Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.7)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.7)"

Transcript

1 Docente: Marco Gaviano Corso di Larea in Infomatica Corso di Larea in Matematica Matematica Comptazionale(6cf) Ottimizzazione(8cf) (a.a. -4, lez.7)

2 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Il metodo del simplesso rivisto Un programma di base ammissibile e' conoscito Il problema PL iniziale è scritto come sistema (m+)(n+) amentando i vincoli con la fnzione obiettivo. Si ha minimizza A d, z c minimizza z - c A d z

3 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 La matrice agginta  del sistema dei vincoli estesi diventa 7. La base agginta corrispondente ad na data base del problema PL, ha la forma {}. N N j, ] [a ] a a a a [ A c A j n {}. N N j ], [a c j

4 4 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 per l'inversa della base si ha 7. Se si pone allora mediante 7., 7., 4. e 4.5 si ottiene. c - - d d z n n n y y y c z c z c z [A,d]

5 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Qindi nel metodo rivisto del gradiente le qantità z j -c j sono ottente moltiplicando la prima riga di per â j, ed il valore y k della variabile k che entra nella base è ottento moltiplicando le ltime m rige di per â k. La fnzione obiettivo z è considerata come na variabile speciale che non è soggetta al vincolo di non negatività e non lascerà mai la base (vale a dire il criterio di scita non si applica a z) 5

6 6 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Esempio(vedi esempio lezione 5, a iterazione a fase) E si prenda come base.,,,,, z minimizza / 4 / / / con, / 6 / - 5

7 7 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Il problema agginto è Il calcolo di pò essere fatto con l'aito di z - z minimizza / 4 / / / 7 / 5/

8 8 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Poiché Qindi è la variabile entrante, con z -c =. 4 5 A / 4 / / / 7/ 5/ A

9 La tabella è Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 c y z y y y y 4 y 5 y 6 s /y sk z 6/ 5/ -7/ / - -/ / / - -4/ -/ c y z y y y y 4 y 5 y 6 z -7/ -/ -/ -/ 5/ 5/ / -7/ program / / -/ ottimale 65/ / / -/ 9

10 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 La base di partenza e' artificiale Per semplicità si assme di sare n insieme completo di variabili artificiali,,, m. Con a i si indica la riga i-ma di A. Il sistema agginto dei vincoli inclderà sia la fnzione obiettivo sia la fnzione delle variabili artificiali; qindi esso consisterà di (m+)(n+m+) variabili,, n,,, m, z e

11 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 z m m c a a m a d d d m Si pò facilmente costrire na base gale alla matrice identità di ordine m+ aggingendo la somma delle ltime m eqazioni alla seconda eqazione

12 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Si ha il segente problema di PL minimizza z z c (PL) ξ a a γ d d d con m a m d m 7. d m i m i a i d i ( j m i a j ij [ ], j,, n) j N

13 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 LP Al problema (m+)(n+m+) corrisponde la matrice agginta 7.4 A I c A c A m Le variabili z e saranno sempre mantente nella base, pertanto le prime de colonne della base agginta sono le prime de colonne di  c

14 4 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Per la formla di inversione di matrici partizionate abbiamo Ponendo c d d d

15 5 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 mediante 7., 7.4, 4. e 4.5 si ottiene n n n n n ξ z d y y y γ ξ γ ξ γ ξ γ c z c z c z c A

16 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Drante la fase -Calcola j - j, jn R, moltiplicando la seconda riga di per le colonne secondaria di Â; - Determina k mediante il criterio di entrata - -Calcola y k moltiplicando colonna di  k k ma ( j R j jn - ) per la corrispondente 6

17 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 - applica il criterio di scita per ttte le variabili di base eccetto z e ; -esegi il cambio di variabili come precedetemente. Drante la fase -Calcola z j -c j, jn R, moltiplicando la prima riga di le colonne secondaria di Â; - determina k mediante il criterio di entrata - per z k c k ma jn R ( z j c k ) 7

18 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 -calcola y k moltiplicando - per la corrispondente colonna di Â; -applica il criterio di scita per ttte le variabili di base ad eccezione di z e ; - esegi il cambio di variabili come precedentemente. Drante la prima fase non è necessario esegire le operazioni con la prima riga di, drante la seconda fase - con la seconda riga di -. 8

19 9 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 Esempio Il problema agginto è,,,, 4 5 (/4) z minimizza ,,,, 4 5 ξ (/4) z - z, minimizza PL

20 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 o in modo eqivalente.,,,, ξ (/4) z - z, minimizza

