ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4"

Transcript

1 ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4 CDL IN MATEMATICA, A.A. /3 (A. MALUSA) Esercizio. Sia f C(A, R n ), A R R n aperto. Dimostrare che le iterate di Picard relative al problema di Cauchy x = f(t, x) x(t ) = x costruite in un opportuno intorno di t, sono equicontinue ed equilimitate. Utilizzare questa informazione per determinare una soluzione del problema di Cauchy. Soluzione. Siano a,b, M e δ fissati come al solito e sia I δ = [t δ, t +δ]. La dimostrazione (fatta nel corso della dimostrazione del Teorema di esistenza ed unicità) del fatto che le iterate di Picard x (t) = x t I δ. x k+ (t) = x + f(s, x k (s)) ds t verificano la stima x k (t) x b, t I δ usa solo l ipotesi di continuità del campo f, quindi resta valida. Da tale stima segue che x k (t) x + b per t I δ, quindi la successione è equilimitata in C(I δ, R n ). D altra parte, x k C (I δ, R n ) e x k+ (t) = f(t, x k (t)) M, t I δ quindi la successione è equilipshitziana. Per il Teorema di Ascoli Arzelà, esiste una sottosuccessione x kj } ed una funzione x C(I δ, R n ) tali che x kj } converge uniformemente ad x in I δ. Poichè f(t, x) è continua nel compatto I δ B b (x ), allora, per il Teorema di Heine Cantor, è anche uniformemente continua e, come abbiamo visto nella dimostrazione del Teorema di Peano, questo basta a garantire che anche la successione f(t, x kj (t)) converga uniformemente in I δ alla funzione f(t, x(t)). Questo è quanto serve per passare al limite nell espressione x k+ (t) = x + f(s, x k (s)) ds t t I δ per ottenere che il limite x della sottosuccessione sia una soluzione della formulazione integrale del problema di Cauchy. Esercizio. Sia f C(R ) localmente lipschitziana in t uniformemente in x R. Dimostrare che se f(t, x ), allora il problema di Cauchy x = f(t, x) x(t ) = x ha un unica soluzione definita in un opportuno intorno di t. soluzioni della forma t = t(x)) (Suggerimento: cercare

2 CDL IN MATEMATICA, A.A. /3 (A. MALUSA) Soluzione. Visto che f(t, x ) e che la funzione f è continua, è possibile determinare a, b > tali che f(t, x) per (t, x) nel rettangolo R = [t a, t + a] [x b, x + b]. Supponiamo che f(t, x) sia positiva in R (se è negativa il ragionamento è analogo). Osserviamo che se esiste un unica soluzione locale t(x) del problema di Cauchy () t (x) = t(x ) = t f(t(x), x) definita su un sottointervallo di [x b, x + b] a valori in [t a, t + a], allora, grazie all equazione, risulta t (x) > e quindi t è una funzione invertibile con inversa x(t) definita in un sottointervallo di [t a, t + a] a valori in [x b, x + b]. Inoltre x(t ) = x e x (t) = t = f(t, x(t)) (x(t)) ossia x(t) è l unica soluzione locale del problema di Cauchy che ci interessa. Sia L tale che f(t, x ) f(t, x ) L t t per ogni (t, x ), (t, x ) R e sia < m = min R f(t, x). Ovviamente il campo /f(t, x) ristretto ad R risulta essere continuo. Mostriamo che è anche lipschitziano in t uniformemente in x: f(t, x ) f(t, x ) = f(t, x ) f(t, x ) f(t, x )f(t, x ) L m t t, (t, x ), (t, x ) R. Quindi, una volta osservato che m = max R f(t, x), applicando il Teorema di esistenza ed unicità in ipotesi di lipschitzianità, otteniamo che esiste un unica soluzione t(x) del problema di Cauchy () definita nell intervallo [x δ, x + δ], con δ = minb, am}. Per quanto detto prima, questo ci garantisce l esistenza e l unicità locale della soluzione del problema di partenza. Esercizio 3 (Criterio dell asintoto orizzontale). Sia f : [x, + ) R una funzione derivabile e tale che i) esiste finito il lim x + f(x); ii) esiste il lim x + f (x) = l; allora l =. Soluzione. Basta applicare il Teorema di de l Hopital al rapporto f(x)/x: visto che esiste il lim x + f (x) = l, allora deve essere l = lim f(x) (x) = lim x + x + x =. Esercizio 4. Studiare qualitativamente le soluzioni dei problemi di Cauchy x = x 3 x x() = x

