COME APPARE IL CAOS DETERMINISTICO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COME APPARE IL CAOS DETERMINISTICO"

Transcript

1 COME APPARE IL CAOS DETERMINISTICO Serie temporale Spettro di potenza Quadro delle traiettorie Sezione di Poincaré Auto-somiglianza Sensibilità alle condizioni iniziali C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 1/17

2 SERIE TEMPORALE E la registrazione dei valori assunti da una (o più) variabili al passare del tempo. Ad esempio, in un sistema a tempo continuo x& ( t) = y( t) = f ( x( t)) g( x( t)) In generale, l uscita è una funzione delle variabili di stato (spesso coincide con una delle variabili di stato). In regime caotico, y (t) ha un comportamento non periodico e apparentemente casuale. C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 2/17

3 Esempio (a tempo continuo): barriera di potenziale con sollecitazione periodica (Moon and Holmes, 1979) x& 1 = x 2 1 x& 2 = ( F( x1 ) hx2 + U sin t) m dp( x) 2 F( x) = x(1 x ) dx La variabile misurata è la posizione: ( t) x1 ( t) y =. P(x) C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 3/17

4 Esempio (a tempo discreto): la mappa logistica : (May, 1976) ( 1 x( )) x( t + 1) = r x( t) t Per r = 3. 9 l andamento di (t) x è non periodico. C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 4/17

5 SPETTRO DI POTENZA Il segnale y (t) può essere scritto, utilizzando la trasformata di Fourier nella forma iφ( ω) Y ( ω) = Y( ω) e, 1 y ( t) = + Y ( ω) cos( ωt + φ( ω)) dω π 0 cioè come la somma di un infinità (non numerabile, in generale) di sinusoidi: la sinusoide di frequenza ω ha ampiezza proporzionale a Y (ω). La funzione Y (ω) si dice spettro di ampiezza. La funzione di potenza. 2 P ( ω) = Y( ω) si dice spettro C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 5/17

6 Se y (t) è periodico, con periodo = 2π / ϖ può scrivere y (t) nella forma iφk T, utilizzando la serie di Fourier Y = Y e, si k k y( t) = Y(0) k= 1 Y k cos ( kϖ t + φ ) k Lo spettro è ad impulsi (= non nullo solo per ω multiplo di ϖ ). C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 6/17

7 Un segnale caotico è caratterizzato da uno spettro a banda larga. Esempio: esperimento di Taylor-Couette: y (t) è la velocità del fluido misurata in un punto prefissato. regime periodico quasi-periodico caotico C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 7/17

8 Esempio: sistema di Duffing (1918): x& 1 x& 2 = x 2 = α x 1 β x 3 1 h x 2 + qsint C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 8/17

9 Esempio: sistema di Lorenz (1963) x& = σx + σy y& = rx y xz z& = bz + xy serie temporale x (t) spettro di potenza C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/2012 9/17

10 QUADRO DELLE TRAIETTORIE In regime caotico, le traiettorie rimangono limitate non ripassano mai da uno stato già visitato (= non periodicità) ma transitano arbitrariamente vicino ad esso sono caratterizzate da geometrie complesse Esempio: sistema di Lorenz (simulazione) x& = σx + σy y& = rx y xz z& = bz + xy C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/ /17

11 Esempio: sistema di Rössler (1976) (simulazione) x& = y z y& = x + ay z& = b + ( x c) z Esempio: traiettoria ricostruita da una serie temporale ottenuta sperimentalmente (concentrazione di un componente in una reazione chimica) C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/ /17

12 Esempio: sistema ( mappa ) di Henon (1976) (a tempo discreto). x( t + 1) = y( t + 1) = y( t) + 1 ax( t) bx( t) 2 Nel piano di stato (, y) x, la traiettoria è la successione di punti ( ( t), y( t) ) x, = 0,1, K t. C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/ /17

