0 a k k=0 a k, quando si voglia precisare qual è l indice iniziale: si possono infatti considerare anche serie del tipo k=1 a k, k=50 a k, 2.2 Serie Le serie numeriche sono semplicemente successioni reali o complesse di tipo particolare, che però, per la loro importanza pratica e teorica, meritano una trattazione a parte. Data una successione

Dettagli

Argomento delle lezioni del corso di Analisi A.A

Argomento delle lezioni del corso di Analisi A.A Argomento delle lezioni del corso di Analisi A.A.2011-2012 30 gennaio 2012 Lezione 1-2 (5 ottobre 2011) Numeri naturali, interi, razionali. Definizione intuitiva dei reali attraverso la retta. Definizione

Dettagli

Serie di Taylor. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Taylor. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 1 / 16 Serie di Taylor Il nostro obiettivo è di scrivere

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2017/18 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

INTEGRALI IMPROPRI. Esercizi svolti

INTEGRALI IMPROPRI. Esercizi svolti INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a c d e f / + 5 d arctan + d 8 + 4 5/ + e + d 9 + 8 + + d 4 d. d. Usando la definizione di integrale

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2018/19 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza ANALISI MATEMATICA - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Vicenza, 4 settembre 7 TEMA Esercizio [ punti] Si consideri la funzione

Dettagli

Secondo semestre. Successioni numeriche

Secondo semestre. Successioni numeriche Registro delle lezioni del corso di Analisi Matematica Università di Firenze - Scuola di Ingegneria Corso di Laurea in Ingegneria Meccanica Meccanica e Gestionale E N a.a. 2016/17 - Prof. M.Patrizia Pera

Dettagli

Tempo a disposizione: 120 minuti. Svolgere tre dei quattro esercizi proposti. 1 Studiare, al variare del parametro reale k 0, l insieme numerico

Tempo a disposizione: 120 minuti. Svolgere tre dei quattro esercizi proposti. 1 Studiare, al variare del parametro reale k 0, l insieme numerico Università degli Studi di Catania Anno Accademico 213-214 Corso di Laurea in Fisica Prova scritta di Analisi Matematica 1[A-L](12 CFU) 8 Settembre 214 Tempo a disposizione: 12 minuti. Svolgere tre dei

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2018/19)

Diario del corso di Analisi Matematica 1 (a.a. 2018/19) Diario del corso di Analisi Matematica 1 (a.a. 2018/19) 17 settembre 2018 (2 ore) [Presentazione del corso di studi, da parte del Direttore di Dipartimento.] 19 settembre 2018 (2 ore) Presentazione del

Dettagli

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante)

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Corso di laurea in Fisica, a.a. 2015/16 Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Prima prova in itinere 13 novembre 2015 I Regolamento. Annerire in modo evidente un opzione a scelta fra

Dettagli

Lezione 11 (30 novembre)

Lezione 11 (30 novembre) Lezione 11 (30 novembre) Teorema di De l Hopital Massimi e minimi assoluti e relativi Funzioni limitate superiormente e inferiormente Legame tra derivata prima e crescita e decrescita della funzione Derivata

Dettagli

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) =

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) = ANALISI MATEMATICA - Traccia di soluzioni Commissione F. Albertini, L. Caravenna e V. Casarino Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Esercizio, Tema [9 punti] Vicenza, settembre 06 Si

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

SUCCESSIONI DI NUMERI REALI

SUCCESSIONI DI NUMERI REALI SUCCESSIONI DI NUMERI REALI Una funzione reale di una variabile reale di dominio A è una legge che ad ogni x Α associa un numero reale che denotiamo con f(x). Se A = IN, la f è detta successione di numeri

Dettagli

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A.2015-2016 22 SETTEMBRE 2015 3 ore 14-17 Insiemi e operazioni tra insiemi. Numeri reali. Assiomi dei numeri

Dettagli

n k. Confronto: se a n b n e b n tende a 0 allora lo stesso

n k. Confronto: se a n b n e b n tende a 0 allora lo stesso . DIARIO DELLE LEZIONI 28 settembre: Informazioni generali e presentazione. Insiemi numerici N, Z, Q. Rappresentazione sulla retta. Non esistenza della radice quadrata di 2 in Q. Sommatoria. Progressione

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Funzioni continue Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Funzioni continue Analisi Matematica 1 1 / 44 Funzioni continue Definizione Siano f : A

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Elementi di analisi matematica

Elementi di analisi matematica Elementi di analisi matematica Prove in itinere dal 6 Prova in itinere del dicembre 6 Esercizio Si calcoli, se esiste, x ln( + sin x) sin x ln( + x). x + x sin x Esercizio Si descrivano le principali proprietà

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione

PROGRAMMA di Analisi Matematica 1 A.A , canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione PROGRAMMA di Analisi Matematica A.A. 204-205, canale 3, prof.: Francesca Albertini Ingegneria area dell Informazione Testo Consigliato: - Analisi Matematica, Teoria e Applicazioni, A. Marson, P. Baiti,

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 23 novembre 2004 Capitolo Serie numeriche. Sommatorie Data

Dettagli

Corso di Analisi A.A. 2016/2017 Argomenti delle lezioni

Corso di Analisi A.A. 2016/2017 Argomenti delle lezioni Corso di Analisi A.A. 206/207 Argomenti delle lezioni lezione. Mercoledí 5 ottobre. 2 ore. Contare e misurare. I numeri naturali. Proprietá dei numeri naturali: elemento minimo, successivo, non itatezza

Dettagli