Simulazione Numerica di Fenomeni di Trasporto di Inquinanti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Simulazione Numerica di Fenomeni di Trasporto di Inquinanti"

Transcript

1 Unversà degl Sud d assno e del Lazo Merdonale orso d Laurea Magsrale n Ingegnera dell Ambene e del Terroro orso d Laurea Magsrale n Ingegnera vle orso d omplemen d Idraula e Idraula Ambenale A.A. 3-4 Smulazone Numera d Fenomen d Trasporo d Inqunan Angelo Leopard Terza Versone 7..3

2 Le equazon D z w y v u Dusone Moleolare D z w y v u Dusone Turbolena nella quale s può rasurare l eeo della dusone moleolare z w y v u e se s assume la dusvà urbolena osane z w y v u Sruuralmene analoga a quella della dusone moleolare usamo gl sess meod d negrazone, ma alun ermn hanno derene sgnao so. Veloà e onenrazon sono valor med loal! 3 4

3 Le equazon onvezone - Dspersone A AU AE Dove e U sono rspevamene onenrazone e veloà mede su una sezone dra. A è l area della sezone dra. Se ho moo unorme: 5 U E 6 Sruuralmene analoga a quelle preeden. Aenzone al sgnao so derene de ermn! Se l moo non è unorme, ma la varablà della sezone può essere renua rasurable, e se s assume un uno valore d E a rappresenare l proesso d dspersone longudnale: E U 7 3

4 Le equazon Solu reav Nel aso d solu reav è neessaro aggungere alle equazon preeden un ermne he enga ono della nea delle reazon. onsderando ad esempo la 7 possamo srvere: U E,... 8 Ad esempo, nel aso d un soluo he deade on una nea del prmo ordne, del po d/d = - k, dove k è una opporuna osane, s oene: U E k 9 4

5 5 Equazone della Dusone Moleolare z y D dove:,y,z oordnae spazal n un rermeno aresano orogonale - empo =,y,z, è la onenrazone loale e sananea D oeene d dusone moleolare N.B. Idenando on la emperaura e D on l oeene d dusone del alore, l equazone è ormalmene analoga a quella della dusone del alore

6 Equazone della Dusone Moleolare D y z E una equazone derenzale alle dervae parzal PDE, alla quale oorre aoppare le donee ondzon al onorno nzal ed a lm. ondzon Inzal: sono quelle assegnae sul domno spazale al empo : =,y,z, ondzon a Lm: sono quelle assegnae sul onorno del domno spazale o solo su una pare d esso al varare del empo: L=L,yL,zL, on L, yl, zl pun del onorno del domno spazale. Normalmene non è possble negrare quesa equazone per va anala per qualsas orma delle ondzon al onorno. E possble negrarla n suazon parolar d solo orrsponden a suazon dealzzae. 6

7 Equazone della Dusone Moleolare n una dmensone on mmssone sananea e punuale D Immssone punuale: avvene n un puno maerale la aremo avvenre n = Immssone sananea: dura un empo par a ondzon al onorno:,, M L Dove ML è la massa nrodoa per unà d supere, par al rapporo ra la massa nrodoa M e la supere d nroduzone S, haramene M L, d E dè la unzone dela d Dra dena ome: d se Non è una unzone nel senso sreo del ermne, s nquadra nella eora delle dsrbuzon! 7

8 haramene la massa oale d sosanza deve essere onservaa a u gl san, oè: M L, d, d on le ondzon mpose la soluzone è e.g. Gra, 998:, M L 4D e 4 D 9 D m / s 8

9 E una dsrbuzone normale, nroduendo la varanza D s ha M L e, 9

10 Equazone della Dusone Moleolare n una dmensone on mmssone punuale e osane D ondzon al onorno:,,, on le ondzon mpose la soluzone è e.g. Gra, 998: Y z dz e ery D er dove 4, Funzone dell errore omplemenare.

11 D 9 m 864 s / s

12 Soluzon analhe

13 da Soolosky & Jrka, 5 3

14 da Soolosky & Jrka, 5 4

15 da Soolosky & Jrka, 5 5

16 Equazone della onvezone Pura n una dmensone moo unorme u ondzon al onorno:, n -, Soluzone:, u oè la ondzone nzale rasla rgdamene on veloà u 6

17 7 Prnpo d Sovrapposzone degl Ee z y D z w y v u z w y v u z y D La soluzone può essere rovaa ome sovrapposzone delle soluzon d L equazone è lneare.

