3.4 Quasiconcavità e quasiconvessità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3.4 Quasiconcavità e quasiconvessità"

Transcript

1 Pagina 1 di Quasiconcavità e quasiconvessità Definizioni e proprietà di base Pensate ad una montagna delle Alpi Svizzere: pascoli di mucche sui pendii verdeggianti più bassi, la neve che copre le cime più alte. Ora dimenticate mucche e neve. Chiedetevi quando una funzione che descriva la superficie della montagna sia concava. Se ogni linea dritta che congiunga due punti sulla superficie giace sempre sopra la superficie o su di essa, allora la montagna è concava. Se, per esempio, la montagna è una cupola perfetta (mezza sfera), allora questa condizione è soddisfatta e la funzione definita dalla sua superficie è concava. La condizione risulta soddisfatta anche se la montagna è un cono perfetto. In questo caso, ogni segmento rettilineo che unisca due punti sulla superficie giace esattamente sulla superficie. Ora supponete che la montagna sia una deformazione di un cono e diventi progressivamente più ripida ad altitudini più elevate. (Molte montagne sembrano avere questa caratteristica quando si cerca di scalarle!). Cioè, supponete che quando si osservi da lontano, la montagna abbia una forma simile a questa: In questo caso, una retta che parte dalla cima e si congiunge a qualsiasi altro punto sulla superficie non non giace sulla o sotto la superficie, ma piuttosto passa attraverso l'aria aperta. Così la funzione definita dalla superficie della montagna non è concava. Comunque, la funzione possiede una significante caratteristica delle funzioni concave: in una mappa topografica della montagna, l'insieme dei punti all'interno di una curva isometrica è un insieme convesso: Lo stesso vale per qualsiasi intervallo si scelga tra le curve isometriche. (Possono essere distanti 10m, o 100m, o 50m, o 61m, o qualsiasi atra misura). Se modelliamo la superficie della montagna con una funzione f della sua altezza e larghezza (x, y), allora una curva isometrica diventa una curva di livello di f. Una funzione che abbia la proprietà per

2 Pagina 2 di 7 cui per ogni valore di c l'insieme dei punti (x, y) tali che f (x, y) c---l'insieme dei punti all'interno di ogni curva isometrica in una mappa topografica---è convesso, viene detta quasiconcava. Non tutte le montagne hanno questa proprietà. Infatti, se date un'occhiata a qualche mappa, vi accorgerete che quasi nessuna montagna la possiede. Una mappa topografica di una vera montagna risulta essere qualcosa di simile: Le tre linee di livello più esterne di questa montagna non racchiudono unsiemi convessi. Prendete, per esempio, quella in rosso. La linea blu, che connette due punti nell'insieme racchiuso dalla curva, giace all'esterno dell'insieme stesso. Così la funzione definita dalla superficie della montagna non è quasiconcava. Sia f una funzione multivariata definita nell'insieme S. Diciamo che f (come la funzione che definisce la superficie della montagna) è quasiconcava se, per qualsiasi numero a, l'insieme dei punti per cui f (x) a è convesso. Per qualsiasi numero reale a, l'insieme P a = {x S: f (x) a} viene detto insieme superiore di livello di f per a. (Nel caso della montagna, P a è l'insieme di tutti i punti che hanno altitudine almeno pari ad a.) Definizione Una funzione multivariata f definita in un insieme convesso S è quasiconcava se ogni insieme superiore di livello di f è convesso. (Cioè, P a = {x S: f (x) a} è convesso per ogni valore di a.) Definiamo la nozione di quasiconvessità come segue. Innanzitutto, per ogni numero reale a, l'insieme P a = {x S: f (x) a} è l'insieme di tutti i punti la cui immagine è al massimo a; è chiamato insieme inferiore di livello di f per a. (Nel caso di una montagna, P a è l'insieme di tutti i punti per i quali l'altezza è al massimo di a.)