21 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 La tabella è: fase c y z y y y y y 4 y 5 z /4 sk/y sk / c y z y 4 5 sk/y sk z 9/ -5/4 9/4 -/4 5/4 9/ 9/4 / -/4

22 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.7 La tabella è: fase c y z y y y y y 4 y 5 s /y sk z 4-4/ -4/ / 5/9 8/5 -/9 c y z y y y y y 4 5 s /y sk z 7/ -5/4 -/ program 5 8/5 ottimale 7/5

23 Docente: Marco Gaviano Corso di Larea in Infomatica Corso di Larea in Matematica Matematica Comptazionale(6cf) Ottimizzazione(8cf) (a.a. -4, lez.8)

24 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Dalità Definizione di problema dale di n problema PL minimizza jn jn j j a a ij ij, problema PL I j j d d z, qalsiasi i i jn c j i M i M j N j N j i i im im minimizza,, qalsiasi - a - a ij ij problema dale II i i w c c j j im M M - d j N j N i i M M M, N N N ;, vettore riga 4

25 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Il problema II è anch esso n problema PL. Il passaggio dal problema I (primale) al problema II (dale) avviene secondo le segenti regole; ad ogni vincolo di disegaglianza () corrisponde na variabile dale ( i ) soggetta a vincolo di non negatività (); ad ogni vincolo di gaglianza(=) corrisponde na variabile dale ( i ) non soggetta ad alcn vincolo. le matrici dei coefficienti dei vincoli veri nei de problemi sono na la trasposta dell altra. i valori a secondo membro dei vincoli veri di ciascn problema sono gli opposti dei coefficienti della fnzione obbiettivo da minimizzare nell altro problema. 5

26 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Si hanno la segente proprietà: Se si definisce il dale del problema II si ritrova il problema I. Utilizzando la forma standard per il passaggio da n problema Pl al so dale si ha in forma compatta problema PL I minimizza z c problema dale II massimizza w d A d A c qalsiasi 6

27 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Utilizzando la cosiddetta forma canonica di n problema PL si ha problema PL I problema dale II minimizza z c massimizza w d A d A c I vincoli a i d i e i oppre a j c j e j sono chiamati vincoli dali. Inoltre si dice che i è la variabile dale del vincolo di indice j. 7

28 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Risltati teorici slla dalità Lemma. Se e ū costitiscono na coppia di solzioni ammissibili di de problemi dali (solzioni dali) si ha Dim. Per definizione si ha c c d. A d. 8

29 Corollario. Se Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 e ū sono delle solzioni dali per i qali c d. Allora essi sono delle solzioni ottimali per i de problemi. Dim. Infatti se tale che non è ottimale allora esiste na solzione ' c' c Ciò contraddice il lemma. d. 9

30 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Teorema(esistenza). Data na coppia di problemi dali na ed na sola delle tre proposizioni è vera. nessno dei de problemi ha na solzione ammissibile;. n problema non ammette na solzione, l altro ha almeno na solzione ma non ha solzioni ottimali;. I de problemi hanno solzioni ottimali.

31 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Teorema(dalità). Data na coppia di problemi dali na condizione necessaria e sfficiente affinché na solzione (o ū) di no dei de problemi sia ottimale è che esista n ū (o ) dell altro problema tale che c d. La solzione ū è essa stessa na solzione ottimale e la relazione è verificata per ogni coppia di solzioni ottimali.

32 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Teorema(teorema debole degli scarti complementari). Data na coppia di problemi dali na condizione necessaria e sfficiente affinché de solzioni e ū siano ottimali e ché siano verificate le segenti relazioni (A - d) e (c - A).

33 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Teorema(teorema forte degli scarti complementari). Data na coppia di problemi dali aventi entrambi delle solzioni, allora esiste almeno na coppia di programmi ottimali e ū tali che (A - d) e (c - A).