18 Per problem pù ompless rasporo onvevo-dusvo o dspersvo, e e per ondzon al onorno pù omplesse ma maggormene realshe d solo non essono soluzon analhe. E neessaro rorrere a enhe d negrazone numera. 8

19 Inegrazone numera Meodo delle Derenze Fne Inegrare una PDE on assegnae ondzon al onorno sgna erare una unzone he sodds la PDE e le ondzon al onorno. In quano segue aremo rermeno a una sola varable spazale, ma l esensone muldmensonale è mmedaa. Per l problema della dusone moleolare sgna rovare una unzone, he sodds l equazone della dusone moleolare e rspe le ondzon al onorno nzal e a lm he abbamo mposo. ò onsenrà d onosere valor d onenrazone nell nero pano spazo-empo n una srsa del pano spazo-empo. Se ò non è possble analamene possamo por un obevo meno ambzoso Valuare valor d, n un numero no d pun del domno spazale a pressa san emporal. In alr ermn valuare valor d onenrazone solo ne nod d una grgla del pano spazo-empo. 9

20 Grgla nel pano Spazo - Tempo

21 Idea: sosuzone d equazon algebrhe sre n asun nodo al ssema d equazon derenzal. Meodo: meodo delle derenze ne. S approssmano le dervae medane rappor nremenal. Daa una genera unzone =, la dervaa d n = è dena ome: d d lm Svluppando n sere d Taylor d puno nzale, e ermandos al prmo ordne s rava he: d d o Da u s dense l operaore alle derenze ne dervaa orward n avan: d d he è una approssmazone al prmo ordne della dervaa n.

22 Analogamene possamo denre l operaore alle derenze ne dervaa bakward all ndero: d d he è anora una approssmazone al prmo ordne della dervaa n. Una approssmazone mglore è la dervaa enraa: d d Approssmaa al seondo ordne.

23 3 S può dmosrare onsderando gl svlupp n sere d Taylor 3 3 o d d d d o d d d d E soraendo membro a membro: 3 o o d d he dmosra appuno he la dervaa enraa è approssmaa al seondo ordne.

24 4 Operaore d approssmazone della dervaa seonda. Svluppando n sere d Taylor d puno nzale, e ermandos al seondo ordne s rava he: 3 3 o d d d d o d d d d E sommando membro a membro: 3 o d d o d d oè

25 In snes: Operaor alle derenze ne approssman la dervaa prma d d Forward ordne d d Bakward ordne d d enraa ordne Operaor alle derenze ne approssman la dervaa seonda d d enraa ordne 5

26 Meodo delle Derenze Fne In asun nodo della grgla sosuamo gl operaor alle derenze ne nell equazone derenzale. 6

27 7 Applazone all equazone del rasporo puramene onvevo U Un operaore orward per la dervaa emporale e un operaore bakward per la dervaa spazale: U Da u s oene la ormulazone upwnd: ouran numero d u U

28 Possamo srvere una equazone algebra saa n ogn nodo, a quesa dobbamo aggungere le ondzon al onorno ne nod spazal nzale e nale esrem del domno spazale

29 La ormulazone upwnd per a> nrodue un errore he s ampla passo dopo passo Il meodo è nsable per a> sablà ondzonaa Sablà: un errore nrodoo n un passo d alolo non s ampla ne suessv. 9

30 3 Applazone all equazone del rasporo onvevo dspersvo Nel nodo, della grgla la unzone nogna onenrazone è,, Sosuendo nell equazone del rasporo onvevo dspersvo n moo unorme E U un operaore orward per la dervaa prma emporale, un operaore bakward per la dervaa prma spazale e un operaore enrao per la dervaa seonda spazale: E U

31 U E Possamo srvere una equazone algebra saa n ogn nodo, a quesa dobbamo aggungere le ondzon al onorno ne nod spazal nzale e nale esrem del domno spazale

32 3 Meodo d Predzone - orrezone U La ena upwnd proposa per la smulazone del rasporo onvevo U ouran numero d U U Inrodue un errore dusvo nella soluzone

33 Al ne d lmare ale errore è possble blanarlo nroduendo un meodo a due pass. Al passo upwnd dusvo aamo segure un passo bakwnd andusvo, qund nrnseamene nsable se onsderao da solo. Meodo Bakwnd: dervaa spazale orward. La soluzone del passo upwnd vene onsderaa solo ome una sma per applare un passo bakwnd all sane + U * Dove * è una sma del valore d onenrazone all sane + 33

34 34 U * Uso quesa sma per applare l meodo bakwnd ** * * ** U * * * Il meodo d predzone orrezone d Mormak: dove < q<. q= meodo Upwnd q= meodo mplo q=.56 valore omo