13 SEZIONE DI POINCARE Per il sistema a tempo continuo x & = f (x) di ordine n, la sezione di Poincaré è una superficie -dimensionale P, la quale è trasversale (in ( n 1) un punto z ) ad un ciclo limite γ. La traiettoria che parte da P nei punti z ( 1), z(2), K. z(0) P riattraverserà Quindi x & = f (x) definisce (vicino a γ ) un sistema a tempo discreto (mappa di Poincaré) z ( t + 1) = P( z( t)) dove z R n 1, z = P(z). C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/ /17

14 La mappa di Poincaré può essere definita anche per un sistema a tempo continuo x ( t) = f ( t, x( t)) T > ): & periodico rispetto a t (con periodo 0 f ( t, x) = f ( t + T, x), per ogni t, x E sufficiente considerare la mappa di periodo T (o mappa stroboscopica ): z ( k + 1) = P( z( k)) dove ( k) x( kt ) k = 0,1,2,K. z =, Sulla sezione di Poincaré, si visualizza quindi la traiettoria del sistema a tempo discreto z ( k + 1) = P( z( k)) C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/ /17

15 In regime caotico, la sezione di Poincaré evidenzia un insieme limitato caratterizzato da geometria complessa. Esempio: barriera di potenziale con sollecitazione periodica. Esempio: laser: sezione di Poincaré ricavata mediante esperimenti. C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/ /17

16 AUTO-SOMIGLIANZA In regime caotico, la traiettoria possiede geometria auto-somigliante : la sua struttura geometrica si riproduce a scala arbitrariamente piccola. Esempio: zoom nella traiettoria della mappa di Henon. La struttura a 6 bande si ripete all infinito. C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/ /17

17 SENSIBILITÀ ALLE CONDIZIONI INIZIALI In regime caotico, stati iniziali arbitrariamente vicini danno luogo a traiettorie che, in tempo finito, risultano tra loro distanti. Evoluzione di un piccolo insieme contenente 10 4 stati iniziali. Dopo un po di tempo, le traiettorie sono praticamente incorrelate (parametri: σ = 10, b = 8/ 3, r = 28). C. Piccardi e F. Dercole Politecnico di Milano ver. 27/11/ /17

ATTRATTORI CAOTICI. Attrattori. Classificazione degli attrattori: equilibri, cicli, tori, caos. Esponenti di Liapunov di attrattori

ATTRATTORI CAOTICI. Attrattori. Classificazione degli attrattori: equilibri, cicli, tori, caos. Esponenti di Liapunov di attrattori ARAORI CAOICI Attrattori Classificazione degli attrattori: equilibri, cicli, tori, caos Esponenti di Liapunov di attrattori Sistemi dissipativi C. Piccardi e F. Dercole Politecnico di Milano - 06/12/2012

Dettagli

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici

INSIEMI FRATTALI. Dimensione di un insieme. Insiemi frattali elementari. Dimensioni frattali. Insiemi frattali e sistemi dinamici INSIEMI FRATTALI Dimensione di un insieme Insiemi frattali elementari Dimensioni frattali Insiemi frattali e sistemi dinamici C. Piccardi e F. Dercole Politecnico di Milano - 30/11/2011 1/29 Caratteristiche

Dettagli

ANALISI DI SERIE TEMPORALI CAOTICHE (1)

ANALISI DI SERIE TEMPORALI CAOTICHE (1) ANALISI DI SERIE TEMPORALI CAOTICHE (1) Problematiche Ricostruzione dello stato Dimensione di embedding C. Piccardi e F. Dercole Politecnico di Milano ver. 28/12/2009 1/15 Per studiare e comprendere appieno

Dettagli

ANALISI PICCO-PICCO. Diagramma picco-picco. Dinamica picco-picco. Diagramma dei tempi di ritorno. Calcolo del primo esponente di Liapunov

ANALISI PICCO-PICCO. Diagramma picco-picco. Dinamica picco-picco. Diagramma dei tempi di ritorno. Calcolo del primo esponente di Liapunov ANALISI PICCO-PICCO Diagramma picco-picco Dinamica picco-picco Diagramma dei tempi di ritorno Calcolo del primo esponente di Liapunov C. Piccardi e F. Dercole Politecnico di Milano - 28/2/2009 /2 DIAGRAMMA

Dettagli

STRADE AL CAOS. Sistemi parametrizzati. Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro. Caos alla Shilnikov.

