FUNZIONI POTENZA. Le funzioni del tipo f(x)= ax p, dove a è una costante 0, p è un numero razionale, sono chiamate funzioni potenza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FUNZIONI POTENZA. Le funzioni del tipo f(x)= ax p, dove a è una costante 0, p è un numero razionale, sono chiamate funzioni potenza"

Transcript

1 FUNZIONI POTENZA Le funzioni del tipo f(x)= ax p, dove a è una costante 0, p è un numero razionale, sono chiamate funzioni potenza Se p N la funzione f(x)= ax p è una particolare funzione polinomiale, costituita dal solo monomio ax p ed è quindi definita su tutto R. Esempi: a) f(x)= 2x, b) f(x)=-3x 2 ; c) f(x)=5x 4.

2 FUNZIONI POTENZA Se p è un numero intero negativo la funzione f(x)= ax p è una particolare funzione razionale ed è definita su R/{0}. Esempi: a) f(x)= (2/3)x -1, b) f(x)=-3/x 2 ; c) f(x)=5x -4. Se p è un numero razionale non intero, la funzione f(x)= ax p è definita solo per x>0 f:r + /{0} R Esempi: a) f(x)= 2x 2/3 b) f(x)=(-3/4)x -3/5 ; c) f(x)=5x 1/2.

3 FUNZIONI POTENZA: VOLUMI E SUPERFICI Il volume di un corpo di qualsiasi forma è proporzionale al cubo di una qualunque delle sue dimensioni lineari V l 3 La superficie di un corpo di qualsiasi forma è proporzionale al quadrato di una qualunque delle sue dimensioni lineari S l 2 Considerando individui diversi di una stessa specie i coefficienti di proporzionalità saranno diversi, ma non troppo quindi l potrà essere considerata una lunghezza caratteristica di quella specie

4 FUNZIONI POTENZA: VOLUMI E SUPERFICI Branchie, polmoni, intestini e reni per gli animali, radici e foglie per le piante sono mezzi per aumentare la superficie e quindi favorire, in generale, fenomeni di scambio con l esterno, quali, ad esempio, assorbimento di energia, emissione calore o nel caso delle piante anidride carbonica ecc. tali fenomeni avranno andamento proporzionale alla superficie. Molti fenomeni metabolici, ad esempio consumo di ossigeno, sono proporzionali al volume.

5 FORMICHE GIGANTI E LILLIPUZIANI Perché non saremo mai invasi dalle formiche giganti? Se una comune formica lunga 3 mm venisse ingrandita con un coefficiente 1000, la formica avrebbe lunghezza 3 metri, il suo volume diventerebbe 10 9 volte quello originale, mentre l area di una sezione di una zampa sarà 10 6 volte quella originale. L insetto sarà un miliardo di volte più pesante e poggerà su zampe la cui sezione è solo un milione di volte maggiore, la pressione che il corpo eserciterà sulle zampe è 1000 volte quella originale e quindi se non resterà schiacciato, certamente non potrà muoversi!

6

7 FORMICHE GIGANTI E LILLIPUZIANI Nei viaggi di Gulliver, i lillipuziani erano piccoli ometti alti cm. Riducendo di 10 volte l altezza di un uomo, la perdita di calore attraverso l epidermide (proporzionale alla superficie del corpo) si ridurrebbe di 1/100. La produzione di calore, però, è proporzionale al volume e quindi si ridurrebbe di 1/1000. Il lillipuziano perderebbe calore attraverso l epidermide 10 volte di più di quanto ne produrrebbe, probabilmente morirebbe di freddo!

8 LEGGI ALLOMETRICHE Una legge che descrive come variano due parti dello stesso corpo di un organismo è detta allometrica. Se x e y indicano le misure relative a due parti del corpo di un organismo, una legge allometrica è espressa come una funzione potenza y=f(x)= ax p, dove a e p sono costanti positive. Nel rapporto tra peso dell organismo e peso dello scheletro, l esponente più spesso osservato nelle misure sperimentali è p 2/3.