3 Pagina 3 di 7 Definizione Una funzione multivariata f definita in un insieme convesso S è quasiconvessa se ogni insieme inferiore di livello di f è convesso. (Cioè, P a = {x S: f (x) a} è convesso per ogni valore di a.) Notate che f è quasiconvessa se e solo se f è quasiconcava. Perché gli economisti dovrebbero essere interessati alla quasiconcavità? Perché è esattamente la condizione che tipicamente imponiamo alla funzione di utilità di un consumatore: assumiamo che per ogni dato paniere di beni x, l'insieme dei panieri che il consumatore preferisce a x sia convesso, così che le curve di indifferenza del consumatore assumano una forma del genere e non come questa o come questa La nozione di quasiconcavità è più debole della nozione di concavità, nel senso che ogni funzione concava è quasiconcava. Analogamente, ogni funzione convessa è quasiconvessa. Una funzione concava è quasiconcava. Una funzione convessa è quasi convessa. Dimostrazione: chiamiamo la funzione f e l'insieme (convesso) su cui è definita S. Sia a un numero reale e siano x e y due punti appartenenti all'insieme superiore di livello P a : x P a e y P a. Dobbiamo dimostrare che P a è convesso. Cioè, dobbiamo dimostrare che per ogni λ [0,1] abbiamo (1 λ)x + λy P a. Innanzitutto notate che l'insieme S su cui f è definita è convesso, così abbiamo (1 λ)x + λy S e così f è definita nel punto (1 λ)x + λy. Ora, la concavità di f implica che f ((1 λ)x + λy) (1 λ) f (x) + λ f (y). Inoltre, il fatto che x P a significa che f (x) a, ed il fatto che y P a significa che f (y) a, così (1 λ) f (x) + λ f (y) (1 λ)a + λa = a. Combinando le ultime due disuguaglianze, abbiamo f ((1 λ)x + λy) a, così che (1 λ)x + λy P a. Allora ogni insieme di livello superiore è convesso e perciò f è quasiconcava.

4 Pagina 4 di 7 L'inverso di questo risultato non è vero: una funzione quasiconcava può non essere concava. Consideriamo, per esempio, la funzione f (x, y) = xy definita nell'insieme delle coppie di numeri reali non negativi. Questa funzione è quasiconcava (i suoi insiemi di livello superiori sono gli insiemi dei punti sopra l'iperbole), ma non è concava (per esempio, f (0, 0) = 0, f (1, 1) = 1, e f (2, 2) = 4, così che f ((1/2)(0, 0) + (1/2)(2, 2)) = f (1, 1) = 1 < 2 = (1/2) f (0, 0) + (1/2) f (2, 2)). Alcune proprietà delle funzioni quasiconcave sono date dal seguente risultato. (Vi è richiesto di provare il primo risultato in un esercizio.) Se f è quasiconcava e F è crescente, allora F ( f (x)) è quasiconcava. Se f è quasiconcava e F è decrescente, allora F ( f (x)) è quasiconcava. In uno degli esercizi vi è richiesto di dimostrare che la somma di funzioni quasiconcave può non essere quasiconcava. Funzioni di una sola variabile Le definizioni di sopra si applicano a qualsiasi funzione, comprese quelle ad una sola variabile. Per una funzione di una sola variabile, un insieme di livello superiore o inferiore è tipicamente un intervallo di punti, o un'unione di intervalli. Nella figura seguente, per esempio, l'insieme di livello superiore per il valore a---cioè, l'insieme dei valori di x per i quali f (x) a---è l'unione dei due intervalli in blu dei valori di x: l'insieme di tutti i valori che sono sia compresi tra x e x sia più grandi di x. Disegnando alcuni esempi, dovreste esser in grado di convincervi del prossimo risultato. Una funzione f di una sola variabile è quasiconcava se e solo se è essa è non decrescente, non crescente, o esiste un x* tale che f è non decrescente per x < x* e non crescente per x > x*. Notate che questo risultato NON si applica alle funzioni di più variabili! Un'altra definizione di quasiconcavità A volte è utile la seguente definizione alternativa di funzione quasiconcava (di qualsiasi numero di variabili). Una funzione multivariata f è quasiconcava se e solo se per ogni x S, ogni x S, ed ogni λ [0,1] abbiamo se f (x) f (x ), allora f ((1 λ)x + λx ) f (x ).