35

36 Ovvamene è possble ener ono anhe del ermne d dspersone, da raare sempre medane una dervaa enraa. INSERIRE 36

37 Sablà, onssenza, onvergenza Abbamo gà nrodoo l oneo d Sablà Sablà: un errore nrodoo n un passo d alolo non s ampla ne suessv. Sono nolre mporan seguen one: onssenza: al endere a zero de pass della grgla d alolo le equazon alle derenze endono all equazone derenzale he s vuole negrare. onvergenza: al endere a zero de pass della grgla d alolo la soluzone delle equazon alle derenze ende alla soluzone dell equazone derenzale. Ovvamene per dmosrare la onvergenza propreà desderaa avre bsogno d onosere la soluzone dell equazone derenzale, uava vale l Teorema d Equvalenza d La ondzone neessara e suene per la onvergenza d un meodo è he esso sa sable e onssene. 37

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici Inroduzone a Modell d Duraa: Alun Modell Paramer a.a. 2009/2010 - Quaro Perodo Prof. Flppo DOMMA Corso d Laurea Spealsa/Magsrale n Eonoma Applaa Faolà d Eonoma UnCal 1. Esponenzale Modell Paramer Le funzon

Dettagli

Risoluzione Numerica di Equazioni Differenziali Ordinarie

Risoluzione Numerica di Equazioni Differenziali Ordinarie Rsolzone Nmer d Eqzon Derenzl Ordnre Per l solzone d n eqzone derenzle del prmo ordne onsdermo l segene Problem vlor nzl o Problem d C: ' ondzone nzle * < Teorem d essenz ed nà: S den e onn n S S { [ *]

Dettagli

Soluzione di sistemi di equazioni differenziali

Soluzione di sistemi di equazioni differenziali Soluzone d ssem d equazon dfferenzal Porese aere l mpressone d non sapere nulla sulle equazon dfferenzal e d non aerne ma nconraa una. In realà quesa mpressone è sbaglaa perché la legge d Neon F ma s può

Dettagli

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a. 2009-2010 Cenn d modellsca (crcu elerc

Dettagli

Determinare gli insiemi delle soluzioni dei seguenti sistemi lineari non omogenei e scriverli in forma di spazio affine ESERCIZIO 1.3.

Determinare gli insiemi delle soluzioni dei seguenti sistemi lineari non omogenei e scriverli in forma di spazio affine ESERCIZIO 1.3. Deermnare gl nsem delle soluon de seguen ssem lnear non omogene e srverl n forma d spao affne ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO 6 ESERCIZIO ESERCIZIO ESERCIZIO 9 ESERCIZIO SOLUZIONI

Dettagli

Inizializzazione dei modelli ed assimilazione delle misure

Inizializzazione dei modelli ed assimilazione delle misure Monoraggo della qualà dell ara. I modell d dspersone degl nqunan n amosfera e le msure n amosfera 011 Inzalzzazone de modell ed assmlazone delle msure do. Roero Sozz do. Andrea Bolgnano Oevo Rprodurre

Dettagli

ESPONENTI DI LIAPUNOV

ESPONENTI DI LIAPUNOV ESPONENTI DI IAPUNOV Ssem a empo dscreo, mono- e mul-dmensonal Problemache d calcolo Ssem a empo connuo C. Pccard e F. Dercole Polecnco d Mlano - 9/0/200 /8 MAPPE MONO-DIMENSIONAI Consderamo l ssema a

Dettagli

Calcolo della derivata nel punto iniziale. Estrapolazione al primo ordine in t/2 e calcolo della derivata. Estrapolazione al secondo ordine in t

Calcolo della derivata nel punto iniziale. Estrapolazione al primo ordine in t/2 e calcolo della derivata. Estrapolazione al secondo ordine in t Il meodo d Runge-Kua Rassumendo possamo de che l meodo d Runge- Kua d odne due consse nell esegue una esapolazone del pmo odne da a x(/ nel aluae la deaa x (/ e nell ulzzala pe oenee una sma d x( esaa

Dettagli

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni

Introduzione al calcolo numerico. Derivazione Integrazione Soluzione di equazioni Introduzone al calcolo numerco Dervazone Integrazone Soluzone d equazon Dervazone numerca Il calcolo della dervata d una unzone n un punto mplca un processo al lmte ce può solo essere approssmato da un

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanca 7-8 Puno maerale Corpo d dmenson rascurabl rspeo allo spazo nel quale s muoe e neragsce con alr corp Approssmazone Terra-Sole R d Earh Sun-Earh 6 6.4 m.5 m 4.3 5 E una buona approssmazone? - rba

Dettagli

Equazioni di stato per circuiti del I ordine

Equazioni di stato per circuiti del I ordine Lezone 5 Equazon d sao per crcu del ordne Lezone n.5 Equazon d sao per crcu del ordne. Equazone d sao per crcu del ordne. Dmensone fsca de coeffcen dell equazone d sao. Esercz. sere e parallelo. L sere