34 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Importanza pratica della dalità Consideriamo na coppia di problemi primale e dale minimizza z c massimizza w d A d A c qalsiasi e sia la solzione di base ottimale del primale. Allora si ha z j -c j che si pò scrivere come c - a j c j. Posto =c -, è n m-vettore riga che soddisfa i vincoli del problema dale è poiché d si ha d c d c 4

35 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Vale a dire ū=c - è il programma ottimale del problema dale: se si risolve il problema primale si risolve anche il so dale. Nel caso che si tilizzi l algoritmo del simplesso rivisto c - lo si pò ricavare dalla prima riga della tabella del simplesso, altrimenti lo si calcola avendo a disposizione -. È vero anche il viceversa ossia la solzione ottimale del problema dale permette di calcolare la solzione del primale. Pertanto poiché in certi sitazioni è più facile risolvere il problema dale, si risolve qesto ottenendo allo stesso tempo la solzione del problema primale 5

36 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Interpretazione economica di n problema PL e del so dale Consideriamo il problema matematico PL minimizza z j n j a ij j d i n j c j i,,m j,,n j 6

37 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Interpretazione Si sppone che n azienda prodca dei beni (prodotti)e che allo stesso tempo tilizzi altri beni (risorse). La trasformazione avviene mediante delle attività che possono operare a vari livelli. A ciascn bene i (i=,,m) si associa na domanda se esso viene prodotto. Si associa na disponibilità se esso è tilizzato per la prodzione. Le attività sono n (j=,,n) ed a ciascna di esse si associa n costo od n profitto. Nel primo caso si cercherà di minimizzare il costo complessivo; nel secondo caso di massimizzare il profitto totale. 7

38 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Posto d i (i=,,m), la domanda del bene i (se d i > indica effettivamente na domanda, se d i < indica na disponibilità del bene i); c j (j=,,n), il costo dell attività j se opera ad n livello nitario (se c j > indica effettivamente n costo, se c j < indica n profitto); a j (j=,,n), vettori colonna, le m componenti a j,,a mj rappresentano le qantità degli m beni prodotti dall attività j. Per a ij > l attività prodce il bene i, altrimenti lo tilizza; j (j=,,n), le incognite, indicano il livello a ci opera 8 l attività j.

39 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 a ij j indica la qantità del bene i prodotta (o tilizzata ) dall attività j qando qesta opera al livello j. n j a ij indica la qantità totale del bene i prodotta j (o tilizzata) da ttte le attività. c j j indica il costo ( o il profitto) associato all attività j qando opera al livello j ; z= c j j indica il costo totale (o profitto) di ttte le attività. La fnzione z è chiamata fnzione economica. Nella formlazione matematica sono messe in evidenza le ipotesi che devono essere necessariamente soddisfatte. 9

40 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 L interpretazione finale del problema primale è Problema primale. Data na domanda (disponibilità) di m beni i ed n costo (profitto) nitario c j per ciascna delle n attività j qale deve essere il livello di fnzionamento di ciascna attività affinché la qantità totale dei beni prodotti (tilizzati) sia maggiore o gale (minore o gale) alla domanda (disponibilità) d i e che il costo (profitto) totale sia minimo (massimo) 4

41 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Consideriamo il problema matematico dale Interpretazione massimizza m i i i a ij c j w j,,n i,,m d i, c j e a ij hanno lo stesso significato del problema primale i (i=,,m), indica il prezzo nitario del bene i. m i d i i 4

42 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Problema dale. Dato n costo nitario c j per ciascna delle m attività j ed na domanda (disponibilità) d i per ciascno degli m beni i, qale deve essere il prezzo nitario di ciascn bene affinché il valore totale dei beni prodotti (tilizzati), a livello, sia inferiore o gale (speriore o gale) al costo (profitto) c j e che il valore totale dei beni prodotti (tilizzati) sia massimo (minimo). Le variabili i sono chiamate prezzi ombra 4

43 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 L interpretazione è sintetizzata nello schema segente Problema primale (livello dell' attività j) (prodzione di j a livello del bene i) (domanda j (livello di j). minimizzare (costo totale) (costo nitario di j) (livello di j) j Problema dale i (prodzione i i. massimizzare w di j al livello del bene i) (costo nitario di j) j (domanda di i) ( i ) di i) 4

44 Esempio: Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 In n azienda sono attivi tre processi prodttivi ( attività ) in ci sono prodotti tre articoli (no per ogni attività) in qantità, e. Ciascn processo tilizza tre tipi di risorse (beni): lavoro ( L ), attrezzatre ( A ) e materie prime ( M ). Il lavoro e misrato in ore, le attrezzatre in ore di tilizzo, le materie prime in kg. La disponibilità di risorse è limitata. Si ha la tabella risorsa tilizzo nell attività tilizzo nell attività tilizzo nell attività vincolo disponibilità L A M

45 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Il significato della prima colonna è: il processo prodttivo per prodrre na qantità nitaria dell articolo tilizza 5 ore lavoro, impegna le attrezzatre per 5 ore e necessita di kg di materie prime. Il significato delle altre colonne è analogo. Il significato della prima riga è: i processi prodttivi, e tilizzano rispettivamente 5, e 4 ore lavoro per prodrre na nità di ciascn articolo. Le ore complessive di ore lavoro non devono sperare 85. Il significato delle altre righe è analogo 45

