UNITÀ DIDATTICA. Le funzioni e grafici di funzioni; trasformazione del grafico di una funzione.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "UNITÀ DIDATTICA. Le funzioni e grafici di funzioni; trasformazione del grafico di una funzione."

Transcript

1 UNITÀ DIDATTICA Le funzioni e grafici i funzioni; trasformazione el grafico i una funzione. Aspetti iattici e metoologie nell utilizzo i DERIVE per affrontare il problema. Classe i concorso A49 Anno 006/007 Bernari Eros

2 Introuzione L insegnamento ella matematica ha a sempre operato su ue fronti: risolvere i problemi e matematizzare la realtà esterna, simboleggiare e formalizzare, attraverso moelli interpretativi i propri strumenti i lettura. Questi ue aspetti, fra loro ivergenti, interagiscono vicenevolmente, accresceno la formazione e l intelligenza egli stuenti,poiché: promuovere le facoltà intuitive e logiche, euca ai processi euristici e ai processi astrazione e formalizzazione ei concetti, esercita a ragionare inuttivamente e euttivamente, sviluppa le attituini sia analitiche che sintetiche. Queste finalità evono concorrere in armonia con l insegnamento elle altre iscipline, alla crescita culturale e formativa ei giovani. Il cambiamento ella scuola italiana impone sia con programmi ministeriali e anche con un bisogno effettivo un maggior utilizzo el mezzo informatico per facilitare queste finalità

3 Le funzioni e i grafici i funzione; trasformazione el grafico i funzione. Collocazione curricolare. Tale unita iattica si svolgerà in parallela alle altre unità iattiche programmate per una classe quinta i un liceo scientifico. Uneno al programma i calcolo simbolico ell anno quinto, l utilizzo i un software DERIVE per meglio inquarare il problema e appassionare gli stuenti allo stuio ell analisi matematica. Tale unità iattica si prefigge lo scopo i facilitare lo stuente nello svolgere il programma i analisi el quinto anno, in moo che si avvicinarlo allo stuio ella matematica in maniera intuitivo e sappia utilizzare tutti gli strumenti che il mono gli offre per potersi risolve i propri problemi. Unita iattica. Prerequisiti. Paronanza el calcolo letterario. Concetto i insieme e relativa simbologia. Concetto i piano cartesiano. Conoscenza ella geometria i base. Conoscenza ell informatica i base. Finalità. Matematizazione el reale. Formalizzazione. Costruzione i moelli. Acquisizione el lessico corretto e appropriato. Capacità i collegare la matematica allo strumento informatico. 1

4 Utilizzo consapevole e critico el software iattico. Conoscenza ei limiti i tale software. Obbiettivi. Conoscenze. Concetto i funzione, i ominio e coominio. Riconoscere i vari tipi i funzioni elementari. Punti i intersezione i una funzione con gli assi coorinati. Concetto i limite. Concetto i erivata e retta tangente a una funzione. Massimi minimi e flessi i una funzione. Grafico i funzioni e relazione con i punti fonamentali. Capacità Uso consapevole ella efinizione associata al proceimento i calcolo. Deurre il grafico i una funzione ottenuto come manipolazione i una funzione elementare. Determinazione i ominio e segno. Determinazione intersezione con gli assi coorinati Determinare limiti e asintoti. Determinare massimi minimi e flessi. Competenze Comprenere i proceimenti applicativi. Sapere utilizzare il software i calcolo in maniera opportuna. Comprenere il significato e l uso el moello. Sapere rilevare gli errori.

5 Funzioni Elementari Questa tesina vuole mostrare come lo strumento informatico sia molto utile nel regolare svolgimento el programma el quinto anno i un liceo quano si entra in contatto con lo stuio i una funzione. Sicuramente è necessario spenere un po i tempo per mostrare le varie funzioni el programma DERIVE e tutti i suoi comani. Prima i portali sul programma mostro qui sopra, in classe richiamo i grafici i tutte le funzioni elementari: retta y = parabola y = iperbole y = 1 esponenziale y = e logaritmica y = ln trigonometriche y = sin y = cos y = tg y = ctg 3

6 Normalmente gli stuenti appreno l uso el programma fin a subito in maniera molto veloce e intuitivo, opo qualche tentativo si ivertono a isegnare la maggio parte elle funzioni che fino a ora hanno stuiato. Una volta che hanno compreso lo strumento grafico i funzione i Derive, inizio con la classe lo stuio el grafico i una funzione eucenolo come trasformazione i una funzione elementare. Una elle funzioni che richieo isegnino con DERIVE è #1: f() y = eucenola la y = #: y = f() 4