Dettagli

Fisica Generale B. 5. Circuiti in Corrente Continua. Elementi di Circuito. Elettrodotti. Elementi di Circuito (II)

Fisica Generale B. 5. Circuiti in Corrente Continua. Elementi di Circuito. Elettrodotti. Elementi di Circuito (II) Fsa enerale 5. ru n orrene onnua Elemen d ruo I ru eler sono osu da l onduor, generaor, ressor, ondensaor e alr elemen d ruo ollega ra loro. S suppone he gl elemen d ruo deal, se non sono ressor, abbano

Dettagli

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007 Meod quanav per la sma del rscho d mercao Aldo Nassgh 16 Oobre 007 METODI NUMERICI Boosrap della curva de ass Prncpal Componen Analyss Rsk Mercs Meod d smulazone per l calcolo del VaR basa su Full versus

Dettagli

Equazioni dei componenti

Equazioni dei componenti Equazon de componen Eserczo Nella fgura è rappresenao un quadrupolo la cu sruura nerna alla superfce lme conene ressor R e R. Deermnare le equazon del componene ulzzando come arabl descre quelle corrsponden

Dettagli

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla).

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla). I crcu Defnzone: s defnsce crcuo un crcuo elerco n cu al generaore d fem sono collega una ressenza e un condensaore. V cordamo che per un condensaore è possble defnre la capacà come l rapporo ra la carca

Dettagli

MATLAB-SIMULINK. Risoluzione di equazioni differenziali alle derivate parziali in ambiente Matlab-Simulink. Ing. Alessandro Pisano

MATLAB-SIMULINK. Risoluzione di equazioni differenziali alle derivate parziali in ambiente Matlab-Simulink. Ing. Alessandro Pisano MALAB-SIMULINK Rsoluzone d equazon dfferenzal alle dervae parzal n ambene Malab-Smulnk Ing. Alessandro Psano psano@dee.unca. Ssem ermc spazalmene dsrbu Barra meallca flforme d lungezza L = 5 cm L Varable

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Capitolo III: I Regolatori

Capitolo III: I Regolatori SCC Cap. III: Regolaor Capolo III: I Regolaor III-1: Inrouzone Il regolaore ha l ompo sablre l azone orreva a apporare n ngresso al proesso, per mezzo ell auaore; l segnale n usa al regolaore (s) è funzone

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio orso d leroecnca NO er. 0000B orso d leroecnca NO Angelo Baggn ap. 6 appresenazone e anals de crcu elerc n regme ransoro Inroduzone rcuo resso () 0 00V 0Ω > 0 rcuo puramene resso () 00V 0A V ondensaor

Dettagli

UNIONI BULLONATE: TAGLIO TORSIONE FLESSIONE. ESERCIZIO: Verificare il giunto a cerniera con squadrette d anima.

UNIONI BULLONATE: TAGLIO TORSIONE FLESSIONE. ESERCIZIO: Verificare il giunto a cerniera con squadrette d anima. UNIONI BULLONATE: TAGLIO TORSIONE FLESSIONE ESERCIZIO: Verare l guno a ernera on squadree d anma. S vuole verare l unone bullonaa allo sao lme ulmo nel aso d un guno a ernera on squadree d anma a orma

Dettagli

Regimi periodici non sinusoidali

Regimi periodici non sinusoidali Regm perodc non snusodal www.de.ng.unbo./pers/masr/ddaca.hm versone del -- Funzon perodche S dce che una funzone y è perodca se esse un > ale che per ogn e per ogn nero y y l pù pccolo valore d per cu

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d leroecnca: crcu n eoluzone dnamca nono Maffucc maffucc@uncas er oobre 7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa la correne nell nduore all sane caare

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015 Iuzon d Probablà Laurea magrale n Maemaca 5 Gennao 5 Eerczo. pun S conder l equazone dfferenzale ocaca S dmor che dx = X d +, X = x. X = B + e x e B d è l unca oluzone. S mpo la verfca che ale oluzone

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

Problema. Integrazione scorte e distribuzione. Modello. Modello

Problema. Integrazione scorte e distribuzione. Modello. Modello Problema Inegrazone score e dsrbuzone Modell a domanda varable ree dsrbuva: uno a mol merc: colleame domanda: varable vncol: numero e capacà vecol cos: fss/varabl, magazzno/rasporo approcco rsoluvo: eursco/esao

Dettagli

Capitolo 5 (II) - Strutture riverberanti

Capitolo 5 (II) - Strutture riverberanti Appun d Elaboraone numera de segnal Capolo 5 (II) - ruure rverberan Inroduone: sruure rverberan... I ssem numer dervan...5 Casaa d ronh d lnea... Il flro a ralo rorsvo... 4 Osservaone... 7 Osservaone:

Dettagli

() t. B = insieme di segnali. M = { s 1 (t),, s i (t),, s m (t) } 1 b 1 (t) = 0 ) 2 b 2 (t) = 0 ) Lo spazio dei segnali. Lo spazio dei segnali

() t. B = insieme di segnali. M = { s 1 (t),, s i (t),, s m (t) } 1 b 1 (t) = 0 ) 2 b 2 (t) = 0 ) Lo spazio dei segnali. Lo spazio dei segnali Lo spazo e segnal Lo spazo e segnal Inroucao una rappresenazone veorale e segnal ella cosellazone M Serve a seplfcare proble n rcezone, ove nvece lavorare con le fore ona s (), è pù seplce lavorare con

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI Fondamen d Segnal e Trasmssone Segnal deermnsc e casual Un segnale () s dce DETEMIISTICO se e una funzone noa d, coe se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

DEDUZIONE DELLE EQUAZIONI DEL TRASFORMATORE MONOFASE MACCHINA LINEARE IN FUNZIONAMENTO A REGIME PERMANENTE SINUSOIDALE

DEDUZIONE DELLE EQUAZIONI DEL TRASFORMATORE MONOFASE MACCHINA LINEARE IN FUNZIONAMENTO A REGIME PERMANENTE SINUSOIDALE DEDUZOE DEE EQUAZO DE TRASFORATORE OOFASE ACCHA EARE FUZOAETO A REGE PERAETE SUSODAE Ezo Sann Unersà d Roma a Sapenza Rel. 5 arzo 00. DEFZOE D FUSSO COCATEATO. Una spra a sezone punforme S prenda n onsderazone

Dettagli

VGR2016 Valutazione e Gestione del Rischio negli Insediamenti Civili ed Industriali VIII Edizione 2016

VGR2016 Valutazione e Gestione del Rischio negli Insediamenti Civili ed Industriali VIII Edizione 2016 VGR06 Valazone e Gesone el Rsco negl Inseamen Cvl e Insral VIII Ezone 06 Sessone Screzza n ambo Elzo Procera Semplcaa per la Deermnazone el Campo ermco all nerno e Maeral ermcamene non Sol ID Aore Anono

Dettagli

Componenti dotati di memoria (dinamici)

Componenti dotati di memoria (dinamici) omponen doa d memora (dnamc) S raa d componen elerc che esprmono una relazone cosua ra ensone e correne che rchama anche alor d ensone e/o correne rfer ad san d empo preceden. a relazone cosua è n queso

Dettagli

Corso di. Gasdinamica II Tommaso Astarita

Corso di. Gasdinamica II Tommaso Astarita Corso d Gasdnamca II Tommaso Astarta astarta@unna.t www.docent.unna.t Gasdnamca II Tommaso Astarta 5.0.008 Metodo d Eulero S supponga d avere una equazone dfferenzale del prmo ordne: f ( x, ) x xo o Defnendo

Dettagli

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1

Sistemi dinamici LTI del 2 ordine: traiettorie nel piano di stato. Fondamenti di Automatica Prof. Silvia Strada 1 Sem dnamc LTI del ordne: raeore nel pano d ao Fondamen d Auomaca Prof. Slva Srada x 8 6 4 8 6 4 x x.5.5 5 5 Movmeno dello ao x 3 4 5 6 7 8 9 Movmeno dello ao x 3 4 5 6 7 8 9..4.6.8..4.6.8 x = Sema dnamco

Dettagli

Inizialmente il pistone è bloccato in una posizione = C. sull ambiente,

Inizialmente il pistone è bloccato in una posizione = C. sull ambiente, In un lndro huso munto d un stone d massa trasurable, a tenuta eretta, e sorrevole senza attrto sono ontenute n mol d ossgeno, assmlable a un gas eretto batomo. Inzalmente l stone è bloato n una oszone

Dettagli

Lattice Boltzmann: metodi cinetici per la fluidodinamica

Lattice Boltzmann: metodi cinetici per la fluidodinamica UNIVERSITÀ DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE Lace Bolzmann: meod cnec per la ludodnamca 26 gugno 205 XXX CORSO DI DOTTORATO IN INGEGNERIA CIVILE MECCANICA E BIOMECCANICA FLUIDODINAMICA Fludodnamca

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

Concept PROF:MARCO D`

Concept PROF:MARCO D` UNI CAM -Un v er s àdegl S ud d Camer no-s uol ad Ar h e ur aedes gn Eduar dov or a d As ol P enoaa2014/ 2015 Labor a or opr oge ual epr el aur eapr of.mas s moper r ol -Tu or :ar h.laur ar dol f do.el