9 LEGGI ALLOMETRICHE La potenza p 3/4 si presenta con una certa frequenza nelle misure di uno stesso organo in specie diverse (misure interspecifiche ), ma anche nei confronti tra organi diversi all interno della stessa specie (misure intraspecifiche )

10 IL MODELLO DI VON BERTALANNFFY Uno dei primi modelli di crescita tumorale proposto intorno agli anni 60 del secolo scorso. Gli elementi funzionali di un organismo sono assunti come processi continui di interazione, in cui si sommano accrescimento e decadimento. Accrescimento e dcadimento sono modellizzati mediante funzioni potenza. Bertalanffy propone di definire il tasso di crescita di un tumore di massa m, nel modo seguente T(m) = am α - bm β dove a,b, α e β sono costanti positive.

11 IL MODELLO DI VON BERTALANNFFY T(m) = am α - bm β è la somma di due funzioni potenza, la prima am α rappresenta l accrescimento della massa tumorale e porta un contributo positivo a T(m), l altra - bm β rappresenta il decadimento, la massa di tumore che si degrada per morte cellulare nell unità di tempo e porta un contributo negativo. In genere si pone β=1, cioè si suppone che la mortalità delle cellule sia proporzionale al numero delle cellule stesse. Invece si pone α=2/3.

12 IL MODELLO DI VON BERTALANNFFY Il valore 2/3 viene ottenuto pensando ad un tumore approssimativamente sferico e ritenendo che la crescita sia proporzionale alla misura della superficie, proprio perché la quantità di nutrimento arriva alle cellule tumorali attraverso di essa. Poiché il raggio r del tumore è proporzionale al volume V elevato a 1/3, l area della superficie, che è proporzionale al raggio al quadrato, è proporzionale a V 2/3. Supponendo la densità costante, si ottiene lo stesso esponente anche per la dipendenza dalla massa.

13 IL MODELLO DI VON BERTALANNFFY Esempio: prendendo T(m) =3m 2/3-2m cosa prevede il modello? Naturalmente la funzione ha interesse solo se m 0, Inoltre si può dire che, se T(m) >0, la massa tumorale cresce, se T(m)<0, la massa tumorale diminuisce ponendo 3m 2/3-2m >0, essendo m>0, si ha 3/2 > m 1/3, da cui m<27/8=3.375 Il modello predice che il tumore ha una crescita limitata, non sorpassa la dimensione critica m=3.375.

14 IL MODELLO DI VON BERTALANNFFY Dal grafico di T(m), si deduce che il modello prevede una crescita che aumenta con le dimensioni fino ad m=1, per m> 1 la massa tumorale continua a crescere ma rallentando la crescita, infatti T(m) diminuisce all aumentare di m, per m>1 (Vedi pag. 210 Matematica per le Scienze della vita Benedetto-Degli Esposti-Maffei)

15 FUNZIONI RAZIONALI Si chiama funzione razionale una funzione esprimibile come rapporto tra due polinomi f(x)=[a n x n +a n-1 x n-1 + +a 0 ]/[b m x m +b m-1 x m-1 + +b 0 ] m,n N a n, a n-1,, a 0, b m, b m-1,, b 0 R, a n, b m 0 Il numero max(n,m) è detto grado della funzione razionale Esempi: f(x) = ( 3x 3 - x 2 +2)/(x 4-2x 2-1); f(x) = 2/x ; f(x) = (x 3-1) /(x+1)

16 FUNZIONI RAZIONALI f(x) = k /x = kx -1, k 0 Rappresenta la relazione di proporzionalità inversa un punto (x,y) appartiene al grafico di f se e solo se xy=k iperbole equilatera Dominio: R/{0} Per k>0 ed x>0, quando x diventa molto piccolo, 1/x diventa molto grande M>0 δ>0 : 0 < x < δ f(x) > M lim x 0 + k/x = + limite destro

17 FUNZIONI RAZIONALI Per k>0 ed x<0, quando x diventa molto piccolo in valore assoluto, 1/x diventa molto grande in valore assoluto, rimanendo negativo M> 0 δ>0 : δ < x < 0 f(x) < M lim - x 0 k/x = limite sinistro Il grafico di f, considerati questi limiti, si avvicina sempre di più all asse delle ordinate. Si dice che l asse delle ordinate è asintoto verticale della funzione. Per k<0, ovviamente i segni dei due limiti si scambiano

18 FUNZIONI RAZIONALI Per k>0 (ma anche per k<0), quando x diventa molto grande in valore assoluto, 1/x diventa molto piccolo in valore assoluto, rimanendo positivo o negativo a seconda che x >0 oppure x<0 rispettivamente (con segno contrario per k<0). ε> 0 Μ>0 : x >M o x< -M f(x) < ε lim x ± k/x = 0 Il grafico di f, considerati questi limiti, si avvicina sempre di più, al crescere di x in valore assoluto, all asse delle ascisse. Si dice che l asse delle ascisse è asintoto orizzontale della funzione. Analogamente per k<0.