STRADE AL CAOS. Sistemi parametrizzati. Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro. Caos alla Shilnikov. STRADE AL CAOS Sistemi parametrizzati Cascata di raddoppi di periodo (cascata di Feigenbaum) Rottura di toro Caos alla Shilnikov Intermittenza Crisi C. Piccardi e F. Dercole Politecnico di Milano ver.

Dettagli

SINCRONIZZAZIONE. Cos è (e cosa non è) la sincronizzazione. Sincronizzazione di fase di oscillatori periodici

SINCRONIZZAZIONE. Cos è (e cosa non è) la sincronizzazione. Sincronizzazione di fase di oscillatori periodici SINCRONIZZAZIONE Cos è (e cosa non è) la sincronizzazione Sincronizzazione di fase di oscillatori periodici Sincronizzazione di fase di oscillatori caotici Sincronizzazione completa C. Piccardi e F. Dercole

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Sviluppo in serie di Fourier

Sviluppo in serie di Fourier ... Sviluppo in serie di Fourier Consideriamo una funzione periodica f di periodo T: f(t) = f(t+t) t Qualunque funzione periodica di periodo T può essere rappresentata mediante lo sviluppo in serie di

Dettagli

Lezione 5: Processi Stocastici - Analisi in frequenza

Lezione 5: Processi Stocastici - Analisi in frequenza ELABORAZIONE dei SEGNALI nei SISTEMI di CONTROLLO Lezione 5: Processi Stocastici - Analisi in frequenza Motivazioni Spettro e densità spettrale TD Proprietà formali Esempi Trasformata inversa Spettro e

Dettagli

Pendolo senza attrito

Pendolo senza attrito Pendolo senza attrito l m ϕ equazione del moto : mlϕ '' = mg sinϕ ϕ '' = y'' = k sin y, k > 0 g sinϕ l Pendolo senza attrito Trasformiamo l equazione in un sistema autonomo bidimensionale conservativo

Dettagli

I Segnali nella comunicazione

I Segnali nella comunicazione I Segnali nella comunicazione Nella lingua italiana il termine segnale indica una convenzione, la cui unzione è quella di comunicare qualcosa ( segnale di Partenza, segnale di aiuto, segnale stradale ecc.).

Dettagli

Lezioni di acustica. Analisi del segnale sonoro

Lezioni di acustica. Analisi del segnale sonoro Lezioni di acustica Analisi del segnale sonoro ONDA SINUSOIDALE sin 2 sin 2 sin A è l'ampiezza ω è la pulsazione (o velocità angolare, indica quanti periodi ci sono in un intervallo di 2π) è la requenza,

Dettagli

Tipi di Processi Stocastici

Tipi di Processi Stocastici Processi Stocastici Definizione intuitiva: un processo stocastico è un insieme ordinato di variabili casuali, indicizzate dal parametro t, spesso detto tempo. Definizione rigorosa: dati uno spazio di probabilità

Dettagli

Dispense del corso di Elettronica L Prof. Guido Masetti

Dispense del corso di Elettronica L Prof. Guido Masetti Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =

Dettagli

Audio Digitale. Cenni sulle onde. Multimedia 1

Audio Digitale. Cenni sulle onde. Multimedia 1 Audio Digitale Cenni sulle onde 1 Suono e Audio Il suono è un insieme di onde meccaniche longitudinali. L oggetto che origina il suono produce una vibrazione che si propaga attraverso un mezzo modificando