Dettagli

Elemento Trave nel piano

Elemento Trave nel piano Il etodo degl Element Fnt Elemento Trave nel pano Dalle dpene del prof. Daro Amodo e dalle lezon del prof. Govann Santu.Cortee Progettazone eana agl Element Fnt (a.a. 11-1) Introduzone al alolo trutturale

Dettagli

Esercitazioni di Teoria dei Circuiti: circuiti in evoluzione dinamica

Esercitazioni di Teoria dei Circuiti: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d Teora de rcu: crcu n eoluzone dnamca prof nono Maffucc maffucc@uncas er oobre 7 Maffucc: rcu n eoluzone dnamca er-7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa

Dettagli

Corso di Elettrotecnica

Corso di Elettrotecnica Unerstà degl Stud d Paa Facoltà d Ingegnera orso d orso d Elettrotecnca Teora de rcut rcut elettrc n funzonamento perturbato rcut elettrc n funzonamento perturbato I IRUITI OMPRENONO: Sorgent nterne d

Dettagli

CONDUTTIMETRIA. La conduttanza è l inverso della resistenza e la resistenza Conduttanza C = R

CONDUTTIMETRIA. La conduttanza è l inverso della resistenza e la resistenza Conduttanza C = R ODUTTIMETIA La condumera è una ecnca basaa sulla conducblà degl on presen n soluzone. I conduor possono essere : I spece generalmene meall e meallod, sono caraerzza dall assenza del rasporo d maera, n

Dettagli

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO same d PINCIPI DI SISTMI TTICI SD DI MINO I Compno del 0 05 07 ) Il crcuo d Fg., n regme sazonaro, è così assegnao: () 0 V 0 V 5 V 8 0 5 5 0 00 mh nerruore S è apero da un empo nfno e s chude all sane

Dettagli

Seminario: Dinamica quantistica inerziale di una particella in una dimensione

Seminario: Dinamica quantistica inerziale di una particella in una dimensione Snaro: Dnaa quansa nrzal d una parlla n una dnson Foralso quanso Funzon d onda: pr d ' ' dnsà d probablà sulla oordnaa al po  Valor d asa al po dll opraor : d A d A A ˆ ˆ * Saro quadrao do dlla proprà:

Dettagli

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

CINEMATICA INVERSA. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona CINEMATICA INVERSA Paolo Forn Dpartmento d Informata Unvertà degl Stud d Verona Introduzone Cnemata Dretta Dat: angol a gunt Calola: pozone e orentamento organo termnale Cnemata Invera Dat: pozone e orentamento

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Esercizi numerici Parte A

Esercizi numerici Parte A Polteno d Mlano Faoltà d Ingegnera dell Informazone Eserz numer Parte A Ret Radomobl Eserzo S onsder una rete ellulare d tpo multarrer-tdma he dspone d 24 portant, asuna on 3 anal a) Utlzzando l modello

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. La

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Noa ecnca La formula per la ulzzazone degl Indcaor conenua nell allegao al D.M. n. 506/2007, è defna araverso seguen passagg logco-algebrc, n relazone a quano prevso dal D.M. 3 luglo 2007, n. 362 (lnee

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Ora, per un fotone, che è poi una «particella» con massa a riposo nulla, si ha

Ora, per un fotone, che è poi una «particella» con massa a riposo nulla, si ha EQUAZIONE DI DIRAC (e la resunta quarta dmensone) (una rova dell essenza osllatora dell unverso e dell essenza trdmensonale della quarta dmensone relatvsta) Leonardo Rubno Gennao 9 Abstrat : dmostramo

Dettagli

Definizione della tariffa per l accertamento di conformità degli strumenti di misura

Definizione della tariffa per l accertamento di conformità degli strumenti di misura alla delberazone d Guna n. 2 del 20.0.2009 Defnzone della arffa per l accerameno d conformà degl srumen d msura. Per l accerameno d conformà degl srumen d msura sono defne le seguen 8 class arffare: denfcavo

Dettagli

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R 8. Per t l condensatore s comporta come un crcuto aperto pertanto la corrente tende a zero: la funzone non può essere la (c). caando α e ω 0 s ottengono seguent alor: α 5 0 e ω 0 0. Essendo α > ω 0 l crcuto

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω

Metodi di analisi R 1 =15Ω R 2 =40Ω R 3 =16Ω Metod d anals Eserczo Anals alle magle n presenza d sol generator ndpendent d tensone R s J R Determnare le tenson sulle resstenze sapendo che: s s 0 R R 5.Ω s J R J R R 5Ω R 0Ω R 6Ω R 5 Dsegnamo l grafo,

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po

Dettagli

Bayes. stati del mondo

Bayes. stati del mondo ayes Sao del mondo Se ndchamo con uno sao del mondo e un eveno, la probablà d dao ndca che s manfesa dao che è lo sao del mondo. Qund l eveno può essere pensao anche come uno sao del mondo. La formula