46 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Si ha inoltre la tabella che indica il costo nitario di ciascna risorsa: risorsa costo nitario L 4 A 4 M Da ci si dedce il costo per la prodzione di na nità di n singolo articolo riportato nella segente tabella in ci è indicato nella terza colonna il prezzo di vendita articolo costo nitario prezzo nitario di vendita

47 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 L azienda vole massimizzare il profitto per ci il problema viene scritto in forma di problema PL. Problema primale ma z Solzione primale: =8.79, =9.7, =; z=

48 Problema dale Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 minimizza w 85 La ci interpretazione è: determinare i prezzi nitari i (i=,,) delle risorse in modo da minimizzare il costo delle risorse mantenendo invariato il profitto Solzione dale: =.5, =, =; w=

49 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Inoltre le variabili,,, e, misrano l incremento del profitto nel problema primale qando si incrementa di na nità la disponibilità delle ore lavoro, delle ore attrezzatre e delle materie prime. Le variabili i sono chiamate prezzi ombra. Ciò si gistifica come sege, Si ha z c c Se si incrementa d passando da d a d e si sppone che ' - ( d d) sia ancora na solzione si ha che l incremento nella fnzione obiettivo calcolata in ' è dato da (z z)- z c c d d d d 49

50 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Esempio (problema Assemblaggio d Ato, lez.6) ma (ore lavoro) (porte disponibili) 5 (domanda n.ato) La ci solzione era =8 ( Vento ), =4 ( Classe ) z=6.64. E 5

51 Matematica Comptazionale, Ottimizzazione, a.a. -4, Lezione, n.8 Il corrispondente problema dale è La ci solzione è min 6.5 =48, =8, =, w=6.64. E = prezzo ombra ora lavoro; = prezzo ombra porte; = prezzo ombra nmero ato da prodrre Si pò valtare che cosa è conveniente incrementare: le ore lavoro, la disponibilità del nmero delle porte oppre il nmero delle ato da prodrre. 5 5

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Primo recupero 22 giugno 2009

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Primo recupero 22 giugno 2009 ome: Cognome: UIETÀ DEGLI STUDI OA TE Corso di Stdi in Ingegneria Informatica icerca Operativa rimo recpero gigno 9 arrare le caselle corrispondenti: Sono iscritto alla: Larea Ing. Informatica Altro OGLIO

Dettagli

Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania

Esercizi svolti di Programmazione Lineare. a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania Esercizi svolti di Programmazione Lineare a cura di Laura Scrimali Dipartimento di Matematica e Informatica Università di Catania Formulazione matematica e risoluzione grafica Esercizio Una pasticceria

Dettagli

1 Il metodo dei tagli di Gomory

1 Il metodo dei tagli di Gomory Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare

Dettagli

x Ragazza x Fido Esercizio 1

x Ragazza x Fido Esercizio 1 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Primo appello novembre Nome: Cognome: Barrare la casella corrispondente: Larea Ing. Informatica Altro Esercizio

Dettagli

Il modello duale. Capitolo settimo. Introduzione

Il modello duale. Capitolo settimo. Introduzione Capitolo settimo Il modello duale Introduzione Il modello duale e la teoria della dualità assumono una grande importanza nella teoria della programmazione matematica. In questo testo i modelli primale

Dettagli

1) Codici lineari a blocchi. 2) Matrice generatrice del codice. 3) Proprietà dei codici lineari a blocchi. 4) Matrice di controllo di parità

1) Codici lineari a blocchi. 2) Matrice generatrice del codice. 3) Proprietà dei codici lineari a blocchi. 4) Matrice di controllo di parità Argomenti della Lezione ) Codici lineari a blocchi ) Matrice generatrice del codice 3) Proprietà dei codici lineari a blocchi 4) Matrice di controllo di parità 5) Rivelazione e correzione d errore 6) Standard

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 5 IS-LM in economia aperta Mercato del lavoro

ECONOMIA POLITICA II - ESERCITAZIONE 5 IS-LM in economia aperta Mercato del lavoro ECONOMIA OITICA II - ESERCITAZIONE IS-M in economia aperta Mercato del lavoro Esercizio Considerate n economia aperta agli scambi con l estero, con n tasso di cambio flessibile, caratterizzata dalle segenti