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano Note relative a test di bianchezza rimozione delle componenti deterministiche da una serie temporale a supporto del Progetto di Identificazione dei Modelli e Analisi dei Dati Maria Prandini Dipartimento

Dettagli

Derivate distribuzionali Trasformata di Fourier di distribuzioni Teorema di Campionamento

Derivate distribuzionali Trasformata di Fourier di distribuzioni Teorema di Campionamento Derivate distribuzionali Trasformata di Fourier di distribuzioni Teorema di Campionamento Docente:Alessandra Cutrì Derivata distribuzionale Vogliamo estendere il concetto di derivata alle distribuzioni

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici eoria dei Segnali rasmissione binaria casuale; somma di processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it eoria dei Segnali rasmissione

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

1 Rette e piani in R 3

1 Rette e piani in R 3 POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Analisi armonica su dati campionati

Analisi armonica su dati campionati Sistemi di misura digitali Analisi armonica su dati campionati - 1 Analisi armonica su dati campionati 1 - Troncamento del segnale Distorsione di leakage L analisi di Fourier è un metodo ben noto per ottenere

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t).

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t). Cenni alla Modulazione di Ampiezza (AM) Nella modulazione di ampiezza, si trasmette il segnale v(t) = (V 0 + k I x(t)) cos (πf 0 t), dove x(t) è il segnale di informazione, con banda B, e f 0 è la frequenza

Dettagli

Che cos'è il caos? Caos Dove comincia il caos si arresta la scienza classica (1987) L'aspetto irregolare della natura sono stati dei veri rompicapo

Che cos'è il caos? Caos Dove comincia il caos si arresta la scienza classica (1987) L'aspetto irregolare della natura sono stati dei veri rompicapo Che cos'è il caos? Che cos'è il caos? Poincarè nel 1903 afferma che : una causa piccolissima che sfugga alla nostra attenzione determina un effetto considerevole che non possiamo mancare di vedere, e allora

Dettagli

CAMPIONAMENTO DI SEGNALI

CAMPIONAMENTO DI SEGNALI CAMPIONAMENTO DI SEGNALI Alla base della discretizzazione di un segnale sorgente continuo sono i due procedimenti distinti di discretizzazione rispetto al tempo, detto campionamento, e rispetto all'ampiezza,

Dettagli

Elaborazione nel dominio delle frequenze. Elaborazione delle immagini digitali 1

Elaborazione nel dominio delle frequenze. Elaborazione delle immagini digitali 1 Elaborazione nel dominio delle frequenze Elaborazione delle immagini digitali 1 Serie di Fourier Elaborazione delle immagini digitali 2 Introduzione alla trasformata di Fourier Una funzione periodica può

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

22 Coniche proiettive

22 Coniche proiettive Geometria e Topologia I (U1-4) 2006-giu-06 95 22 Coniche proiettive (22.1) Definizione. Sia K[x 0, x 1,..., x n ] l anello dei polinomi nelle indeterminate (variabili) x 0, x 1,..., x n. Un polinomio di

Dettagli

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier

Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Teoria dei Segnali Richiami ai numeri complessi; serie e trasformata di Fourier Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi ESERCIZI DI GEOMETRIA 3 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi Esercizio 1. Sia (X, d) uno spazio

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo.

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo. SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Banda passante e sviluppo in serie di Fourier Ing. Luigi Biagiotti e-mail:

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

Probabilità e Statistica Esercizi

Probabilità e Statistica Esercizi Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne PROCESSI CASUALI Fondamenti di segnali Fondamenti e trasmissione TLC Segnali deterministici Un segnale (t) si dice deterministico se è una funzione nota di t, cioè se ad un qualsiasi istante di tempo t

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ 2/3 DISTRIBUZIONI SINGOLARI E "FUNZIONE" DELTA DI DIRAC 0/ DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ Consideriamo una distribuzione continua di una data quantità Q ad esempio la carica elettrica o la

Dettagli

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio)