7 La grafica e il isegno rene subito molto chiaro come agisca il valore assoluto e subito si cimentano anche nella visualizzazione ei valor assoluti elle alteri funzioni. Quini mostro come si possa traslare ottenere una simmetria centrale assiale i una parabola, una retta, elle funzioni trigonometriche logaritmiche e esponenziali. #1: f() Preniamo la traslazione : #: = - #3: y = y - #4: y = f() #5: y - = f( - ) 5

8 Ora ottengo la parabola simmetrica rispetto all asse y e poi all origine. #6: = - #7: y = y #8: y - = f(- - ) #9: = - #10: y = -y #11: -y - = f(- - ) Naturalmente tutte queste cose sono gia state stuiate negli anni preceenti, richiamare alla mente queste spiegazione iattiche con l utilizzo i erive e i grane effetto. 6

9 Ora solitamente mostro come si possa ottenere il grafico i una funzione come reciproca i una ata. Disegnano prima la funzione poi le rette y = 1 e y = 1, osservano che i punti che si trovano su queste rette rimangono fisse e che quano la funzione i partenza tene all infinito la reciproca va a zero e viceversa. #1: f() - 4 #: y = 1 #3: y = -1 1 #4: y = f() 7

10 Preiamo ora in consierazione le funzioni trigonometriche, come prima accortezza faccio cambiare il fattore i scala sull asse e lo posiziono in π in noo che risulti il più possibile i facile visualizzazione; quini mostro alcune manipolazioni che contraggono e ilatano tali funzioni, osservano cosa succee al perioo. #1: f() SIN() #: y = f(3 ) #3: y = f() Inoltre i ogni funzione isegnata euciamo sempre ominio conominio, se è pari o ispari eventuali massimi e minimi, intersezione con glia assi, consieriamo gli intervalli ove e positiva e negativa. 8

11 Le Funzioni Inverse. Una volta illustrato quano una funzione ammette inversa, o come si può localmente invertire una funzione li porto a isegnare i grafici i alcune funzione e elle loro inverse faceno notare che sono simmetrici rispetto alla bisettrice el primo e terzo quarante. Introuco la funzione y = e, faccio trovare la sua inversa con il comano Risolvi>Espressione faceno risolvere l espressione rispetto a reale, per tracciare il grafico bisogna scambiare la con la y, ora faccio aprire il menu Semplifica>Sostituisci variabili e si scambiano le ue variabili. Tracciamo i grafici elle funzioni così ottenute e in fine inseriamo la retta #1: y = e #: SOLVE(y = e,, Real) #3: = LN(y) #4: y = LN() y = #5: y = 9

12 Limiti i funzioni Con gli spunti seguenti si vuole mostrare come introurre il concetto i limite servenosi i metoi numerici e grafici. Il calcolo el limite può essere fato irettamente con DERIVE, a mio parere risulta molto più utile un approccio i tipo grafico numerico, che aiuta a comprenere in la spiegazione teorica. Definizione Sia y = f () una funzione efinita su un insieme numerico A e avente valori in R; sia 0 un punto i accumulazione i A. Si ice che, per c tenente a 0, la funzione f () tene a limite L, e si scrive lim o f ( ) = L Se, scelto a arbitrio un numero ε piccolo a piacere, si può corrisponentemente eterminare un intorno V i 0 tale che per ogni appartenente all insieme seguente isuguaglianza A V e iverso a 0 valga la f ( ) L < ε Esprimenoci in moo meno rigoroso, possiamo ire che L è il limite i f () per tenente a 0 se, all avvicinarsi i a 0 il valore i f () finisce prima o poi per ifferire a L meno i ε. Un approccio numerico come primo visione ella efinizione risulta utile e con l utilizzo i DERIVE si ovvia al problema i numerosi calcoli e quini si ottimizzano i tempi ella spiegazione. Con l utilizzo el comano VECTOR ci avviciniamo per punti al valore el limite. Consieriamo la funzione: #1: f() - 1 Vogliamo veere come si comporta la funzione quano si avvicina a 1, prima facciamolo a estra e poi a sinistra #: VECTOR([, f()],, 0, 0.9, 0.1)

13 #3: #4: VECTOR([, f()],,, 1.1, -0.1) #5:

14 Quini riportiamo i punti su i un piano cartesiano. I punti ci inicano che il limite è ue in quanto i punti verificano la conizione che all avvicinarsi i a i la f() ifferisce a meno i ipsilon. A questo punto mostriamo lo strumenti i calcolo i DERIVE calcoliamo il limite. lim f() #6: 1 #7: - ( ) #8: (10 - ) ( ) #9: lim 1 (10 - ) - 3 #10: -9 1

15 Asintoti Utilizzo ei limiti per il calcolo egli asintoti. consieriamo le seguenti tre funzioni. f() #1: ( - 1) - 3 #: g() #3: t() - 3 Cerchiamo se la funzione f() ammette asintoto verticale per =1 lim #4: 1 ( - 1) #5: Quini ammette asintoto verticale =1 Cerchiamo se la funzione g() ammette asintoto orizzontale o obliquo per che tene a più infinito. - 3 #6: lim #7: 1 Quini ammette asintoto orizzontale y=1 Cerchiamo se la funzione t() ammette asintoto orizzontale o obliquo per che tene a più infinito. 3 - #8: lim #9: + 13