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

Supplementi al Bollettino Statistico

Supplementi al Bollettino Statistico Supplemen al Bolleno Saso Noe meodologhe e nformazon sashe L ulzzo del Seleve edng per l onrollo d qualà delle sashe banare Nuova sere Anno XIV Numero 29-24 Maggo 2004 BANCA D ITALIA - CENTRO STAMPA -

Dettagli

Corsi di Laurea in Farmacia e CTF Prova di Matematica

Corsi di Laurea in Farmacia e CTF Prova di Matematica Cors d Laurea n Farmaca e CTF Prova d Matematca S O L U Z I O N I Effettua uno studo qualtatvo della funzone 4 f + con partcolare rfermento a seguent aspett: a trova l domno della funzone b trova gl ntervall

Dettagli

RICONOSCIMENTO DI FORME. Metodi non supervisionati e clustering Capitolo 7

RICONOSCIMENTO DI FORME. Metodi non supervisionati e clustering Capitolo 7 RICONOCIMENTO I FORME Metod non supervsonat e lusterng Captolo 7 EERCIZIO Ottenere una lusterzzazone on = da dat n tabella. X=( ) X=( 0) X3=(0 ) X4=(5 0) X5=(4 ) X6=(3 ) ) Applare a pattern n tabella l

Dettagli

dv dt dv = C dt C dt dv dt che è un'equazione differenziale a variabili separabili. La soluzione V o

dv dt dv = C dt C dt dv dt che è un'equazione differenziale a variabili separabili. La soluzione V o Inegrare nverene L'negrare rnsce n usca un segnale prprznale all'negrale del segnale d'ngress. Per sudare un crcu cn amplcare aznale dvrem enere cn dell'equpenzalà degl ngress e che gl ngress nn assrbn

Dettagli

MISURA DELLA CAPACITA DI UN CONDENSATORE TRAMITE UN CIRCUITO RC

MISURA DELLA CAPACITA DI UN CONDENSATORE TRAMITE UN CIRCUITO RC MISUA DELLA CAACITA DI UN CONDENSATOE TAMITE UN CICUITO C Spermenaor: Marco Erculan (n marcola: 4549.O) Ivan Noro (n marcola: 458656.O) Duraa dell espermeno:.5 ore ( dalle ore 9: alle ore :) Daa d effeuazone:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 17: 16 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 17: 16 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/22? Eserczo Un Btp trennale, d valore nomnale C

Dettagli

MATEMATICA FINANZIARIA 2 PROVA SCRITTA DEL 11 SETTEMBRE 2007 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 2 PROVA SCRITTA DEL 11 SETTEMBRE 2007 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL SETTEMBRE 007 ECONOMIA AZIENDALE ESERCIZIO a Su un mercao deale vene smaa, rame prezz d TCN unar, la seguene sruura per scadenza de ass a pron (0,4,% ; (0,4,8%

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

La corrente vale metà del valore finale quando 0,2(1 e ) = 0, 1; risolvendo l equazione si

La corrente vale metà del valore finale quando 0,2(1 e ) = 0, 1; risolvendo l equazione si 7.6 La corrente nzale è edentemente nulla. on l nterruttore chuso la costante d tempo è τ = L/ = 1/200 s. Il alore fnale è ( ) = 20/100 = 0,2 A. on l espressone (7.13b) a pag. 235 del lbro s ottene 200t

Dettagli

TECNICHE DI FILTRAGGIO DEL RUMORE DALLE IMMAGINI RM

TECNICHE DI FILTRAGGIO DEL RUMORE DALLE IMMAGINI RM UNVERSTÀ DEGL STUD D PALERMO FACOLTÀ D NGEGNERA CORSO D LAUREA N NGEGNERA NFORMATCA TECNCHE D FLTRAGGO DEL RUMORE DALLE MMAGN RM Tes d laurea d: All. ng. Robero Gallea Relaore: Prof. ng. Edoardo Ardzzone

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Scheda didattica N 9: L infiltrazione Prof. Versace - UniCal Manoscritto soggetto a revisione L INFILTRAZIONE

Scheda didattica N 9: L infiltrazione Prof. Versace - UniCal Manoscritto soggetto a revisione L INFILTRAZIONE Sheda ddaa N 9: L nlrazone Pro. Versae - UnCal Manosro soggeo a revsone L INFILTRAZIONE Con l ermne nlrazone s nda l roesso d rasermeno dell'aqua araverso la suere del erreno. La onosenza qualava e quanava

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Il problema della Propagazione delle Incertezze