3 ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4 3 al variare di x R, determinandone il dominio massimale, le proprietà di monotonia e di convessità. Soluzione. Il campo f(x) = x 3 x è di classe C, quindi siamo in ipotesi di esistenza ed unicità delle soluzioni. Infine il campo è dispari, quindi se x(t) è la soluzione corrispondente ad un dato x, allora x(t) è la soluzione del problema di Cauchy con dato x() = x. Quindi ci basta descrivere le soluzioni corrispondenti a dati positivi e poi ottenere le altre per simmetria. Abbiamo tre soluzioni stazionarie, x(t) =, x(t) = e x(t) = definite su tutto R. In particolare, per < x <, la corrispondente soluzione è limitata e quindi globale. Inoltre ha derivata negativa, quindi è strettamente decrescente ed esistono i limiti lim x(t) = l, t lim x(t) = l. t + Essendo x = x 3 x, esistono anche i limiti della derivata e, per il criteri dell asintoto dovrà valere = l 3 i l i, i =,. Quindi gli asintoti orizzontali delle soluzioni devono necessariamente coincidere con i valori di equilibrio e, in questo caso, avremo lim x(t) =, lim t x(t) =. t + Infine, per il Teorema di regolarità, la soluzione è almeno di classe C (in realtà è analitica) e, derivando l equazione, si ottiene x (t) = (3x (t) )x (t) = (3x (t) )x(x ). In particolare, la soluzione cambia concavità in t tale che x(t) = / 3: è concava per t < t e convessa per t > t (ricordiamo che x(t) è decrescente). Se x >, la soluzione x(t) è crescente e convessa. Indichiamo con (T min, T max ) il suo massimo intervallo di definizione. Poiché < x(t) < x per ogni t (T min, t ), abbiamo che T min = e, utilizzando nuovamente il criterio dell asintoto orizzontale, concludiamo che lim x(t) =. t Per quanto riguarda T max, ricordiamo che, essendo f(x ) > e t =, deve essere T max = lim x + x x ξ 3 ξ dξ e l integrale improprio è convergente, quindi si ha esplosione in tempo finito: lim x(t) = +. t Tmax Il grafico di alcune soluzioni del problema è descritto in Figura. Osserviamo che il problema si può risolvere esplicitamente per separazione di variabili: dopo l integrazione si ottiene la relazione x (x log ) x (x ) = t

4 4 CDL IN MATEMATICA, A.A. /3 (A. MALUSA)..5.5 Figura. Alcune traiettorie dell Esercizio 4 da cui si ricava, ad esempio per x > x(t) = ottenendo il tempo esatto di esplosione., t < x e x t Esercizio 5. Data l equazione differenziale log x x, x = ( x t ), t > i) determinare le soluzioni della forma x(t) = mt, m R; ii) determinare gli intervalli massimali nei quali sono definite le soluzioni dei problemi di Cauchy con dato x() = x, x R. Soluzione. i) Deve essere m = (m ), quindi, se indichiamo con m = 3 5 e m = 3+ 5, si hanno le due soluzioni x(t) = m t, x = m t definite su (, + ). ii) Si tratta di un equazione omogenea, che, scritta nella nuova variabile z(t) = x(t)/t, diventa tz + z = (z ) = z = t (z m )(z m ). Per determinare le soluzioni corrispondenti valori iniziali del tipo z() = z m, m possiamo procedere per separazione di variabili: z(t) dξ = log t = log (z(t) m )(z m ) (ξ m )(ξ m ) 5 (z(t) m )(z m ) = log t. Una volta osservato che, per il Teorema di esistenza ed unicità, z(t) m i ha lo stesso segno di z m i, i =,, possiamo togliere il valore assoluto ed esplicitare z(t): ( (z(t) m )(z m ) (z(t) m )(z m ) = t 5 = z(t) z ) m t 5 z m = m m t 5 z m z m da cui si ricava x(t) = m z m z m m t 5 z m z m t t 5