16 Potrebbe esserci l'asintoto obliquo. t() #10: m lim + #11: m 1 q lim (t() - m ) #1: + #13: q All interno el capitolo sulle erivate mostrerò un secono moo per trovare gli asintoti obliqui. 14

17 Derivata i funzione. Una volta introotto il rapporto incrementale con l utilizzo ello strumento limite introotto prima ci calcola alcuni limiti i vari rapporti incrementali come i seguito. #1: f() e - f(1 + h) - f(1) #: h f(1 + h) - f(1) #3: lim h 0 h #4: e #5: g() - SIN() g(1 + h) - g(1) #6: lim h 0 h #7: 3 - SIN() Calcolato il limite el rapporto incrementale per h che tene a 0 in 0 =1, quini ata la efinizione i erivata in un punto facciamo notare che il valore ella erivata ipene al punto scelto, in altre parole anche la erivata è una funzione i. Quini calcoliamo col rapporto incrementale le erivate elle ue funzioni preceenti. #1: f() e - f( + h) - f() #: h f( + h) - f() #3: lim h 0 h #4: e #5: g() - SIN() g( + h) - g() #6: lim h 0 h #7: 3 - SIN( ) 15

18 Calcoliamo ora la erivata utilizzano il comano Deriva preso al Menu Calcola, oppure utilizzano l icona seguente sulla barra, è necessario scegliere la variabile rispetto a cui vogliamo erivare e l orine i erivazione. Queste ue scelte consentono i calcolare uno i calcolare erivate a più variabili che non tratteremo, o funzioni i un parametro, e i calcolare irettamente erivate el secono orine senza necessariamente ottenerla come erivata i una i primo orine. #8: f() #9: e - 4 #10: g() #11: 3 - SIN() COS() Derive è in grao i erivare funzioni generiche e quini i riarci le regole i calcolo elle erivate. #1: y = #: #3: 1 n #4: y = n #5: n - 1 #6: n #7: y = a #8: a #9: a LN(a) #10: y = e 16

19 #11: e #1: e #13: y = LOG(, a) #14: LOG(, a) 1 #15: LN(a) #16: y = LN() #17: LN() 1 #18: #19: f() #0: g() #1: f() + g() #: (f() + g()) #3: f'() + g'() #4: f() g() #5: (f() g()) #6: g() f'() + f() g'() f() #7: g() f() #8: g() g() f'() - f() g'() #9: g() 17

20 Funzione visualizza passaggi nelle Derivate Alcune volte anche opo essersi ripetutamente gli alunni commettono i più banali errori sul calcolo ella erivate la funzione visualizza passaggi è sicuramente molto utile, si trova nel menu semplifica o ha la seguente icona 3 - #1: f() Veiamone il funzionamento. 3 - #: G() F() - F() G() F() G() G() 3 3 (3 + - ) ( ( - 1)) + (1 - ) (3 + - ) #3: (3 + - ) (a F()) a F() 3 3 (3 + - ) ( - 1) + (1 - ) (3 + - ) #4: (3 + - ) (F() + y) F() 3 3 (3 + - ) + (1 - ) (3 + - ) #5: (3 + - ) n n - 1 n 18

21 3 (3 + - ) 3 + (1 - ) (3 + - ) #6: (3 + - ) (F() + y) F() 3 (3 + - ) 6 + (1 - ) (3 + ) #7: (3 + - ) (F() + G()) F() + G() 3 (3 + - ) 6 - ( - 1) (3 ) + #8: (3 + - ) (a F()) a F() 3 (3 + - ) 6 - ( - 1) 3 + #9: (3 + - ) n n - 1 n 3 (3 + - ) 6 - ( - 1) 6 + #10: (3 + - ) 1 19

22 3 (3 + - ) 6 - ( - 1) (6 + 1) #11: (3 + - ) 4 3 ( ) #1: (3 + - ) Significato grafico ella tangente. Utilizzano la erivata posso calcolare in maniera molto rapia la retta tangente a una qualsiasi curva, e interessante mostrare i ue moi permessi i calcolo ella tangente in un punto #1: f() Calcoliamo la tangente a questa funzione nel suo punto i coorinata =-1 Prima mi calcolo erivata ella funzione in =-1 #: f() ( + ) #3: ( + + 1) (-1) (-1 + ) #4: ((-1) ) #5: -1 Fascio i rette per un punto con coefficiente noto mi a la retta che cercavo #6: y - f(-1) = - 1 ( - -1) #7: SOLVE(y - f(-1) = - 1 ( - -1), y) #8: y = - 0