Dettagli

L ALGORITMO DEL SIMPLESSO REVISIONATO

L ALGORITMO DEL SIMPLESSO REVISIONATO L ALGORITMO DEL SIMPLESSO REVISIONATO L'algoritmo del simplesso revisionato costituisce una diversa implementazione dell algoritmo standard tesa a ridurre, sotto certe condizioni, il tempo di calcolo e

Dettagli

2. ANALISI DELLA DEFORMAZIONE

2. ANALISI DELLA DEFORMAZIONE . ANALISI DELLA DEFORMAZIONE Un elemento monodimensionale soggetto ad na forza di trazione o compressione sbisce na variazione di lnghezza Δl (rispettivamente n allngamento o n accorciamento) rispetto

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

2. ALGORITMO DEL SIMPLESSO

2. ALGORITMO DEL SIMPLESSO . ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2,

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2, 1 Elementi di Analisi Matematica e Ricerca Operativa prova del 6 luglio 2016 1) Discutere il seguente problema di Programmazione Lineare: Trovare il massimo di p x 1, x 2, x 3, x 4 # x 2 + 4 x 3 + x 4

Dettagli

Soluzione dei Problemi di Programmazione Lineare

Soluzione dei Problemi di Programmazione Lineare Soluzione dei Problemi di Programmazione Lineare Consideriamo un problema di Programmazione Lineare (PL) con m vincoli ed n variabili in Forma Standard dove: ma 0 c A b ( ) 0 ( 2) R è il vettore n delle

Dettagli

Spazi vettoriali e spazi di funzioni

Spazi vettoriali e spazi di funzioni λ Spazi vettoriali e spazi di nzioni M Bertero ISI - Università di Genova - Spazi vettoriali complessi - Operatori lineari in spazi vettoriali complessi e matrici - Estensione al caso - Spazi lineari di

Dettagli

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Prima prova intermedia 19 aprile 2010

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Prima prova intermedia 19 aprile 2010 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Prima prova intermedia 9 aprile Esercizio Al ristorante Socari de primi de secondi tre dolci e qattro coperti

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

Vincolo di bilancio e Preferenze del consumatore

Vincolo di bilancio e Preferenze del consumatore Vincolo di bilancio e Preferenze del consmatore Il vincolo di bilancio Il vincolo di bilancio nasce dall esigenza di modellare n economia dove gli individi non possono consmare qantità infinite di beni.

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

LEZIONE N. 6 - PARTE 1 - Introduzione

LEZIONE N. 6 - PARTE 1 - Introduzione LEZIONE N. 6 PROGRAMMAZIONE LINEARE IN MARKAL, SOLUZIONE DEI PROBLEMI DI PROGRAMMAZIONE LINEARE CON: IL METODO GRAFICO ED IL METODO DEL SIMPLESSO. PROPRIETÀ DELLA DUALITÀ ED ESEMPI DI SOLUZIONE DEL PROBLEMA

Dettagli

La codifica delle immagini

La codifica delle immagini La codifica delle immagini Lettere e nmeri non costitiscono le niche informazioni tilizzate dagli elaboratori ma si stanno diffondendo sempre di più applicazioni che tilizzano ed elaborano anche altri

Dettagli

Il metodo del simplesso

Il metodo del simplesso Capitolo 5 Il metodo del simplesso 5. La forma standard Esercizio 5.. Porre il problema di Programmazione Lineare: in forma standard. min x +x + x + x x +x 5 x 4 x, x Si trasformano i vincoli di disuguaglianza

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

Struttura elettronica delle molecole. Teoria quantistica del legame chimico

Struttura elettronica delle molecole. Teoria quantistica del legame chimico Strttra elettronica delle molecole. Teoria qantistica del legame chimico Lo ione idrogeno molecolare H 2 + Eq. Schroedinger singolo elettrone La fnzione d onda φ b soddisfa na eqazione analoga. Gli atovalori

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Programmazione Lineare

Programmazione Lineare Programmazione Lineare Andrea Scozzari a.a. 2012-2013 March 14, 2013 Andrea Scozzari (a.a. 2012-2013) Programmazione Lineare March 14, 2013 1 / 18 Metodo del Simplesso Dato un problema di PL in forma standard

Dettagli

MODELLI DI DOMANDA E UTILITÀ ALEATORIA

MODELLI DI DOMANDA E UTILITÀ ALEATORIA MODELLI DI DOMANDA E TILITÀ ALEATORIA SPOSTAMENTO: RISLTATO DI NMEROSE SCELTE COMPITE DAGLI TENTI DEL SERVIZIO DI TRASPORTO MODELLI DI DOMANDA: TENTANO DI RIPRODRRE I COMPORTAMENTI DI SCELTA DI TRASPORTO