Il problema della Propagazione delle Incertezze Il problema della Propagazone delle Incertezze Uso della Trasormata Unscented per la valutazone dell ncertezza nelle msurazon ndrette Leopoldo Angrsan DIS, Dpartmento d Inormatca e Sstemstca Unverstà degl

Dettagli

Propagazione degli errori

Propagazione degli errori Propagazone degl error Msure drette: la grandezza sca vene msurata drettamente (ad es. Spessore d una lastrna). Per questo tpo d msure, la teora dell errore svluppata nelle lezone precedent é sucente per

Dettagli

Capitolo 2 Le leggi del decadimento radioattivo

Capitolo 2 Le leggi del decadimento radioattivo Capolo Le legg del decadmeno radoavo. Sablà e nsablà nucleare Se analzzamo aenamene la cara de nucld, vedamo che n essa sono rappresena, olre a nucle sabl, anche var nucle nsabl. Con l ermne nsable s nende

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) Ing. Eleronca - II a Esperenza del aboraoro d Fsca Generale II Oscllazon lbere e rsonanza d un crcuo -sere (Traazone analca del crcuo -sere on quesa breve noa s vuole fornre la raazone eorca del crcuo

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Propagazione degli errori

Propagazione degli errori Propagaone degl error Voglamo rcavare le ncertee nelle msure ndrette. Abbamo gà vsto leone un prma stma degl error sulle grandee dervate valda n generale. Consderamo ora l caso specco d grandee aette da

Dettagli

Commessa N. Foglio 1 di 6 Rev B. Titolo commessa. Redatto da AO Data Giugno Verificato da AT Data Ottobre 2002

Commessa N. Foglio 1 di 6 Rev B. Titolo commessa. Redatto da AO Data Giugno Verificato da AT Data Ottobre 2002 Commessa N. Foglo d 6 Rev B Deparmen o Cvl and Mnng Engneerng Dvson o Seel Srucures, Unversy campus, SE-97 87 Luleå, Seden Tel: +46 90 9 000 Fax: +46 90 9 9 Redao da AO Daa Gugno 00 Vercao da AT Daa Oore

Dettagli

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t

Ad esempio, potremmo voler verificare la legge di caduta dei gravi che dice che un corpo cade con velocità uniformemente accellerata: v = v 0 + g t Relazon lnear Uno de pù mportant compt degl esperment è quello d nvestgare la relazone tra due varabl. Il caso pù mportante (e a cu spesso c s rconduce, come vedremo è quello n cu la relazone che s ntende

Dettagli

Elettrotecnica /2009 Totale ore: 30; Crediti corrispondenti: 3

Elettrotecnica /2009 Totale ore: 30; Crediti corrispondenti: 3 Eleroecnca 2 28/29 Toale ore: 3; re corrsponden: 3 Anals de crcu n funzonameno dnamco Anals nel domno del empo rcu del prmo ordne e del secondo ordne, elazone ngresso/usca ed equazon d sao, Prncpal segnal

Dettagli

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese.

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese. Adren-Mare Legendre (Parg, 18 seembre 175 Parg, 10 gennao 1833) è sao un maemaco francese. 1 Trasformazon d Legendre per cambare varable ndpendene Supponamoche samo neressa a conoscere una grandezza f

Dettagli

Risoluzione numerica di problemi differenziali alle derivate parziali

Risoluzione numerica di problemi differenziali alle derivate parziali Rsolzone nmerca d problem dfferenzal alle dervate parzal Rsolzone nmerca d PDE Dscretzzazone Sosttre al problema contno n problema dscreto Qal è l problema contno? Rsolzone nmerca d PDE Il problema contno:

Dettagli

Elementi di calcolo numerico

Elementi di calcolo numerico Element d calcolo numerco Molto sesso nel calcolo scentco sorge la necesstà d calcolare l valore numerco d ntegral che non ossono essere calcolat analtcamente oure occorre calcolare l valore del mnmo d

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Laboratorio di Didattica della Fisica I

Laboratorio di Didattica della Fisica I Laboraoro d Ddaca della Fsca I Daa Oraro Aula Tpo 08-mar 5-7:5 A Lezone 3-mar 5-7:5 A Lezone 5-mar 5-7:5 Lab. MM e Dd. Laboraoro 0-mar 5-7:5 A Lezone -mar 5-7:5 Lab. MM e Dd. Laboraoro 7-mar 5-7:5 A Lezone

Dettagli

Teoria perturbativa (parte II : probabilità di transizione, pacchetto d onda)

Teoria perturbativa (parte II : probabilità di transizione, pacchetto d onda) Teoria perurbaiva (pare II : probabilià di ransizione, paheo d onda) Espressione della perurbazione Qui uilizziamo i risulai della prima pare dello sudio dell inerazione della radiazione eleromagneia on

Dettagli