23 Un moo più veloce è il seguente #9: y = TANGENT(f(),, -1) #10: y = - La funzione TANGENT i DERIVE permette anche i calcolare gli asintoti obliqui consieriamo la funzione seguente già vista in preceenza. 3 - #1: f() - 3 #: y = TANGENT(f(),, + ) #3: y = + Massimi Minimi e Flessi a tangente orizzontale e obliqua. Introotto in classe lo stuio ei massimi, minimi e flessi, si passa a risolvere il tutto con Derive. 3 #1: f() 3-3 #: f() ( - 3) #3: 3 ( - 1) 1

24 Stuio il segno ella erivata ( - 3) #4: 0 3 ( - 1) ( - 3) #5: SOLVE 0,, Real 3 ( - 1) #6: = massimo in raice terza i - 3 minimo in 3 flesso a tangente orizzontale in 0 #7: f() 4 ( + 3) #8: 3 3 ( - 1) 4 ( + 3) #9: ( - 1) 4 ( + 3) #10: SOLVE 0,, Real 3 3 ( - 1) #11: -1 < 0 > 1 Unico flesso in 0 in quanto 1 e -1 erano esclusi al ominio.

25 Stuio i Funzione #1: y = ( - 1) ( + 1) Dominio #: #3: #4: SOLVE([ + 1 0, - 1 0], []) #5: [ 1] Intersezione asse #6: SOLVE([y = ( - 1) ( + 1), y = 0], [, y]) #7: [ = 1 y = 0, = -1 y = 0] C'e un problema mi a un punto fuori al omino. Intersezione asse y #8: SOLVE([y = ( - 1) ( + 1), = 0], [, y]) #9: [ = 0 y = i] Derive risolve i sistemi in campo complesso obbiamo fare attenzione. La funzione e sempre positiva lim ( - 1) ( + 1) #10: + #11: Cerco asintoto obliquo #1: y = TANGENT( ( - 1) ( + 1),, + ) #13: y = Ma e Min #14: ( ( - 1) ( + 1)) #15: ( + 1) ( - 1) #16: 0 ( + 1) ( - 1) #17: SOLVE 0,, Real ( + 1) ( - 1) 3

26 #18: 0 Sempre Positiva non ha ma e min. Flessi erivata secona. #19: ( ( - 1) ( + 1)) 1 - #0: 3/ 3/ ( + 1) ( - 1) Sempre negativa rivolta verso il basso ora isegniamola. Derive lavorano in campo complesso mi ha isegnato una parte i grafico che in realtà non esiste. Conclueno Derive è un ottimo strumento i calcolo e grafico, l utilizzo el quale appassiona molto gli stuente, l utilizzo i tale software rene più piacevole una materia che non tutti amano, molti ragazzi stanno attenti alla spiegazione solo per essere più rapii a casa nella risoluzione egli stui i funzione, comunque seguono e qualcosa sicuramente gli resterà. 4

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1)

ESERCITAZIONE DELL 11 DICEMBRE 2008 SOLUZIONI Corso di Matematica I per Geologia. dx dx dx sin x = (sin x)2 + (cos x) 2. (1) ESERCITAZIONE DELL DICEMBRE 008 SOLUZIONI Corso i Matematica I per Geologia A. Calcolare le erivate elle seguenti funzioni:. sin cos, sin 3, e sin 3 4 cos 3; +. log, log, arctan. Soluzioni.. Prima erivata.

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università egli Stui i Palermo Facoltà i Economia Dipartimento i Scienze Economice, Azienali e Statistice Appunti el corso i Matematica 08 - Derivate Anno Accaemico 2015/2016 M. Tumminello, V. Lacagnina,

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

= x + x 0 2x 0 per x x 0,

= x + x 0 2x 0 per x x 0, Lezione el 17 ottobre. Derivate 1. Derivata i una funzione in un punto Definizione 1 Sia f una funzione efinita in un intorno I i un punto x 0. Per ciascun x I con x = x 0 consieriamo: l incremento a x

Dettagli

E sem pi di E serci zi e Qui z d E sam e

E sem pi di E serci zi e Qui z d E sam e E sem pi i E serci zi e Qui z E sam e Eser cit azion i i Cont r olli Au t om at ici Quiz. Il segnale x(t), antitrasformata i Laplace i X(s) = s(s+a) : è nullo per t=0 [x(0) = 0]; ha erivata nulla per t=0

Dettagli

CLASSE 5^ A LICEO SCIENTIFICO 27 Aprile 2017 Integrali

CLASSE 5^ A LICEO SCIENTIFICO 27 Aprile 2017 Integrali CSSE 5^ ICEO SCIENTIFICO 7 prile 7 Integrali Problema Data la funzione, con, : etermina i coefficienti,, in moo che il punto ; sia un massimo relativo e la retta 36 sia asintoto obliquo; B esegui lo stuio