Dettagli

ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K)

ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K) ESERCITAZIONI di ECONOMIA POLITICA ISTITUZIONI (A-K) M. Bonacina - Università degli Stdi di Pavia monica.bonacina@nibocconi.it 1 5 ESERCITAZIONE: MERCATO DEL LAVORO: Solzioni ESERCIZIO 1. Si faccia riferimento

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0

Esercizi sulla Programmazione Lineare. min. cx Ax b x 0 Soluzioni 4.-4. Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare 4. Risoluzione grafica e forma standard. Si consideri il problema min x cx Ax b x dove x = (x, x )

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina ESERCIZI SUGLI SCHEMI A BLOCCHI ESERCIZIO 1 Si consideri il segente schema a blocchi: v dove a) Si calcoli la fnione di

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Vediamo come risolvere un problema di PL con Excel. Riprendiamo un esercizio già visto.

Vediamo come risolvere un problema di PL con Excel. Riprendiamo un esercizio già visto. Esempio di risoluzione di un problema di PL con Excel Vediamo come risolvere un problema di PL con Excel. Riprendiamo un esercizio già visto. Un azienda vinicola desidera produrre due tipi di vino: uno

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Esercizio Calcolo del β equivalente. Soluzione

Esercizio Calcolo del β equivalente. Soluzione Politecnico di Torino orso di Elettronica di Potenza 0ATS Esercizio alcolo del β ivalente Nelle configrazioni riportate, calcolare il β ivalente ( β ), spponendo che i transistori siano a temperatra ambiente,

Dettagli

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1 www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

Teoria dei grafi: ricerca di percorsi a minimo costo Ing. Valerio Lacagnina

Teoria dei grafi: ricerca di percorsi a minimo costo Ing. Valerio Lacagnina Metodi diide-et-impera, programmazione dinamica e algoritmi greed La programmazione dinamica, come il metodo diide-et-impera, risole n problema mettendo insieme le solzioni di n certo nmero di sottoproblemi.

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

IL METODO DEL SIMPLESSO

IL METODO DEL SIMPLESSO IL METODO DEL SIMPLESSO Il metodo del Simplesso 1 si applica nella risoluzione di un problema di Programmazione Lineare 2 (funzione e vincoli lineari) quando le variabili di azione o iniziali sono almeno

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

5 a lezione - laboratorio

5 a lezione - laboratorio 5 a lezione - laboratorio Corso di Larea Ingegneria CIVILE Larea Specialistica Ingegneria CHIMICA ed AMBIENTE a.a 003-004 Problema del ordine di tipo IPERBOLICO ( ) tt = v xx x x0, xn t > t0 condizioni

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione)

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione) RICERCA OPERATIVA Tema d esame del 04/03/2008 (Simulazione) COGNOME: NOME: MATRICOLA:. Una nota azienda automobilistica produce due modelli di auto (un utilitaria e una berlina), che rivende con un guadagno

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.1)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.1) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 2013-14, lez.1) 1 Matematica Computazionale,

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Interpretazione economica della dualità

Interpretazione economica della dualità Interpretazione economica della dualità Interpretazione economica delle variabili duali Interpretazione economica del problema duale nei problemi di allocazione risorse e miscelazione Applicazioni della

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Sia dato il seguente problema di PL: max x + x 2 x 2x 2 + x 3 = 4 x x 2 x 3 = 3 x 2 + 2x 3 = x, x 2, x 3 0 Utilizzando il metodo due fasi, si stablisca

Dettagli

Modello matematico di un sistema fisico

Modello matematico di un sistema fisico Capitolo. NTRODUZONE. Modello matematico di n sistema fisico La costrzione del modello matematico è anche n procedimento che permette di comprendere a pieno il fenomeno fisico che si vol descrivere. Compromesso

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

Esercizi di ottimizzazione vincolata

Esercizi di ottimizzazione vincolata Esercizi di ottimizzazione vincolata A. Agnetis, P. Detti Esercizi svolti 1 Dato il seguente problema di ottimizzazione vincolata max x 1 + x 2 x 1 4x 2 3 x 1 + x 2 2 0 x 1 0 studiare l esistenza di punti