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Analisi della disponibilità d acqua Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Approccio diverso a seconda del criterio di valutazione Nel caso di criterio statistico

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N:

Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: Serie trigonometriche e di Fourier Ci occuperemo di serie le cui ridotte N-esime sono polinomi trigonometrici di grado (o ordine) N: S N (x) = N n=0 (a n cos (nx) + b n sin (nx)), a n, b n R (periodiche

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Il teorema di Shannon Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Introduzione Il teorema di Shannon, o

Dettagli

Elementi di base delle vibrazioni meccaniche

Elementi di base delle vibrazioni meccaniche Elementi di base delle vibrazioni meccaniche Vibrazioni Le vibrazioni sono fenomeni dinamici che ci circondano costantemente. La luce, il suono, il calore sono i fenomeni vibratori a noi più evidenti.

Dettagli

Compiti d Esame A.A. 2005/2006

Compiti d Esame A.A. 2005/2006 Compiti d Esame A.A. 25/26 UNIVERSITÀ DEGLI STUDI DI PERUGIA A.A. 25/26 I Esercitazione 21 Aprile 26 { y = xy ln(xy) si chiede di dimostrare che: y(1) = 1, (a) ammette un unica soluzione massimale y =

Dettagli

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale.

Matematica II. Risolvere o integrare una e.d. significa trovarne tutte le soluzione, che costituiscono il cosidetto integrale generale. Definizione Si dice equazione differenziale di ordine n nella funzione incognita y = y (x) una relazione fra y, le sue derivate y,..., y (n), e la variabila indipendente x Risolvere o integrare una e.d.

Dettagli

ESERCIZI DI MATEMATICA APPLICATA

ESERCIZI DI MATEMATICA APPLICATA ANTONIO LEACI Analisi Complessa ( È data la funzione: f(z (z2 + e z sin z Si studi l analiticità di f(z nel piano complesso C Si determinino e si classifichino le eventuali singolarità Si calcoli il residuo

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Il tema proposto può essere risolto seguendo due ipotesi:

Il tema proposto può essere risolto seguendo due ipotesi: Per la trattazione delle tecniche TDM, PM e Trasmissione dati si rimanda alle schede 41, 42, 43, 44, 45, 46, 47 e 48 del libro Le Telecomunicazioni del Prof. F. Dell Aquila. Il tema proposto può essere

Dettagli

I a settimana di novembre

I a settimana di novembre L. Seta I a settimana di novembre Metodi Matematici per l Economia 2016 2 Settimana 1 Successioni e dinamica di popolazione 1.1 I concetti chiave di questa settimana... 1.1.1 Scoprire uno schema in una

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Sommario. Parte 5 Analisi delle Vibrazioni per il Monitoraggio e la Diagnostica. Meccanica delle Vibrazioni II modulo 5 1

Sommario. Parte 5 Analisi delle Vibrazioni per il Monitoraggio e la Diagnostica. Meccanica delle Vibrazioni II modulo 5 1 Sommario La manutenzione Tecniche di monitoraggio Monitoraggio mediante analisi delle vibrazioni Tecniche di analisi del segnale Sorgenti di vibrazione Concetti base Meccanica delle Vibrazioni Analisi

Dettagli

Parte Prima Analisi Spettrale

Parte Prima Analisi Spettrale Obiettivo di questo ciclo di lezioni è l acquisizione di nozioni di base per: 1. la descrizione del segnale sismico (analisi spettrale) e per la sua misura sperimentale (risposta strumentale). l interpretazione

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

( ) = f ( x ) o. ( ) = f ( x ). Per convenzione, davanti al periodo, utilizzeremo sempre il segno +. Il periodo di una funzione. prof. D.