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 )

f(x) f(x 0 ) = m R ; (1.1) lim f(x) f(x 0 ) m(x x 0 ) lim (x x 0 ) f (n) (x 0 ) I polinomi i Taylor Il resto i Peano Una funzione f efinita in un intorno i un punto x 0 si ice erivabile in x 0 se e solo se a sua volta la (1.1) equivale a lim f(x) f(x 0 ) x x 0 = m R ; (1.1) f(x) f(x

Dettagli

una funzione mediante le altre. Risolvere triangoli. saper applicare la trigonometria sia a problemi geometrici che a casi pratici

una funzione mediante le altre. Risolvere triangoli. saper applicare la trigonometria sia a problemi geometrici che a casi pratici Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Studio di una funzione razionale fratta (autore Carlo Elce)

Studio di una funzione razionale fratta (autore Carlo Elce) Stuio i funzioni Carlo Elce 1 Stuio i una funzione razionale fratta (autore Carlo Elce) Per rappresentare graficamente una funzione reale i una variabile reale bisogna seguire i seguenti passi: Passo 1)

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d Esercizi svolti i geometria elle aree Alibrani U., Fuschi P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Matematica e statistica Versione didascalica: parte 1

Matematica e statistica Versione didascalica: parte 1 Matematica e statistica Versione iascalica: parte 1 Sito web el corso http://www.labmat.it/iattica Docente: Prof. Sergio Invernizzi, Università i Trieste e-mail: inverniz@units.it 2. Derivata e integrale

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

ESERCIZIO n.10. H 6cm d 2cm. d d d

ESERCIZIO n.10. H 6cm d 2cm. d d d ESERCZO n.1 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia; ) i momenti i inerzia

Dettagli

ESERCIZIO n.9. B 7cm H 3cm. b 3cm d 1cm. c 2cm. d d d

ESERCIZIO n.9. B 7cm H 3cm. b 3cm d 1cm. c 2cm. d d d ESERCZO n.9 Data la sezione cava riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; ) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia; ) i momenti i

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Argomento 7 - Studi di funzioni Soluzioni Esercizi

Argomento 7 - Studi di funzioni Soluzioni Esercizi Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

ISIS C. Facchinetti Sede: via Azimonti, Castellanza

ISIS C. Facchinetti Sede: via Azimonti, Castellanza Tel. 0331 635718 fax 0331 679586 info@isisfacchinetti.it www.isisfacchinetti.it ISIS C. Facchinetti Sede: via Azimonti, 5-21053 Castellanza PIANO DI STUDIO DELLA DISCIPLINA Rev. 0 del 13/07/15 PIANO DI

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Matematica classe quinta - Lo studio di funzione Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia Ing. Alessandro Pochì

Dettagli

Liceo Scientifico Statale Einstein Milano posta certificata: Tel. 02/ Fax. 02/

Liceo Scientifico Statale Einstein Milano posta certificata: Tel. 02/ Fax. 02/ Liceo Scientifico Statale Einstein Milano posta certificata: mips01000g@pec.istruzione.it Tel. 02/5413161 Fax. 02/5460852 CLASSE 3 L A.S. 2018-2019 PROGRAMMA SVOLTO DI MATEMATICA 1. EQUAZIONI E DISEQUAZIONI

Dettagli

LICEO STATALE TERESA CICERI COMO 12 settembre 2013 PROGRAMMAZIONE DISCIPLINARE DI MATEMATICA A. S. 2013/2014

LICEO STATALE TERESA CICERI COMO 12 settembre 2013 PROGRAMMAZIONE DISCIPLINARE DI MATEMATICA A. S. 2013/2014 PROGRAMMAZIONE DISCIPLINARE DI MATEMATICA A. S. 2013/2014 TRIENNIO BROCCA LICEO SOCIO-PSICO-PEDAGOGICO TRIENNIO BROCCA LICEO LINGUISTICO FINALITA GENERALI Il Progetto Brocca individua le seguenti finalità

Dettagli

Istituto Fogazzaro. Programma di Matemetica. Anno Scolastico 2014/2015. Classe III. Equazioni di II grado

Istituto Fogazzaro. Programma di Matemetica. Anno Scolastico 2014/2015. Classe III. Equazioni di II grado Programma di Matemetica Anno Scolastico 2014/2015 Classe III Equazioni di II grado Equazioni di secondo grado complete, formula risolutiva Scomposizione di un equazione di II grado Equazioni di secondo

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.8

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.8 ESERCZO n.8 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; ) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia. 8cm 1cm cm A#8 1 1.