Dettagli

Analisi delle corrispondenze

Analisi delle corrispondenze Capitolo 11 Analisi delle corrispondenze L obiettivo dell analisi delle corrispondenze, i cui primi sviluppi risalgono alla metà degli anni 60 in Francia ad opera di JP Benzécri e la sua equipe, è quello

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Corso di Matematica Applicata A.A

Corso di Matematica Applicata A.A Corso di Matematica Applicata A.A. 2012-2013 Programmazione lineare (II parte) Prof.ssa Bice Cavallo Soluzione di un problema PL Soluzione ottima Variabili slack e surplus A R mxn Ax b s R m, s i 0 : Ax

Dettagli

Metodo delle due fasi

Metodo delle due fasi Metodo delle due fasi Il problema artificiale la fase I del Simplesso esempi rif. Fi 3.2.5; Osservazione Nel problema min{c T x : Ax = 0, x 0}, dell esempio precedente si ha che b 0 e A contiene una matrice

Dettagli

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8

Teoria della Programmazione Lineare. Teoria della Programmazione Lineare p. 1/8 Teoria della Programmazione Lineare Teoria della Programmazione Lineare p. 1/8 I problemi di PL in forma canonica In forma scalare: max n j=1 c jx j n j=1 a ijx j b i x j 0 i = 1,...,m j = 1,...,n Teoria

Dettagli

QUINTA ESERCITAZIONE MACROECONOMIA MERCATO DEL LAVORO

QUINTA ESERCITAZIONE MACROECONOMIA MERCATO DEL LAVORO QUINTA ESERCITAZIONE MACROECONOMIA MERCATO DEL LAVORO ) Considerate il paese di Atlantide: a) il tasso di partecipazione lavorativa è pari al 60%, invece il tasso di disoccpazione è pari al 20%. Sapendo

Dettagli

LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1

LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1 www.matefilia.it LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori dei segenti

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

Il processore: unità di elaborazione e unità di controllo (3)

Il processore: unità di elaborazione e unità di controllo (3) Il processore: nità di elaborazione e nità di lo () rchitettre dei Calcolatori (lettere -I) Limitazione del ciclo singolo I tempi di accesso per le diverse istrzioni variano, ad esempio ccesso in memoria:

Dettagli

2.6 Calcolo degli equilibri di Nash

2.6 Calcolo degli equilibri di Nash 92 2 Giochi non Cooperativi Per queste estensioni di giochi non finiti si possono provare risultati analoghi a quelli visti per i giochi finiti. Rimandiamo alla bibliografia per uno studio più approfondito

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Capitolo 3 - Parte II Circuiti MSI: ROM e PLA

Capitolo 3 - Parte II Circuiti MSI: ROM e PLA Appnti di Elettronica Digitale Capitolo - Parte II Circiti MSI: ROM e PLA Rom: Read Only Memory... Esempio...5 Osservazioni: EPROM e EEPROM...8 PLA: Programmale Logic Array...8 Osservazione: le PAL (Programmale

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 5 La dualità nella Programmazione Lineare In questo capitolo verrà introdotto un concetto di fondamentale importanza sia per l analisi dei problemi di Programmazione Lineare, sia per lo sviluppo

Dettagli

LA RICERCA DEI GUASTI NEI CIRCUITI COMBINATORI

LA RICERCA DEI GUASTI NEI CIRCUITI COMBINATORI L RICERC DEI GUSTI NEI CIRCUITI COMINTORI DVIDE TMUCHI Sommario. In qesto articolo verrà illstrata na tecnica di individazione dei gasti all interno dei circiti digitali combinatori. Più precisamente,

Dettagli

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs Lezioni di Ricerca Operativa Dott. F. Carrabs.. 009/00 Lezione 6: - mmissibilità di un vincolo - Vincoli alternativi - Vincoli alternativi a gruppi - Rappresentazione di funzioni non lineari: Costi fissi

Dettagli

Funzioni booleane. Vitoantonio Bevilacqua.