19 FUNZIONI RAZIONALI 0< x 1 < x 2 0 < 1/x 2 < 1/x 1 Se k>0, 0 < k/x 2 < k/x 1 quindi f è strettamente decrescente sulla semiretta (0, + ) analogamente, f risulta strettamente decrescente anche sulla semiretta (-, 0). Quando k<0, f risulta strettamente crescente (dimostralo!) su entrambe le semirette. Attenzione! f(x)=k/x, k>0, non è strettamente decrescente (o per k<0, strettamente crescente) sull intero dominio (perché?)

20 La funzione 1/x

21 f(x) = 1/x, zoom intorno all origine

22 FUNZIONI RAZIONALI Le funzioni potenza f(x) = kx p, con p razionale negativo, p Q, si comportano in modo analogo alle funzioni k/x sulla semiretta (0, + ) Sulla semiretta (-, 0) sono definite solo per p Z, in tal caso, se p è dispari, hanno andamento analogo a k/x su (-, 0), e a quello di k/x se p è pari Esempi: f(x)= 2x- 2/3 : f(x)= -x -3/4 ; f(x) = x -3 ; f(x) = x -4

23 Confronta i grafici di funzioni potenza con esponente intero negativo.

24 Confronta i grafici di funzioni potenza con esponente intero positivo.

25 Confronta i grafici di funzioni potenza con esponente p razionale, 0<p<1.

26 FUNZIONI RAZIONALI Lo studio di funzioni razionali fratte può essere ricondotto a quello di f(x)=k/x, infatti f(x) = (ax +b)/(cx+d) = [(a/c)x+b/c]/[x+d/c]= [(a/c)(x+d/c) +b/c ad/c 2 ]/[x+d/c]= = a/c +[(bc-ad)/c 2 ]/(x+d/c) Posto k = (bc-ad)/c 2, dal grafico di k/x si passa a quello di k/(x+d/c) spostando il grafico di k/x a destra, se d/c<0, a sinistra, se d/c>0. Dunque la singolarità che k/x ha per x=0, diventa per k/(x+d/c) il punto x=-d/c (asintoto verticale). Dominio, quindi, R/{-d/c}

27 FUNZIONI RAZIONALI f(x)=(ax +b)/(cx+d) = a/c +[(bc-ad)/c 2 ]/(x+d/c) Basta ora traslare di a/c verticalmente il grafico di k/(x+d/c) verso l alto se a/c>0, verso il basso se a/c <0. Quindi y=a/c diventa asintoto orizzontale per f(x). lim x ± f(x) =a/c ε> 0 Μ>0 : x >M o x< -M f(x)-a/c < ε

28 FUNZIONI RAZIONALI L asintoto verticale x =-d/c = x 0, per bc-ad >0, avrà il significato di lim x x0 + f(x) = + M> 0 δ>0 : 0< x- x 0 < δ f(x) > M e lim x x0 - f(x) = - M> 0 δ>0 : δ < x- x 0 < 0 f(x) < M Inoltre tutti i punti del grafico soddisfano alla condizione (x+d/c)(y-a/c) = (bc-ad)/c 2

29 ESEMPIO GRAFICO: f(x) = 1/(x+2)

30 ESEMPIO GRAFICO: f(x)=(2x+1)/(x-1)

FUNZIONI RAZIONALI. Esempi: f(x) = ( 3x 3 - x 2 +2)/(x 4-2x 2-1); f(x) = 2/x ; f(x) = (x 3-1) /(x+1)