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE. Bergamini Massimo-Barozzi Graziella

PROGRAMMAZIONE DIDATTICA ANNUALE. Bergamini Massimo-Barozzi Graziella PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2017/2018 Dipartimento (1) : MATEMATICA Coordinatore (1) : BONI CRISTINA Classe: 4HC Indirizzo: SERVIZI COMMERCIALI Ore di insegnamento settimanale: 3

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.6

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.6 ESERCZO n.6 Data la sezione riportata in Figura, eterminare: a) gli assi principali centrali i inerzia; b) l ellisse principale centrale i inerzia; c) il nocciolo centrale i inerzia. 6cm cm A#6 1 1. Determinazione

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

SCHEDA ATTIVITA DIDATTICA SVOLTA A. S. 2017/18

SCHEDA ATTIVITA DIDATTICA SVOLTA A. S. 2017/18 Nome e cognome del docente: Disciplina insegnata: Libro/i di testo in uso: Tiziana Paoli Matematica M. Bergamini, G. Barozzi, A. Trifone, Manuale blu 2.0 di matematica, Seconda edizione, vol. 3A e vol.

Dettagli

Analisi Matematica 1, parte B Laurea in Matematica

Analisi Matematica 1, parte B Laurea in Matematica Analisi Matematica 1, parte B Laurea in Matematica Prima settimana Sia x una variabile reale efinita in un intorno bucato i 0 in seguito x enoterà un incremento infinitesimo). Una funzione R x) si ice

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio. Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la

Dettagli

Esercitazione 6 - Soluzioni

Esercitazione 6 - Soluzioni Esercitazione 6 - Soluzioni Francesco Davì 9 novembre 01 Soluzioni esercizio 1 (a) Dominio: Il dominio della funzione è D f = R, in quanto la funzione è definita R o, equivalentemente, (, + ). Intersezioni

Dettagli

I.S.I.S.S. G. GALILEI PIANO DI LAVORO ANNUALE A. S. 2018/2019

I.S.I.S.S. G. GALILEI PIANO DI LAVORO ANNUALE A. S. 2018/2019 I.S.I.S.S. G. GALILEI PIANO DI LAVORO ANNUALE A. S. 2018/2019 Disciplina: MATEMATICA Classe: 3B RIM Docenti: Chiara Montali Indice degli argomenti Modulo n Titolo del modulo Durata (ore) 3.0 RECUPERO E

Dettagli

LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA

LICEO SCIENTIFICO R. NUZZI - ANDRIA Anno Scolastico 2015/16 MATEMATICA LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA Il Dipartimento di Matematica per il corrente anno scolastico (2015/2016) ha individuato la realizzazione di diciannove corsi integrativi

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

Ministero dell'istruzione, dell'università e della Ricerca

Ministero dell'istruzione, dell'università e della Ricerca Problema Ministero dell'istruzione, dell'università e della Ricerca Y7- ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Indirizzo:PIANO NAZIONALE INFORMATICA Tema di:matematica Sia f la funzione

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio.

GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio. GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE Funzione opposta y = Il grafico della funzione funzione f( x ). f( x ) si ottiene simmetrizzando rispetto all asse x, il grafico della f( x ) Appunti di

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

ESERCITAZIONE 16 : STUDIO DI FUNZIONI

ESERCITAZIONE 16 : STUDIO DI FUNZIONI ESERCITAZIONE 16 : STUDIO DI FUNZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 19 Marzo 2013 Esercizio 1

Dettagli

Maturità Scientifica PNI Sessione ordinaria

Maturità Scientifica PNI Sessione ordinaria Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 53 Problema Maturità Scientifica PNI Sessione ordinaria 00-00 Due numeri e hanno somma e quoziente uguali ad un numero reale a non nullo.

Dettagli

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica.

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. 2ALS Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. Si consiglia il libro: Matematica-recupero dei debiti formativi e ripasso estivo 2 ISBN 978-88-24741279

Dettagli

SYLLABUS DI ANALISI 5B DON BOSCO

SYLLABUS DI ANALISI 5B DON BOSCO SYLLABUS DI ANALISI 5B DON BOSCO 2016-17 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure. Al contrario,

Dettagli

a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB.

a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB. VERIFICA DI MATEMATICA SIMULAZIONE GLI INTEGRALI DEFINITI - SOLUZIONI Problema : a) Rappresentiamo il quadrato ABCD e il punto P sul prolungamento del lato AB. Per determinare la posizione di P, affinché

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni

VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni Problema 1 a) c y f 1 : log 4 VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni 1 log 1 4 0 4 1 Dominio: D ; 4 4 0 4 4 Intersezioni: 0 imp y 0 log 4 0 4 1 A ;0 Segno:

Dettagli

I.T.T.L. BUCCARI CAGLIARI PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO

I.T.T.L. BUCCARI CAGLIARI PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO I.T.T.L. BUCCARI CAGLIARI ANNO SCOLASTICO 2017/201 8 CLASSE II I E PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO IL PIANO CARTESIANO L ascissa di un punto su una retta: la distanza di