( ) = f ( x ) o. ( ) = f ( x ). Per convenzione, davanti al periodo, utilizzeremo sempre il segno +. Il periodo di una funzione. prof. D. Il periodo di una funzione prof. D. Benetti Definizione 1: Sia f :D R una funzione, D R e sia T un numero reale positivo. Si dice che f è periodica di periodo T se, per ogni x D e per ogni k Z, si ha (

Dettagli

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase

Ascoltare Fourier. Segnali audio. ω o. θ è l angolo di fase Ascoltare Fourier Jean Baptiste Joseph Fourier 1768 Auxerre 1830 Parigi Matematico francese, partecipò alla rivoluzione francese e seguì Napoleone in Egitto come membro della spedizione scientifica. Studiò

Dettagli

Segnali e Sistemi (Ingegneria Informatica)

Segnali e Sistemi (Ingegneria Informatica) Segnali e Sistemi (Ingegneria Informatica) Lezione 3 last update Oct 17, 2004 c 2004 Finesso, Pavon, Pinzoni 1 SIMMETRIE DEI SEGNALI - Simmetria pari (Definizioni analoghe nel caso discreto) Segnale pari

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

Spettroscopia in assorbimento overtone dell anidride carbonica con l uso di laser a diodo

Spettroscopia in assorbimento overtone dell anidride carbonica con l uso di laser a diodo Spettroscopia in assorbimento overtone dell anidride carbonica con l uso di laser a diodo A. Lucchesini, S. Gozzini Istituto per i Processi Chimico Fisici del Consiglio Nazionale delle Ricerche - Pisa

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

Integrazione con metodo Monte Carlo

Integrazione con metodo Monte Carlo 28 Ottobre 2010 Outline 1 Integrazione numerica I metodi deterministici di integrazione numerica (come Simpson, trapezi, e in generale Newton-Cotes) lavorano tipicamente con campionature uniformi del dominio.

Dettagli

La trasformata di Fourier

La trasformata di Fourier La trasformata di Fourier (Metodi Matematici e Cacoo per Ingegneria) Enrico Bertoazzi DIMS Università di Trento anno accademico 2005/2006 La trasformata di Fourier 1 / 15 Outine 1 La serie di Fourier La

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile.

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile. SPAZI TOPOLOGICI La nozione di spazio topologico è più generale di quella di spazio metrizzabile. Definizione 1 Uno spazio topologico (X, τ) è una coppia costituita da un insieme X e da una famiglia τ

Dettagli

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá Statistica e analisi dei dati Data: 11 Aprile 2016 Variabili aleatorie: parte 1 Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori 1 Definizione di variabile aleatoria e misurabilitá Informalmente,

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel Lezione : struttura di IR n, prodotto scalare, distanza e topologia.

Dettagli

Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016

Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016 Statistica Sociale e Criminale (1 CFU) A.A. 015/016 CdL Sociologia e Criminologia Simone Di Zio Dove siamo MODULO 3. L Inferenza statistica 3.1 Probabilità e variabili casuali 3. Le tecniche di campionamento

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La Trasformata di Fourier Preliminari: Spazi di Hilbert Da Wikipedia In matematica uno spazio di Hilbert è uno spazio vettoriale che generalizza la nozione di spazio euclideo. Gli spazi di Hilbert sono

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf

Dettagli

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge I segnali sinusoidali Grande rilevanza hanno in elettronica i segnali sinusoidali. Un segnale sinusoidale è un segnale che varia nel tempo con una legge del seguente tipo u = U sen( ω t+ ϕ ) Figura A andamento

Dettagli

Edoardo Milotti - Metodi di trattamento del segnale 1

Edoardo Milotti - Metodi di trattamento del segnale 1 Edoardo Milotti - Metodi di trattamento del segnale 1 Consideriamo un certo processo di campionamento in cui si prendono N campioni con intervallo di campionamento Δt: in questo caso il tempo di campionamento

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011 Politecnico di Milano - Scuola di Ingegneria Industriale II Prova in Itinere di Statistica per Ingegneria Energetica 25 luglio 2011 c I diritti d autore sono riservati. Ogni sfruttamento commerciale non

Dettagli