FUNZIONI RAZIONALI. Esempi: f(x) = ( 3x 3 - x 2 +2)/(x 4-2x 2-1); f(x) = 2/x ; f(x) = (x 3-1) /(x+1) FUNZIONI RAZIONALI Si chiama funzione razionale una funzione esprimibile come rapporto tra due polinomi f(x)=[a n x n +a n-1 x n-1 + +a 0 ]/[b m x m +b m-1 x m-1 + +b 0 ] m,n N a n, a n-1,, a 0, b m, b

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

FUNZIONI QUADRATICHE

FUNZIONI QUADRATICHE f: R R si dice funzione quadratica se è del tipo f(x) =ax 2 +bx+c, dove a,b,c sono costanti Il grafico di una funzione quadratica è una curva detta parabola Abbiamo incontrato funzioni di questo tipo quando

Dettagli

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1

MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 MATEMATICA CORSO A CORSO DI LAUREA IN SCIENZE BIOLOGICHE I PROVA IN ITINERE COMPITO PROVA 1 1- Il volume di un corpo di qualsiasi forma è proporzionale al cubo di una qualunque delle sue dimensioni lineari.

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Funzioni. Scrivi l espressione esplicita di una funzione quadratica passante per i punti (-1,0), (1,0) e con lim per x uguale a +

Funzioni. Scrivi l espressione esplicita di una funzione quadratica passante per i punti (-1,0), (1,0) e con lim per x uguale a + Funzioni. Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente essendo

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

QUESITO 1. Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi?

QUESITO 1. Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi? www.matefilia.it Quesiti QUESITO Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi? Ad ogni elemento di A deve corrispondere uno ed un solo elemento di

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:

Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo: B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

M557- Esame di Stato di Istruzione Secondaria Superiore

M557- Esame di Stato di Istruzione Secondaria Superiore Problema Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI3, EA9 SCIENTIFICO Opzione Scienze Applicate

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

A grande richiesta, esercizi di matematica&.!

A grande richiesta, esercizi di matematica&.! A grande richiesta, esercizi di matematica&.! A partire dalla conoscenza del grafico di f(x) = 1/x, disegna il grafico delle seguenti funzioni g(x) =1/(x+1) ; g(x) =1/(2x -1); g(x) =2 + 1/x ; g(x) =2-1/x

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag ) Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere

Dettagli

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0.

LIMITI DI FUNZIONI. arbitrariamente vicino a L, scegliendo x sufficientemente vicino a x 0, con x x 0. 55. Limiti al finito (ossia per ) LIMITI DI FUNZIONI Limite finito per f ( ) L R Il ite di f () per tendente a è L se è possibile rendere il valore di f () vicino a L, scegliendo sufficientemente vicino

Dettagli

Esercizi di Calcolo e Biostatistica con soluzioni

Esercizi di Calcolo e Biostatistica con soluzioni 1 Esercizi di Calcolo e Biostatistica con soluzioni 1. Date le funzioni f 1 (x) = x/4 1, f 2 (x) = 3 x, f 3 (x) = x 4 2x, scrivere a parole le operazioni che, dato x in modo opportuno, permettono di calcolare

Dettagli

, per cui le due curve f( x)

, per cui le due curve f( x) DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli

Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4

Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4 Funzioni lineari Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Polinomi Prodotti notevoli. Esempi di polinomi

Polinomi Prodotti notevoli. Esempi di polinomi Pagina 1 Polinomi Definizione: Dicesi polinomio la somma algebrica di due o più monomi. I monomi si dicono i termini del polinomio. Un polinomio formato da due termini dicesi binomio, da tre termini trinomio,

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

Una funzione può essere:

Una funzione può essere: Date due grandezze variabili, variabile indipendente e y variabile dipendente, si dice che y è funzione di se esiste una legge o proprietà di qualsiasi natura che fa corrispondere a ogni valore di uno

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

AMERICHE QUESTIONARIO QUESITO 1

AMERICHE QUESTIONARIO QUESITO 1 www.matefilia.it AMERICHE 26 - QUESTIONARIO QUESITO Tre circonferenze di raggio sono tangenti esternamente una all altra. Qual è l area della regione interna che esse delimitano? Osserviamo che il triangolo

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Test di ingresso per il corso di laurea triennale in Scienze della Natura Conoscenze di base di matematica 22 settembre 2011

Test di ingresso per il corso di laurea triennale in Scienze della Natura Conoscenze di base di matematica 22 settembre 2011 Test di ingresso per il corso di laurea triennale in Scienze della Natura Conoscenze di base di matematica 22 settembre 2011 1. Il massimo comun divisore e il minimo comune multiplo dei numeri 288 e 1350