Funzioni booleane. Vitoantonio Bevilacqua. Funzioni booleane Vitoantonio Bevilacqua bevilacqua@poliba.it Sommario. Il presente paragrafo si riferisce alle lezioni del corso di Fondamenti di Informatica e Laboratorio di Informatica dei giorni 9

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

Matematica Finanziaria 29 novembre 2000

Matematica Finanziaria 29 novembre 2000 Matematica Finanziaria 29 novembre 2000 Ottimizzazione. Cognome Nome FILA A ESERCIZIO 1: Gestione del rischio a) Ricavare l espressione del vettore dei coe cienti nella tecnica dei minimi quadrati. b)

Dettagli

Ricerca Operativa. Ricerca Operativa p. 1/6

Ricerca Operativa. Ricerca Operativa p. 1/6 Ricerca Operativa Ricerca Operativa p. 1/6 Ricerca Operativa Disciplina basata sulla modellizzazione e la risoluzione tramite strumenti automatici di problemi di decisione complessi. In tali problemi la

Dettagli

ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Esercizi di Programmazione Lineare in Aula

ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017. Esercizi di Programmazione Lineare in Aula ESERCIZI DI METODI QUANTITATIVI PER L ECONOMIA DIP. DI ECONOMIA E MANAGEMENT DI FERRARA A.A. 2016/2017 Esercizi di Programmazione Lineare in Aula Esercizio 1. Una industria vuole commercializzare un particolare

Dettagli

Politecnico di Torino A.A. 2012-2013. Esercitazione 3. Soluzione

Politecnico di Torino A.A. 2012-2013. Esercitazione 3. Soluzione Politecnico di Torino A.A. 1-1 Esercitazione 5. Laminazione a reddo di na lamiera di allminio Si vole laminare a reddo na lamiera di allminio (ρ = 7 kg/m ) di spessore pari a 6 millimetri e larghezza 16

Dettagli

Esperimentazioni di Fisica 3 AA Appunti sugli Amplificatori Operazionli. M. De Vincenzi

Esperimentazioni di Fisica 3 AA Appunti sugli Amplificatori Operazionli. M. De Vincenzi Esperimentazioni di Fisica 3 AA 2010-2011. Appnti sgli Amplificatori Operazionli M. De Vincenzi 1 Introdzione L amplificatore operazionale è n amplificatore differenziale di tensione con scita in tensione

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR 1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Lab 2: Progettazione di controllori PID e in spazio di stato per un motore elettrico (20+2 punti)

Lab 2: Progettazione di controllori PID e in spazio di stato per un motore elettrico (20+2 punti) Lab 2: Progettazione di controllori PID e in spazio di stato per n motore elettrico (202 pnti) Lca Schenato Email: schenato@dei.nipd.it 13 Febbraio 2006 1 Scopo L obiettivo di qesto laboratorio è di procedere

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto Oggetto: corso chimica-fisica. Esercizi: i Vettori

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto   Oggetto: corso chimica-fisica. Esercizi: i Vettori Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.anre@gmail.com ggetto: corso chimica-fisica Esercii: i Vettori Appnti di leione Indice Somma di vettori 2 Differena di vettori 3

Dettagli

GRAFICI DI RETTE. Calcolando i valori delle coordinate è possibile trovare i punti e disegnare il grafico di una qualsiasi relazione come y = 2x 5.

GRAFICI DI RETTE. Calcolando i valori delle coordinate è possibile trovare i punti e disegnare il grafico di una qualsiasi relazione come y = 2x 5. GRAFICI DI RETTE Calcolando i valori delle coordinate è possibile trovare i pnti e disegnare il grafico di na qalsiasi relazione come = 2 5. ESEMPIO 1 - a. Completa le segenti coppie di coordinate relative

Dettagli

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5 IL METODO DEL SIMPLESSO 65 Esercizio 7.4.4 Risolvere utilizzando il metodo del simplesso il seguente problema di PL: min 4 + + + + = 4 + + = + = 5 Innanzitutto scriviamo il problema in forma standard:

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.11)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.11) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 2015-16, lez.11) 1 La complessità

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

+ + = 3 = = = + + ESERCIZIO 4A: Calcolare l antitrasformata Zeta della seguente funzione F(z)

+ + = 3 = = = + + ESERCIZIO 4A: Calcolare l antitrasformata Zeta della seguente funzione F(z) ESERCIZIO : Calcolare l antitrasformata Zeta della segente fnione F F La fnione F è raionale fratta col denominatore di grado maggiore del grado del nmeratore. La procedra di antitrasformaione consiste

Dettagli

STIMA DELL INCERTEZZA ESEMPIO 2: METODO GASCROMATOGRAFICO

STIMA DELL INCERTEZZA ESEMPIO 2: METODO GASCROMATOGRAFICO P.le R. Morandi, - 0 MILANO SIMA DELL INCEREZZA ESEMPIO : MEODO GASCROMAOGRAFICO RELAORE: L. CAVALLI (UNICHIM) Corso: SISEMA DI GESIONE PER LA QUALIA NEI LAORAORI DI ANALISI. Stima ed espressione dell

Dettagli