5 Pagina 5 di 7 Vale a dire che una funzione è quasiconcava se e solo se il segmento che unisce i punti appartenenti a due curve di livello non giace mai sotto alla curva di livello corrispondente al valore più piccolo della funzione. Questa condizione è illustrata nella seguente figura, in cui a > a: tutti i punti sulla linea verde, che uniscono x e x, giacciono su o sopra la curva di indifferenza corrispondente al valore più piccolo della funzione (a). Quasiconcavità stretta Questa definizione di quasiconcavità giustifica la seguente riguardo alle funzioni quasiconcave strettamente. Definizione La funzione multivariata f definita in un insieme convesso S è quasiconcava strettamente se per ogni x S, ogni x S con x x, ed ogni λ (0,1) abbiamo se f (x) f (x ), allora f ((1 λ)x + λx ) > f (x ). Cioè, una funzione è quasiconcava strettamente se tutti i punti, eccetto i punti di frontiera del segmento che unisce i punti appartenenti a due curve di livello, giacciono strettamente sopra la curva di livello corrispondente al valore più basso della funzione. Per una funzione di una sola variabile, questa definizione dice che una funzione strettamente quasiconcava non ha sezioni piatte. Per una funzione di due variabili, la definizione dice che nessuna curva di indifferenza di una funzione strettamente quasiconcava contiene un segmento. Due esempi di funzioni che non sono strettamente quasiconcave (sebbene le curve di livello indicate siano coerenti con la quasiconcavità della funzione) sono mostrate nella seguente figura. In entrambi i casi, la curva di livello rossa contiene un segmento. (Nel diagramma di destra, è così perché è "spessa"---vedi l'esempio di prima.) Come possiamo dire se una funzione è quasiconcava o quasiconvessa? Per determinare quando una funzione derivabile due volte sia quasiconcava o quasiconvessa, dobbiamo esaminare i determinanti dell'hessiano orlato della funzione, definito così:

6 Pagina 6 di 7 0 f 1 (x) f 2 (x)... f r (x) f 1 (x) f 11 (x) f 12 (x)... f 1r (x) D r (x) = f 2 (x) f 12 (x) f 22 (x)... f 2r (x) f r (x) f 1r (x) f 2r (x)... f rr (x) Notate che una funzione di n variabili ha n Hessiani orlati, D 1,..., D n. Sia f una funzione multivariata con derivate parziali del primo e secondo ordine continue in un insieme aperto convesso S. Se f è quasiconcava, allora D 1 (x) 0, D 2 (x) 0,..., D n (x) 0 se n è dispari e D n (x) 0 se n è pari, per ogni x in S. (Notate che la prima condizione è automaticamente soddisfatta.) Se f è quasiconvessa, allora D k (x) 0 per ogni k, per ogni x in S. (Notate che la prima condizione è automaticamente soddisfatta.) Se D 1 (x) < 0, D 2 (x) > 0,..., D n (x) < 0 se n è dispari D n (x) > 0 se n è pari per ogni x in S, allora f è quasiconcava. Se D k (x) < 0 per ogni k, per ogni x in S, allora f è quasiconvessa. Un altro modo per stabilire questo risultato è affermare che "D 1 (x) 0, D 2 (x) 0,..., D n (x) 0 se n è dispari e D n (x) 0 se n è pari, per ogni x in S" è una condizione necessaria per la quasiconcavità, dove "D 1 (x) < 0, D 2 (x) > 0,..., D n (x) < 0 se n è dispari e D n (x) > 0 se n è pari per ogni x in S" è una condizione sufficiente, e analogamente per la quasiconvessità. Notate che le condizioni non coprono tutti i casi possibili! Se, per esempio, D k (x) 0 per ogni k, per ogni x, ma D r (x) = 0 per un certo r ed un certo x, allora il risultato non ci nega la possibilità che la funzione sia quasiconvessa, ma non ci dice che lo sia. Esempio: Consideriamo la funzione f (x) = x 2 per x > 0. Abbiamo D 1 (x) = 4x 2 < 0 per ogni x > 0, deduciamo così che questa funzione è sia quasiconcava sia quasiconvessa nell'insieme {x: x > 0}. Esempio: Consideriamo la funzione f (x) = x 2 per x 0. Abbiamo D 1 (0) = 0, quindi questa funzione non soddisfa le condizioni sufficienti per la quasiconcavità o per la quasiconvessità, infatti essa è sia quasiconcava che quasiconvessa. Esempio: Consideriamo la funzione f (x 1,x 2 ) = x 1 x 2. Per x > 0 le condizioni sufficienti per la quasiconcavità sono soddisfatte, mentre le condizioni necessarie per la quasiconvessità non lo sono. Così la funzione è quasiconcava e non quasiconvessa nell'insieme {x: x > 0}. Per x 0 le condizioni sufficienti per la quasiconcavità non sono soddisfatte, ma le condizioni