Dettagli

xg x x 3 e essendo x positiva per dominio 3 e

xg x x 3 e essendo x positiva per dominio 3 e Problema a) c : y f log VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni log 4 0 4 Dominio: D ; 4 4 0 4 4 Intersezioni: 0 imp y 0 log 4 0 4 A ;0 Segno: f 0, D c : y

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

La strategia di campionamento 1

La strategia di campionamento 1 La strategia i campionamento. Descrizione el isegno i campionamento Nelle pagine ce seguono si illustrano gli obiettivi conoscitivi e gli aspetti più significativi ella strategia i campionamento ell inagine

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI

Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Programma di Matematica A.S. 2013/14 Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Insiemi e sottoinsiemi - Le operazioni fondamentali con gli insiemi - Prodotto cartesiano I NUMERI NATURALI

Dettagli

Programma di matematica classe 3^ sez. E a.s

Programma di matematica classe 3^ sez. E a.s Programma di matematica classe 3^ sez. E a.s. 2018-2019 Testo in adozione: LA matematica a colori - EDIZIONE BLU per il secondo biennio vol.3 Autore: Leonardo Sasso Ed Petrini -------------------------------------------------------------------------

Dettagli

Matematica corso di ordinamento triennio Classe terza

Matematica corso di ordinamento triennio Classe terza Matematica corso di ordinamento triennio Classe terza Nel corso del triennio l insegnamento della matematica prosegue ed amplia il processo di preparazione scientifica e culturale dei giovani già avviato

Dettagli

LICEO SCIENTIFICO STATALE. Matematica. Programma svolto. Testo di riferimento: M. Bergamini - G. Barozzi - A. Trifone

LICEO SCIENTIFICO STATALE. Matematica. Programma svolto. Testo di riferimento: M. Bergamini - G. Barozzi - A. Trifone A.S. 2016 2015 17 16 LICEO SCIENTIFICO STATALE " G. Pellecchia" - CASSINO (FR) Classe 3^C 1^C Matematica Programma svolto Docente: Bianchi Angelarita Testo di riferimento: M. Bergamini - G. Barozzi - A.

Dettagli

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI

PRIMA SIMULAZIONE - 10 DICEMBRE QUESITI www.matefilia.it PRIMA SIMULAZIONE - 0 DICEMBRE 05 - QUESITI Q Lanciando una coppia di dadi cinque volte qual è la probabilità che si ottenga un punteggio totale maggiore di sette almeno due volte? Calcoliamo

Dettagli

y = è una relazione tra due variabili, che ad ogni valore della

y = è una relazione tra due variabili, che ad ogni valore della LE FUNZIONI DEFIINIIZIIONE Una funzione f () = è una relazione tra due variabili, che ad ogni valore della VARIABILE INDIPENDENTE associa AL PIU (al massimo) un valore della VARIABILE DIPENDENTE E UNA

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 lsantone@liceoantonelli.novara.it http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.

Dettagli

FONDAZIONE MALAVASI. Liceo Scientifico opzione Scienze Applicate Scuole Manzoni

FONDAZIONE MALAVASI. Liceo Scientifico opzione Scienze Applicate Scuole Manzoni FONDAZIONE MALAVASI Liceo Scientifico opzione Scienze Applicate Scuole Manzoni PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: Matematica DOCENTE: Dari Giovanni CLASSE : V A.S.2017 /2018 1. OBIETTIVI

Dettagli

Programmazione disciplinare: Matematica 5 anno

Programmazione disciplinare: Matematica 5 anno Programmazione disciplinare: Matematica 5 anno Modulo 1/Ripasso: Funzione reale di variabile reale CONTENUTI Funzione fra due insiemi. Funzione reale di variabile reale: definizione e classificazione.

Dettagli

CURRICOLO DISCIPLINARE di MATEMATICA

CURRICOLO DISCIPLINARE di MATEMATICA Istituto di Istruzione Secondaria Superiore "Archimede" Rosolini (SR) a.s. 2018/2019 CURRICOLO DISCIPLINARE di MATEMATICA DIPARTIMENTO DI Matematica Fisica LICEO ITIS IPCT INDIRIZZO Servizi Commerciali

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Intervalli limitati e illimitati in R Saper riconoscere intervalli

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI Intervalli limitati e illimitati in R RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Saper riconoscere intervalli

Dettagli

Una funzione pari ha il grafico simmetrico rispetto all'asse x. Calcola il dominio e l'immagine della funzione rappresentata nella seguente figura:

Una funzione pari ha il grafico simmetrico rispetto all'asse x. Calcola il dominio e l'immagine della funzione rappresentata nella seguente figura: Vero o falso: [0,1] ha minimo 1 e massimo 0 (0,100 ] non ha minimo ma ha massimo 100 (0,5) è un intorno di 2 y=x 2 è invertibile y=x 2 è pari y=x 3 è pari Posto g( x)= x 2 e f (x )=x+1 allora g( f ( x))=(