5 ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4 5 definita nella componente connessa dell insieme t > : t 5 (z m )/(z m )} che contiene t =. Quindi, se (z m )/(z m ) < (ossia se m < z < m ) la soluzione è definita per t >. Se invece z < m, allora < (z m )/(z m ) <, la soluzione è definita sulla semiretta ((z m )/(z m ), + ). Infine,se z > m, allora (z m )/(z m ) > e la soluzione è definita in (, (z m )/(z m )). Esercizio 6. Dimostrare che tutte le soluzioni massimali dei problemi di Cauchy x = x 6 cos x x() = x sono definite su tutto R (nonostante il secondo membro non sia sublineare). Il secondo membro f(x) = x 6 cos x verifica le ipotesi del Teorema di esistenza ed unicità per il problema di Cauchy e l equazione ha soluzioni costanti x(t) = π/ + kπ, t R, k Z. Ogni altra soluzione corrisponente a x π/ + kπ è limitata: dato k tale che π/ + k π < x < π/ + (k + )π, la soluzione corrispondente verifica π/ + k π < x(t) < π/ + (k + )π in tutto il suo insieme di definizione. Quindi è definita su tutto R. Esercizio 7. Siano f, g C (R ) tali che xf(x, y) = yg(x, y) in R. Dimostrare che tutte le soluzioni massimali del sistema x = f(x, y) y = g(x, y) sono definite su tutto R. Soluzione. Se (x(t), y(t)), t I, è soluzione del sistema, allora d dt (x(t) + y(t) ) = x(t)x (t) + y(t)y (t) = (x(t)f(x(t), y(t)) + y(t)g(x(t), y(t))) =, t I. Quindi esiste c > tale che x(t) + y(t) conseguenza, globale. = c, per cui la soluzione è limitata e, di Esercizio 8. Dimostrare che le soluzioni massimali dei problemi di Cauchy x = xe xy y = ye xy x(t ) = x y(t ) = y sono definite su tutta la semiretta [t, + ). Soluzione. Se (x(t), y(t)), t I, è soluzione del sistema, allora d dt (x(t) + y(t) ) = x(t)x (t) + y(t)y (t) = (x(t) + y(t) )e xy, t I. Di conseguenza, la soluzione corrispondente ad un dato iniziale (x, y ) soddisfa ossia è limitata e, dunque, globale in avanti. x(t) + y(t) x + y, t t

6 6 CDL IN MATEMATICA, A.A. /3 (A. MALUSA) Figura. Alcune traiettorie dell Esercizio 9 a) (a destra) e b) (a sinistra) Esercizio 9. (Sistemi hamiltoniani) Sia h C (R ). primo per il sistema x = h y (x, y) y = h x (x, y). Dimostrare che h è un integrale Utilizzare questo risultato per disegnare nel piano delle fasi le traiettorie dei sistemi x = y x = y a) y b) = x. y = 4x. Soluzione. Se (x(t), y(t)), t I, è soluzione del sistema, allora d dt h(x(t), y(t)) = h x(x(t), y(t))x (t) + h y (x(t), y(t))y (t) =, t I ossia la funzione h è costante lungo le soluzioni del sistema. Nel caso del sistema a), deve essere h x = x e h y = y, quindi l hamiltoniana è h(x, y) = y x e le traiettorie soddisfano l equazione y x = c. Il ritratto di fase è quindi dato dalle due bisettrici (per c = ) e rami di iperboli (si veda Figura a destra). Analogamente, per il sistema b) deve essere h x = 4x e h y = y, quindi l hamiltoniana è h(x, y) = y + x e le traiettorie soddisfano l equazione y + x = c. Il ritratto di fase è quindi dato da ellissi centrate nell origine (si veda Figura a sinistra). Esercizio. a) Dimostrare che se i) X è uno spazio di Banach in cui è definita una relazione d ordine ; ii) Γ: X X è un applicazione che preserva l ordine e tale che esista v X, v = lim n Γ n (u) per ogni u X (v punto fisso attrattivo per Γ) allora u Γ(u) u v b) Applicare questo ad X = C([, ], [, + )) con l usuale relazione d ordine ed all applicazione Γ(u)(t) = K + k(s)u(s) ds, K >, k C([, ], [, + )). Cosa si ottiene? (per la seconda parte è utile ricordare che il simplesso j = (s, s,..., s n ): s n... s s t} è la n!-sima parte del cubo n-dimensionale di lato t).