7 Pagina 7 di 7 Esercizi necessarie non sono violate. (La funzione è infatti quasiconcava nel suo dominio.) Copyright by Martin J. Osborne

LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE. L'ipotesi di razionalità implica che un decisore cerchi di

LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE. L'ipotesi di razionalità implica che un decisore cerchi di LA STRUTTURA DEI PROBLEMI DI OTTIMIZZAZIONE L'ipotesi di razionalità implica che un decisore cerchi di individuare la migliore tra tutte le alternative a sua disposizione. Problemi di ottimizzazione =

Dettagli

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3)

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) Consideriamo un agente che deve scegliere un paniere di consumo fra quelli economicamente ammissibili, posto che i beni di consumo disponibili sono solo

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

Note sulle funzioni convesse/concave

Note sulle funzioni convesse/concave Note sulle funzioni convesse/concave 4th December 2008 1 Definizioni e proprietà delle funzioni convesse/concave. Definizione 1.1 Un insieme A IR n è detto convesso se per ogni x 1 e x 2 punti di A, il

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

(x x 0 ) 2. Lezione del 24 ottobre

(x x 0 ) 2. Lezione del 24 ottobre Lezione del 4 ottobre 1. Premessa I fatti descritti nei punti seguenti si possono vedere come molto lontani sviluppi di alcuni fatti elementari riguardanti le funzioni polinomiali di II grado. Diamo per

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

PARTE PRIMA DAI GRAFICI ALLE FUNZIONI

PARTE PRIMA DAI GRAFICI ALLE FUNZIONI PARTE PRIMA DAI GRAFICI ALLE FUNZIONI PREREQUISITI : concetti di insieme, relazione, intervallo, intorno, quantificatori, Riferimento Cartesiano Ortogonale (RCO), le coniche, funzioni, operazioni e composizioni

Dettagli

ECONOMIA Sanna-Randaccio (Lez 3) Scelta del Consumatore

ECONOMIA Sanna-Randaccio (Lez 3) Scelta del Consumatore ECONOMIA Sanna-Randaccio (Lez 3) Scelta del Consumatore ) Oggetto della scelta del consumatore Panieri di beni (caso con due beni) ) Quali sono le alternative disponibili Vincolo di bilancio, Retta di

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

CONCETTI e ENTI PRIMITIVI

CONCETTI e ENTI PRIMITIVI CONCETTI e ENTI PRIMITIVI Sono Concetti e Enti primitivi ciò che non può essere definito in modo più elementare, il significato è noto a priori, cioè senza alcun'altra specificazione. es. es. movimento

Dettagli

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare

LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare LEZIONE 30 30.1. Insiemi aperti e chiusi in R n. Nel corso di Analisi sono state introdotte alcune nozioni di topologia di R, come la nozione di aperto, di chiuso, di punto d accumulazione. Lo scopo di

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 2010/2011 Prof. C. Perugini

Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 2010/2011 Prof. C. Perugini Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 010/011 Prof. C. Perugini Esercitazione n.1 1 Obiettivi dell esercitazione Ripasso di matematica Non è una lezione di matematica! Ha lo scopo

Dettagli

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R 9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p.