Dettagli

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE Leonardo da Vinci Martina Franca ANNO SCOLASTICO 2015/2016 Disciplina: MATEMATICA APPLICATA Classe : 3 ^ A A.F.M. Docente : Prof. GIANGASPERO Francesco Testo :

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

Programmazione disciplinare: Matematica 5 anno

Programmazione disciplinare: Matematica 5 anno Programmazione disciplinare: Matematica 5 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Funzione fra due insiemi. di Saper riconoscere se una relazione è anche

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

matematica classe terza Liceo scientifico

matematica classe terza Liceo scientifico LICEO SCIENTIFICO STATALE LEONARDO DA VINCI Anno scolastico 2013/2014 LE COMPETENZE ESSENZIALI CONSIDERATE ACCETTABILI PER LA SUFFICIENZA Si precisa che gli obiettivi indicati sono da raggiungere in relazione

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE G. CIGNA G. BARUFFI F. GARELLI MONDOVI Anno Scolastico 2018/2019. Programma svolto di MATEMATICA

ISTITUTO DI ISTRUZIONE SUPERIORE G. CIGNA G. BARUFFI F. GARELLI MONDOVI Anno Scolastico 2018/2019. Programma svolto di MATEMATICA ISTITUTO DI ISTRUZIONE SUPERIORE G. CIGNA G. BARUFFI F. GARELLI MONDOVI Anno Scolastico 018/019 Classe: ^MC/A Docente: SERGIACOMI NICOLETTA Programma svolto di MATEMATICA CONTENUTI Nucleo tematico 1: Richiami

Dettagli

14. Studio grafico completo di funzioni

14. Studio grafico completo di funzioni 14. Studio grafico completo di funzioni Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria

Dettagli

Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione ordinaria 2012, matematicamente.it

Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione ordinaria 2012, matematicamente.it Nicola De Rosa, Liceo scientifico scuole italiane all estero Europa sessione orinaria, matematicamente.it PROBLEMA La funzione f è efinita e erivabile sull intervallo chiuso 7, e è f. Il grafico i y f

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

UNITÀ FORMATIVA DISCIPLINARE: N. 1 Titolo: RICHIAMI SU DISEQUAZIONI E SISTEMI DI DISEQUAZIONI NUMERICHE INTERE E FRAZIONARIE AD UN INCOGNITA

UNITÀ FORMATIVA DISCIPLINARE: N. 1 Titolo: RICHIAMI SU DISEQUAZIONI E SISTEMI DI DISEQUAZIONI NUMERICHE INTERE E FRAZIONARIE AD UN INCOGNITA ISTITUTO DI ISTRUZIONE SUPERIORE I.P.S.I.A. INVERUNO Via G. Marcora,109 20010 INVERUNO (MI) C. F. 93018890157 - c.c.postale n. 24295248 - cod. mec. MIIS016005 + 39 02 97288182 + 39 02 97285314 fax + 39

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria

Analisi e Geometria 1 Politecnico di Milano Ingegneria Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.

Dettagli

francesca fattori speranza bozza gennaio 2018

francesca fattori speranza bozza gennaio 2018 DERIVATE APPLICATE ALLO STUDIO DI FUNZIONE. OM Le derivate servono a trovare eventuali massimi e minimi delle funzioni. Ho pensato questo modulo in questo modo: concetto di derivata; calcolo di una derivata

Dettagli

PROGRAMMA SVOLTO A. S. 2015/ 2016

PROGRAMMA SVOLTO A. S. 2015/ 2016 Nome docente BORGNA Giorgio Materia insegnata MATEMATICA Classe V G manutenzione e assistenza tecnica numero ore di insegnamento svolte ore complessive di insegnamento 3 33 di cui in compresenza di cui

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

RIPASSO. IPSSAR "P. Artusi" - Forlimpopoli. classe TERZA. modulo: -omogeneizzare le condizioni di partenza. -Il piano cartesiano - Sistemi lineari

RIPASSO. IPSSAR P. Artusi - Forlimpopoli. classe TERZA. modulo: -omogeneizzare le condizioni di partenza. -Il piano cartesiano - Sistemi lineari classe TERZA -Calcolo numerico e letterale -Equazioni di primo grado -Il piano cartesiano - Sistemi lineari RIPASSO -omogeneizzare le condizioni di partenza -potenziare le abilità di calcolo -formare i

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Lezione XII Analisi Formale

Lezione XII Analisi Formale SCENZA DE MATERAL Chimica Fisica Lezione X Analisi Formale Dr. Fabio Mavelli Dipartimento i Chimica Università egli Stui i Bari Analisi Cinetica Fenomenologica Analisi Cinetica Fenomenologica Meccanismo

Dettagli