7 ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4 7 Soluzione. a) Se u Γ(u), visto che Γ preserva l ordine, si ha Γ(u) Γ (u) e quindi u Γ (u). Per induzione, otteniamo che u Γ n (u), n N e, passando al limite su n, si conclude che u v. b) Nel caso specifico, la condizione u Γ(u) corrisponde a () u(t) K + k(s)u(s) ds, t [, ], ossia ad una stima dello stesso tipo dell ipotesi del Lemma di Gronwall. Tale stima, per il punto a), implica che u v, posto che esista v = lim n Γ n (u). Calcoliamo le iterate di Γ: ( s ) Γ (u) = K + Kk(σ) dσ + k(σ)k(s)u(s) dσ ds. Γ 3 (u) = Γ(Γ (u)) = K + + ( τ k(τ) Kk(σ) dσ Ora basta osservare che e che Quindi con G j (t) = s s sj E j (t) = G j (t) k(τ)γ (u)(τ) dτ = K + K k(τ) dτ ) ( τ ( s dτ + + k(τ) s s sj k(s )k(s ) k(s j ) ds ds... ds j = j! u k j V ol( k j j) u. j! n j= k j tj j! ) ) k(σ)k(s)u(σ) dσ ds dτ. ( k(s )k(s ) k(s j )u(s j ) ds ds... ds j n Γ n = K G j (t) + E n (t), j= = lim j + G j(t) = e k t e lim j + E j =. ) j k(s) ds Di conseguenza, esiste una funzione v C([, ], [, + )) tale che Γ n (u)} converge a v uniformemente in [, ]. In particolare, v verifica v = Γ(v), quindi v(t) = K + che è la versione integrale del problema di Cauchy v = k(t)v v() = K. k(s)v(s) ds, t [, ] In conclusione v(t) = Ke k(s) ds e ogni funzione u che verifica (), soddisfa u(t) Ke k(s) ds, t [, ]. Quindi il risultato nel punto a) è una versione generale del Lemma di Gronwall.

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata.

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata. Scuola Normale Superiore, ammissione al IV anno del corso ordinario Prova scritta di Analisi Matematica per Fisica, Informatica, Matematica 26 Agosto 2 Esercizio. Siano (a n ) e (b n ) successioni di numeri

Dettagli

15. Problemi di Cauchy

15. Problemi di Cauchy 15. Problemi di Cauchy Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 2 A.A. 2016/17 Consideriamo il problema di Cauchy { y (t) = f ( t,y(t) ) t I, y(t 0 ) = y 0, con I R intervallo

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Corso di laurea in Matematica, a.a. 2005-2006 27 aprile 2006 1. Disegnare approssimativamente nel piano (x, y) l insieme x 4 6xy 2

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.

Dettagli

Esistenza ed unicità per equazioni differenziali

Esistenza ed unicità per equazioni differenziali Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

5.3 Alcune classi di funzioni integrabili

5.3 Alcune classi di funzioni integrabili 3. Si verifichi che per ogni f, g : [a, b] R si ha f g = g + (f g) 0, f g = f + g f g; dedurne che se f, g R(a, b) allora f g, f g R(a, b). [Traccia: si osservi che basta verificare che f 0 R(a, b), e

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preinare n. Corso di laurea in Matematica, a.a. 200-2004 24 marzo 2004. Risolvere il prolema di Cauchy y = (y 2x) 2 + y 2x y(log 2) = 2 log 2. Soluzione.

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico /3 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9//3 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA: II parte Corso di Laurea in Matematica aa 2003/04

ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA: II parte Corso di Laurea in Matematica aa 2003/04 ANALISI MATEMATICA 1 ESERCIZI ASSEGNATI IN AULA O A CASA: II parte Corso di Laurea in Matematica aa 003/04 Esercizio 1. (6/04/04) Determinare l insieme di definizione di ciascuna delle seguenti funzioni

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Risoluzione del compito n. 2 (Febbraio 2018/1)

Risoluzione del compito n. 2 (Febbraio 2018/1) Risoluzione del compito n. Febbraio 18/1 PROBLEMA 1 Dopo averlo scritto in forma trigonometrica, determinate le radiciquadrate complesse del numero +i 3. Determinate tutte le soluzioni w C dell equazione

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Analisi Matematica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Appello n. 3 prova scritta ( Marzo 6) Importante: Per l

Dettagli

Esercizi proposti 4 (capitolo 8)

Esercizi proposti 4 (capitolo 8) Esercizi proposti 4 capitolo 8). [8., #5 p. 9] Calcolare i possibili punti di estremo di gx) = x ln x, per x 0, + ). Soluzione. Ricordiamo che un punto di estremo è un punto del dominio della funzione

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 008/009 Calcolo, Esame scritto del 06.0.009 Consideriamo la funzione fx cos + x. a Determinare il dominio massimale di f. b Trovare tutti gli asintoti

Dettagli

Esame di Analisi Matematica Prova scritta del 9 giugno 2009

Esame di Analisi Matematica Prova scritta del 9 giugno 2009 Prova scritta del 9 giugno 2009 A1 Data la funzione f(x) = x2 3 e x, (f) determinare in base al grafico di f il numero delle soluzioni dell equazione f(x) = λ al variare di Calcolare un valore approssimato

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

APPELLO B AM1C 14 LUGLIO f(x) = xe 1

APPELLO B AM1C 14 LUGLIO f(x) = xe 1 Cognome e nome APPELLO B AM1C 14 LUGLIO 2009 Esercizio 1. Sia data la funzione f(x) = xe 1 log x. (a) Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali massimi,

Dettagli

Principali differenze tra la ristampa 2014 e l edizione 2008

Principali differenze tra la ristampa 2014 e l edizione 2008 Principali differenze tra la ristampa 214 e l edizione 28 Di seguito sono riportate le principali modifiche apportate al testo dell edizione 28 con la ristampa riveduta e corretta del 214. Si avverte il

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Analisi Matematica B Soluzioni prova scritta parziale n. 2

Analisi Matematica B Soluzioni prova scritta parziale n. 2 Analisi Matematica B Soluzioni prova scritta parziale n. Corso di laurea in Fisica, 017-018 9 febbraio 018 1. Determinare il numero di soluzioni reali dell equazione x 4 = ln(1 + x ). Svolgimento. Posto

Dettagli

TEMA 1. F (x, y) = e xy + x + y.

TEMA 1. F (x, y) = e xy + x + y. FONDAMENTI DI ANALII MATEMATICA 2 Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 23 gennaio 217 Primo appello Avvertenza: Nella prima

Dettagli

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i)

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i) ed è contenuto in {x R ; a(i) x b(i) }. Sulla continuità uniforma: Un intervallo di numeri reali è un sottoinsieme I R tale che Per un intervallo I I x 1 x x 2 I = x I. a(i) = inf x (appartenente a R o

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 24/7/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 4/7/013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 01/013 A Cognome (in STAMPATELLO):... Nome (in STAMPATELLO):... CFU:... Esercizio 1. Sia f : R R una funzione

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Massimi e minimi. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Massimi e minimi. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Massimi e minimi Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

y = f(t, y) y = y y(0) = 0,

y = f(t, y) y = y y(0) = 0, Il teorema di Peano Considerato il problema di Cauchy 1) y = ft, y) y ) = y 0, se il campo vettoriale f è solamente continuo e non localmente lipschitziano nella seconda variabile, la successione delle

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità;

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità; ANALISI MATEMATICA Commissione L. Caravenna, V. Casarino, S. occante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 27 Gennaio 25 TEMA - arte B Esercizio ( unti). Si consideri la funzione