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p. Calcolo Differenziale Corsi di Laurea in Tecniche di Radiologia ecc... A.A. 2010-2011 - Analisi Matematica - Calcolo Differenziale - p. 1/33 Velocità istantanea Percorriamo il tratto di strada tra Udine

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Teoria del consumo (1)

Teoria del consumo (1) Teoria del consumo (1) Postulato del confronto (o della completezza delle preferenze) Dati due panieri qualsiasi, il consumatore è sempre in grado di dire se un paniere è preferito, indifferente o non

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 5 Preferenze e utilità

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 5 Preferenze e utilità UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 5 Preferenze e utilità Prof. Gianmaria Martini Razionalità in economia Postulato comportamentale: Un agente sceglie sempre

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Applicazioni delle derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013 Esercizio Un area rettangolare deve essere recintata usando

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune Capitolo 1 Richiami sulle funzioni 1.1 Richiami di teoria Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune nozioni sulle funzioni e sui vettori. Per tale motivo in

Dettagli

Economia della Concorrenza e dei Mercati Lezione 3

Economia della Concorrenza e dei Mercati Lezione 3 Economia della Concorrenza e dei Mercati Lezione 3 Corso di laurea Consulente del Lavoro e Giurista d'impresa UNIBS, a.a. 2014-2015 Prof.ssa Chiara Dalle Nogare Il problema del consumatore Obiettivo: costruire

Dettagli

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA PRIMA SETTIMANA

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA PRIMA SETTIMANA Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA PRIMA SETTIMANA ALCUNE PREMESSE Cosa e la microeconomia? E la disciplina che studia

Dettagli

Punti di massimo e di minimo

Punti di massimo e di minimo Punti di massimo e di minimo Massimo assoluto o minimo assoluto DEFINIZIONE Si dice massimo (minimo) assoluto di una funzione f il più grande (piccolo) dei valori che essa assume. mag 12 15.39 1 Si dice

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

Preferenze del consumatore. Assiomi Utilità totale e marginale Curva di indifferenza: pendenza e posizione nel piano

Preferenze del consumatore. Assiomi Utilità totale e marginale Curva di indifferenza: pendenza e posizione nel piano Preferenze del consumatore Assiomi Utilità totale e marginale Curva di indifferenza: pendenza e posizione nel piano Le preferenze del consumatore Dobbiamo capire perché la domanda individuale e quella

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 8 Gennaio 06 Soluzioni Esercizio Siano z e z due numeri complessi con modulo e argomento rispettivamente (ρ, θ ) e (ρ, θ ) tali

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA SECONDA SETTIMANA Si consideri che: gli individui non possono consumare un infinito

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011

LUISS Laurea specialistica in Economia e Finanza Anno Accademico 2010/2011 LUISS Laurea specialistica in Economia e Finanza Anno Accademico 1/11 Corso di Metodi Matematici per la Finanza Prof. Fausto Gozzi, Dr. Davide Vergni Soluzioni esercizi 4,5,6 esame scritto del 13/9/11

Dettagli

Massimi e minimi assoluti vincolati: esercizi svolti

Massimi e minimi assoluti vincolati: esercizi svolti Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

1. TEORIA DEL CONSUMATORE

1. TEORIA DEL CONSUMATORE . TEORIA DEL CONSUMATORE ~ 9 ~ ~ 0 ~ Domande a risposta aperta D. Definire gli assiomi della teoria del consumatore. RD. Gli assiomi della teoria del consumatore sono: a) Completezza: un consumatore può