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 20 Novembre 2008

I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 20 Novembre 2008 1 I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 2 Novembre 28 Soluzioni Esercizio 1. (6 punti in totale) Il testo è molto lungo, e l esercizio ìn massima

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

By Fabriziomax. Storia del concetto di derivata:

By Fabriziomax. Storia del concetto di derivata: By Fabriziomax Storia del concetto di derivata: Introduzione: La derivata fu inventata da Newton per risolvere il problema pratico di come definire una velocita e un accelerazione istantanea a partire

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Matematica II,

Matematica II, Matematica II,.05.04 Diamo qui la nozione di determinante di una matrice quadrata, le sue prime proprieta, e ne deriviamo una caratterizzazione delle matrici non singolari e una formula per l inversa di

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x

Studi di funzione. D. Barbieri. Studiare comportamento asintotico e monotonia di. f(x) = 1 x x4 + 4x e x Studi di funzione D. Barbieri Esercizi Esercizio Esercizio Studiare comportamento asintotico e monotonia di f(x) = x + x4 + 4x Studiare il comportamento asintotico di f(x) = + x x + + e x Esercizio 3 Determinare

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

PARTE PRIMA DAI GRAFICI ALLE FUNZIONI

PARTE PRIMA DAI GRAFICI ALLE FUNZIONI PARTE PRIMA DAI GRAFICI ALLE FUNZIONI PREREQUISITI : concetti di insieme, relazione, intervallo, intorno, quantificatori, Riferimento Cartesiano Ortogonale (RCO), le coniche, funzioni, operazioni e composizioni

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

I POLINOMI. Si chiama POLINOMIO la somma algebrica di più monomi interi. Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy;

I POLINOMI. Si chiama POLINOMIO la somma algebrica di più monomi interi. Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy; I POLINOMI Si chiama POLINOMIO la somma algebrica di più monomi interi Ad esempio sono polinomi: 3 x 2 +2x; 4 a 2 b 2 +b 3 ; ab+xy; 8x 2 +11x+4 a 2 b 2 +4 b 3 I POLINOMI Ogni monomio che compone il polinomio

Dettagli

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LE GRANDEZZE FISICHE Una grandezza fisica è una quantità che può essere misurata con uno strumento

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio.

Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio. 1 Funzione Continua Una definizione intuitiva di funzione continua è la seguente. Una funzione è continua se si può tracciarne il grafico senza mai staccare la matita dal foglio. Seppure questa non è una

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

la velocità degli uccelli è di circa (264:60= 4.4) m/s)

la velocità degli uccelli è di circa (264:60= 4.4) m/s) QUESTIONARIO 1. Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 260 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si allontana da lei in linea retta,

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Momento. Si può definire il momento rispetto ad un punto. in è possibile riassumere questa definizione nella formula

Momento. Si può definire il momento rispetto ad un punto. in è possibile riassumere questa definizione nella formula Momento di una forza rispetto a un punto Si può definire il momento rispetto ad un punto 1 Il suo modulo è il prodotto della forza per la distanza del punto dall asse di applicazione di questa 2 La direzione

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

GEOMETRIA ANALITICA 2

GEOMETRIA ANALITICA 2 GEOMETRIA ANALITICA CONICHE Dopo le rette, che come abbiamo visto sono rappresentate da equazioni di primo grado nelle variabili x e y (e ogni equazione di primo grado rappresenta una retta), le curve

Dettagli

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2)

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2) Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2) SOLUZIONE: Si esclude la 4) perché non è definita per x=2 e la 2) perché definita

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x 1 tale che: g ( x 1. )= x 0

Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x 1 tale che: g ( x 1. )= x 0 Piano tariffario: un canone fisso di euro al mese piú centesimi per ogni minuto di conversazione. Indicando con x i minuti di conversazione effettuati in un mese, con f(x) la spesa totale nel mese e con

Dettagli

ESPONENZIALI. n volte

ESPONENZIALI. n volte Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA ESPONENZIALI IL CONCETTO DI POTENZA E LA SUA GENERALIZZAZIONE L elevamento a potenza è un operazione aritmetica che associa

Dettagli