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C Analisi Matematica I (M-Z).C1 08-0-1997 1) Data la funzione h(x) = x log(x + 1 + x + x + ) + log(1 + ) determinarne il dominio D. Provare poi che h(x) > 0 x D ]0, + [, h(x) = 0 x = 0. ) Utilizzando i risultati

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine nno ccademico 5/6 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/7/6 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Matematica per le Applicazioni Economiche I (M-P)

Matematica per le Applicazioni Economiche I (M-P) Matematica per le Applicazioni Economiche I (M-P) Corsi di Laurea in Economia Aziendale, Economia e Commercio, a.a. 06-7 Esercizi su Calcolo Differenziale. Per la seguente funzione, dato 0, si utilizzi

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Matematica - C.d.L. in Scienze Biologiche A.A. 2013/2014 Università dell Aquila Prova Scritta di Matematica del 3 febbraio Canale B Soluzioni

Matematica - C.d.L. in Scienze Biologiche A.A. 2013/2014 Università dell Aquila Prova Scritta di Matematica del 3 febbraio Canale B Soluzioni Matematica - C.d.L. in Scienze Biologiche A.A. 3/4 Università dell Aquila Prova Scritta di Matematica del 3 febbraio 4 - Canale B Soluzioni Esercizio. Sia r la retta di equazione +y =. Scrivere un equazione

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Analisi II, a.a Soluzioni 4

Analisi II, a.a Soluzioni 4 Analisi II, a.a. 17-18 Soluzioni 4 1) Consideriamo le curve in forma parametrica in R φ : R R, φ(t) = (cos t, cos(t)), φ : R R, φ(t) = (1 + cos t, sen t) φ :], π/[ R, φ(t) = (sen t, cos t) φ : R R, φ(t)

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 22 Uno svolgimento Prima di tutto, eccovi alcuni commenti che potrebbero aiutarvi a svolgere meglio le prove scritte. Ad ogni domanda del testo

Dettagli

Il teorema di Ascoli-Arzelà

Il teorema di Ascoli-Arzelà Il teorema di Ascoli-Arzelà Alcuni risultati sugli spazi metrici Spazi metrici (e topologici) compatti Richiamiamo le definizioni di compattezza negli spazi metrici. Sia (X, d) una spazio metrico e sia

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 9 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga

Gruppo N 2. Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti. Esercizio (1) Si ponga Gruppo N Il candidato risolva tutti gli esercizi sotto indicati, illustrando con chiarezza, rigore e sintesi i procedimenti utilizzati. Esercizio (1) Si ponga (a) F(x) = ln(3 + sin t )dt. Giustificando

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

1 Equazioni differenziali

1 Equazioni differenziali 1 Equazioni differenziali Un equazione del tipo F(t, y, y,...,y (n) ) = 0 (1) con una funzione incognita y dipendente dalla variabile indipendente t, assieme alle sue derivate fino all ordine n, viene

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

2 Introduzione ai numeri reali e alle funzioni

2 Introduzione ai numeri reali e alle funzioni 1 CORSO DI LAUREA in Fisica Canale A-CO (canale 4) docente P. Vernole Il programma d esame comprende tutti gli argomenti svolti durante il corso. Dopo ogni sezione sono indicate le parti delle Dispense

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I A) Ingegneria Edile, 7 novembre 00 Michele Campiti) 1. Studiare il seguente ite: x π/ cos x 1 sin x) tan 3 x π ).. Calcolare le seguenti radici quarte: 3i 4 1 + i). Esonero

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

y retta tangente retta secante y = f(x)

y retta tangente retta secante y = f(x) Retta tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Università degli Studi di Verona Dipartimento di Informatica Ca' Vignal Strada le Grazie 15 37134 Verona - Italia Tel. +39 045 80 7069 Fax +39 045 80 7068 Corso di Laurea in Matematica Applicata PROVA

Dettagli

Esame di Analisi Matematica 2 25/2/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 25/2/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 2 25/2/203 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 202/203 A Esercizio 0. Riportare esclusivamente la risposta a ciascuno dei questi a-d di sotto. Gli elaborati

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x Esercizio 1. Sia data la funzione f(x) = log( x + 2) x (a )Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali punti angolosi o di cuspide, eventuali massimi e

Dettagli