Dettagli

CONSUMO. 3. Il Saggio Marginale di Sostituzione (SMS)

CONSUMO. 3. Il Saggio Marginale di Sostituzione (SMS) CONSUMO 1. Le Preferenze del Consumatore 2. Curve di Indifferenza 3. Il Saggio Marginale di Sostituzione (SMS) 4. La Funzione di Utilità Utilità Marginale e Utilità Marginale Decrescente Utilità Marginale

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

Lezione 3 Le preferenze del consumatore

Lezione 3 Le preferenze del consumatore Lezione 3 Le preferenze del consumatore Argomenti Introduzione all analisi del comportamento del consumatore Le preferenze del consumatore Le curve di indifferenza Il Saggio Marginale di Sostituzione Curve

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Esercizi sulle funzioni di due variabili: parte II

Esercizi sulle funzioni di due variabili: parte II ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) A.A.009-00 - Università di Bologna - Prof. G.Cupini Esercizi sulle funzioni di due variabili: parte II (Grazie agli studenti del corso

Dettagli

inputs) in risultati (prodotti vendibili sul mercato, beni intermedi, inquinamento genericamente indicati come outputs).

inputs) in risultati (prodotti vendibili sul mercato, beni intermedi, inquinamento genericamente indicati come outputs). Capitolo 9 a produzione pagina 1 CAPITOO 9 A PRODUZIONE Cos è un processo produttivo? È un processo che trasforma i fattori produttivi (materie prime, macchine, ore di lavoro umano, progettazione genericamente

Dettagli

Le preferenze del consumatore e il concetto di utilita

Le preferenze del consumatore e il concetto di utilita Università degli Studi di Napoli Federico II Corso di studi CLEA Anno accademico 2012/13 Le preferenze del consumatore e il concetto di utilita Ornella Wanda Maietta maietta@unina.it Sommario 1. Rappresentazione

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

Topologia, continuità, limiti in R n

Topologia, continuità, limiti in R n Topologia, continuità, limiti in R n Ultimo aggiornamento: 18 febbraio 2017 1. Preliminari Prima di iniziare lo studio delle funzioni di più variabili, in generale funzioni di k variabili e a valori in

Dettagli

Analisi Matematica II

Analisi Matematica II Analisi Matematica II Limiti e continuità in R N Claudio Saccon 1 1 Dipartimento di Matematica, Via F. Buonarroti 1/C,56127 PISA email: claudio.sacconchiocciolaunipi.it sito web: http://pagine.dm.unipi.it/csblog1

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio.

Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio. 1 Funzione Continua Una definizione intuitiva di funzione continua è la seguente. Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio. Seppure questa non è una

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Insiemi numerici. Definizioni

Insiemi numerici. Definizioni 1 Insiemi numerici Gli insiemi numerici sono insiemi i cui elementi sono numeri, cioè appartengono all'insieme N dei naturali, degli interi Z, dei razionali Q, dei reali R o dei complessi C ( es.: A =

Dettagli

Funzioni convesse su intervallo

Funzioni convesse su intervallo Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Funzioni convesse su intervallo Anno Accademico

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

FUNZIONI E LORO PROPRIETA'

FUNZIONI E LORO PROPRIETA' FUNZIONI E LORO PROPRIETA' Definizione: Dati due insiemi A e B si dice funzione di A in B una qualunque legge che faccia corrispondere ad ogni elemento di A uno ed un solo elemento di B. Si indica con

Dettagli

Similitudine (ortogonale) e congruenza (ortogonale) di matrici.

Similitudine (ortogonale) e congruenza (ortogonale) di matrici. Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Matematica per le Applicazioni Economiche I (M-P)

Matematica per le Applicazioni Economiche I (M-P) Matematica per le Applicazioni Economiche I (M-P) Corsi di Laurea in Economia Aziendale, Economia e Commercio, a.a. 06-7 Esercizi su Calcolo Differenziale. Per la seguente funzione, dato 0, si utilizzi

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Lezione 15 Equilibrio economico generale

Lezione 15 Equilibrio economico generale Corso di Economia Politica prof. S. Papa Lezione 15 Equilibrio economico generale e pareto ottimalità Facoltà di Economia Università di Roma La Sapienza (valutare le allocazioni) Economia del benessere

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

By Fabriziomax. Storia del concetto di derivata:

By Fabriziomax. Storia del concetto di derivata: By Fabriziomax Storia del concetto di derivata: Introduzione: La derivata fu inventata da Newton per risolvere il problema pratico di come definire una velocita e un accelerazione istantanea a partire

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 a.a 2005/06 Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 Funzioni di due variabili a cura di Roberto Pagliarini Vediamo prima di tutto degli esercizi sugli insiemi

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Il teorema di Lagrange e la formula di Taylor

Il teorema di Lagrange e la formula di Taylor Il teorema di Lagrange e la formula di Taylor Il teorema del valor medio di Lagrange, valido per funzioni reali di una variabile reale, si estende alle funzioni reali di più variabili. Come si vedrà, questo

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 6 Utilità e sostituzione

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale. Lezione 6 Utilità e sostituzione UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 6 Utilità e sostituzione Prof. Gianmaria Martini La funzione di utilità Introdurremo un esempio specifico di funzione

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

Regioni dello spazio-tempo

Regioni dello spazio-tempo Regioni dello spazio-tempo Velocità della luce: limite sulla causalità Relazione tra eventi: tipo tempo, tipo spazio e tipo luce Cono di luce: una partizione dello spazio tempo Velocità della luce: limite

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

LO STUDIO DI UNA FUNZIONE REALE DI UNA VARIABILE REALE. UN BREVE RIPASSO

LO STUDIO DI UNA FUNZIONE REALE DI UNA VARIABILE REALE. UN BREVE RIPASSO LO STUDIO DI UNA FUNZIONE REALE DI UNA VARIABILE REALE. UN BREVE RIPASSO Studiando le funzioni reali di una sola variabile reale yf(), abbiamo imparato a distinguere alcune loro caratteristiche fondamentali

Dettagli

Economia della Concorrenza e dei Mercati Lezione 3

Economia della Concorrenza e dei Mercati Lezione 3 Economia della Concorrenza e dei Mercati Lezione 3 Corso di laurea Consulente del Lavoro e Giurista d'impresa UNIBS, a.a. 2012-2013 Prof.ssa Chiara Dalle Nogare Il problema del consumatore Obiettivo: costruire

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

I TEOREMI DEL CALCOLO DIFFERENZIALE

I TEOREMI DEL CALCOLO DIFFERENZIALE I TEOREMI DEL CALCOLO DIFFERENZIALE 1. DEFINIZIONI. TEOREMI DEL CALCOLO DIFFERENZIALE.1 TEOREMA DELL ESTREMANTE LOCALE. TEOREMI DI ROLLE, CAUCHY, LAGRANGE.3 TEOREMI CONSEGUENTI AL T. DI LAGRANGE 3. DETERMINAZIONE

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

Capitolo 10 Costi. Robert H. Frank Microeconomia - 4 a Edizione Copyright The McGraw-Hill Companies, srl

Capitolo 10 Costi. Robert H. Frank Microeconomia - 4 a Edizione Copyright The McGraw-Hill Companies, srl Capitolo 10 Costi I COSTI NEL LUNGO PERIODO Nel lungo periodo non esistono costi fissi Il problema dell impresa è quello di scegliere la combinazione ottimale di input in relazione all output che si intende

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

Capitolo 3 La scelta razionale del consumatore

Capitolo 3 La scelta razionale del consumatore Capitolo 3 La scelta razionale del consumatore Il comportamento del consumatore Tre fasi distinte di analisi nello studio del comportamento del consumatore 1. Le preferenze del consumatore 2. I vincoli

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli