Lezione 12 - I cerchi di Mohr

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 12 - I cerchi di Mohr"

Transcript

1 Lezione 1 - I cerchi di Mohr [Ultimareviione: reviione:15 15dicembre dicembre008] In queta lezione i decrive un claico metodo di viualizzazione dello tato tenionale nell'intorno di un punto generico P del corpo in eame. Tale metodo e' tato originariamente propoto da tto Mohr nella econda meta' dell'ttocento [Mohr], in tretta conneione con l'analii della tenione; tuttavia eo e' facilmente etendibile a cai diveri, quali l'analii della deformazione ed i problemi di geometria delle mae, ed in ambiti piu' generali puo' eere applicato ad un qualiai tenore del econdo ordine. Figura 1 - tto Mohr La convenzione ui egni di tto Mohr Si conideri un punto P generico, e i fii una terna carteiana di riferimento HP, x 1, x, x 3 L. Si vuole ora eaminare come varia il vettore tenione t n in P ui piani che i appoggiano all'ae x 3, al variare dell'angolo f che definice il piano generico (cfr. Figura ). Su ciacun elemento piano coi' determinato agicono una tenione normale ed una tenione tangenziale di componenti e t nl = t nz. Nel piano Hx 1, x L, quindi, agicono le tenioni e, come riportato in Figura 3 Si noti che in Figura e' tata riportata la tenione tangenziale poitiva econdo la convenzione di Mohr, diretta in modo da far ruotare il cubetto elementare in eno orario intorno al uo baricentro. E' queta una convenzione ui egni molto uata nell'ambito della teoria dei cerchi di Mohr, che i andra' a

2 71 Lezione 1 - I cerchi di Mohr.nb viluppare nel paragrafo eguente, convenzione in contrato con la convenzione uuale ui egni delle componenti carteiane di tenione 1. Ed infatti, dalla Figura 3 i evince con facilita' che quando f = p/, e quindi n viene a coincidere con l'ae x, la e' pari, in valore e egno, alla tenione 1, ma che quando f = 0, e quindi n coincide con l'ae x 1, i ha che la e' uguale e contraria alla 1. x 3 = l f t nl A x m f x 1 n Figura - I piani per A che i appoggiano all'ae z = l, definiti dall'angolo f e oggetti alla tenione normale ed alle tenioni tangenziali e t nl = t nz x 1 11 n A f =HxnL x 1 m Figura 3 - Le componenti carteiane di tenione nel piano x 1 x, e le componenti econdo gli ai locali m ed n

3 Lezione 1 - I cerchi di Mohr.nb 7 Il teorema di Mohr Per ciacun elemento piano appoggiato all'ae x 3, e definito dall'angolo f, i riporti in un piano t (piano di Mohr) il vettore di componenti e. Si dimotrera' il eguente: Teorema (. Mohr 188) - Il vettore di componenti (, ) decrive nel piano t un cerchio, al ruotare dell'elemento piano intorno all'ae l = x 3. Dimotrazione - Siano Hm 1, m, 0L ed Hn 1, n, 0L i coeni direttori degli ai m ed n, ripettivamente, icche' i ha, dalla Lezione 5: σ n = σ 11 n 1 + σ n +σ 1 n 1 n τ nm = σ 11 m 1 n 1 + σ m n + σ 1 Hm 1 n + m n 1 L Eprimendo ora i coeni direttori in funzione dell'angolo f, i ottiene facilmente, dalla Figura 3: n 1 = Co Hnx 1 L = Co H φl = Co φ n = Co Hnx L = Co I π φm = Sin φ m 1 = Co Hmx 1 L = Co I π (1) () (3) (4) (5) φm = Sin φ (6) m = Co Hmx L = Co Hπ φl = Co φ e quindi le (1-) divengono: σ n = σ 11 Co φ + σ Sin φ +σ 1 Sin φco φ (7) τ nm = Hσ 11 σ LSin φco φ + σ 1 HSin φ Co φl Un ultimo paaggio conite nell'eprimere le (7-8) in funzione di f, tramite le relazioni trigonometriche: (8) Si ha quindi: Sin φco φ = 1 Sinφ Co φ Sin φ = Coφ Co φ = 1 H1 + CoφL Sin φ = 1 H1 CoφL (9) (10) (11) (1) σ n = σ 11 + σ + σ 11 σ Co φ + σ 1 Sin φ (13) τ nm = σ 11 σ Sin φ σ 1 Coφ Infine, i ottiene, quadrando e ommando: (14) Iσ n σ 11 + σ M + τ = I σ11 σ nm M + σ 1 (15)

4 73 Lezione 1 - I cerchi di Mohr.nb E' queta, come i voleva dimotrare, l'equazione di un cerchio di centro H ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 11+, 0L e raggio: R = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I σ 11 σ M + σ 1 (16) La cotruzione del cerchio i effettua come illutrato in Figura 4: riportando con il loro egno i egmenti A ed B, rappreentativi di 11 e di, ripettivamente, i ottiene il centro C del cerchio nel punto medio del egmento AB. A partire da A, i riporta in AP il egmento rappreentativo di 1, vero l'alto e poitivo, ottenendo il raggio CP, ed il coiddetto polo P del cerchio. L'utilizzo del cerchio di Mohr Aegnare il piano u cui i vuol calcolare la tenione nel punto in eame equivale, per quanto detto nei paragrafi precedenti, ad aegnare l'angolo f, e quindi ad ogni valore di f corriponde un precio valore del egmento di componenti H, L, oia un precio punto T n di coordinate e. Si vuole dedurre in queto paragrafo un metodo grafico per conocere T n, una volta aegnato l'angolo f. Si utilizzi allo copo la eguente oervazione: cotruito il cerchio di Mohr, i diegni la retta t che unice il polo P con il punto T n, uppoto per il momento noto. Si dimotrera' che l'angolo tra la verticale e la uddetta retta t e' uguale a f. 11 P 1 B C A 11 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Figura 4 - La cotruzione del cerchio di Mohr Ed infatti, detta v la verticale e t la retta che congiunge il polo col punto T n, i avra' (cfr. Figura 5): tan HvtL = σ n σ 11 = σ n σ 11 σ 1 τ nm τ nm σ 1 e otituendo i valori (7-8) i ha: (17)

5 Lezione 1 - I cerchi di Mohr.nb 74 tan HvtL = σ 11 H1 Co φl + σ Sin φ + σ 1 Sin φco φ σ 1 Hσ 11 σ LSin φco φ σ 1 HSin φ Co φl = Hσ σ 11 L Sin φ + σ 1 Sin φco φ Hσ σ 11 LSin φco φ + σ 1 Co φ = Sin φ@hσ σ 11 L Sin φ + σ 1 Co φd Co φ@hσ σ 11 LSin φ + σ 1 Co φd = Sin φ Co φ = Tan φ (18) Ne egue che, aegnato f, per conocere T n bata condurre per il polo P una retta t inclinata ulla verticale dello teo angolo f di cui n e' inclinata ripetto all'ae x 1. Se gli ai,t ono paralleli ed equiveri agli ai x 1 x, l'operazione e' equivalente a condurre per il polo P la parallela alla traccia dell'elemento piano in eame. In Figura 5, oltre al cao generico, i ono riprodotti anche i due cai particolari in cui la normale al piano coincide con l'ae x 1 (f = 0) e con l'ae x (f = p/). Nel primo cao dal polo P i deve condurre la verticale, giungendo al punto T x di coordinate = 11 e = - 1. Nel econdo cao, invece, occorre portare l'orizzontale per P, giungendo nel punto T y di coordinate = e = 1. Si ha coi' conferma di quanto detto, nel primo paragrafo, ulla convenzione dei egni. t f v T y P C T x T n H, L m n f x 1 Figura 5 - L'utilizzo del cerchio di Mohr per il calcolo dello tato tenionale ul generico elemento piano di normale n Tracciato il cerchio di Mohr, e' immediato ripondere ad alcune importanti domande, che conentono in realta' lo tudio completo dello tato tenionale per tutti i piani che i appoggiano all'ae l = x 3 : 1) quali ono le giaciture cui corripondono minime e maime tenioni normali? ) quali ono le corripondondenti tenioni normali minime e maime? 3) quali ono le giaciture cui corripondono tenioni tangenziali maime? 4) quanto valgono tali tenioni tangenziali maime, e a quali tenioni normali ono aociate?

6 75 Lezione 1 - I cerchi di Mohr.nb 5) eitono giaciture per cui la tenione e' ecluivamente tangenziale, ed in cao affermativo, quanto valgono le tenioni tangenziali in oggetto? à Eempi Si conidera, come primo eempio, uno tato tenionale caratterizzato da 11 > 0 e > 0, e da 1 < 0. Il cerchio di Mohr relativo agli elementi che i appoggiano all'ae x 3 i caratterizza quindi come in Figura 6. 1 n 1 n C H K P 1 Figura 6 - Il cerchio di Mohr in un cao per cui 11 e ono poitive, mentre 1 e' negativo. In eo e' evidenziato il polo P, da cui ono tate condotte le due rette PH e PK, che identificano le due direzioni n 1 = PH ed n = PK. Sul piano di normale n 1 agice la tenione 1, maima tra quelle agenti ui piani del facio in eame; ul piano di normale n agice la tenione, minima tra quelle agenti ui piani del facio in eame. Ad ee non i accompagna tenione tangenziale. Come econdo eempio, invece, i puo' ipotizzare che 11 ia poitivo, mentre e 1 ono negativi. In queta ipotei, il cerchio deve neceariamente interecare l'ae verticale, come indicato in Figura 7, e quindi una delle due tenioni etreme e' negativa, come evidenziato anche dal cubetto. Inoltre, in queto cao i oerva che ui piani di normale PS e PT agicono olo tenioni tangenziali. Nel primo cao, ul cubetto di normale PS agice una tenione tangenziale poitiva, tendente quindi a far ruotare il cubetto in eno orario, nel econdo cao, invece, la tenione e' negativa, e quindi il cubetto tendera' a ruotare in eno antiorario.

7 Lezione 1 - I cerchi di Mohr.nb 76 1 S n 1 n C H K T P 1 Figura 7 - Il cerchio di Mohr in un cao per cui 11 e' poitivo, mentre e 1 ono negative. La ricerca delle tenioni e direzioni principali tramite l'utilizzo dei cerchi di Mohr principali Scrivendo il teorema di Cauchy-Poion in termini di tenioni principali i ha, come noto: t n1 = σ 1 n 1 ; t n = σ n ; t n3 = σ 3 n 3 (19) Ipotizzando che uno degli ai carteiani ia principale, ad eempio l'ae x 3, e tudiando i piani che i appoggiano all'ae x 3 ª 3, i deduce ubito dalla terza delle (19) che i tudiano i piani per cui t n3 e' nulla. In altri termini, ui piani di tale facio la tenione normale e la tenione tangenziale eauricono lo tato tenionale, e quindi le tenioni etreme, che nel paragrafo precedente i erano battezzate 1 e, aumono ora il ignificato di tenioni principali 1 e. Dall'eame di un cerchio di Mohr principale i puo' anche dedurre graficamente l'epreione analitica delle tenioni principali, aieme all'epreione dell'angolo f * che definice le due direzioni principali. Si ha infatti, dalla Figura 8: σ 1, = σ 11 + σ ± $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% I σ 11 σ M + σ 1 (0) tan φ = σ 1 σ 11 σ (1)

8 77 Lezione 1 - I cerchi di Mohr.nb τ nm σ 11 σ 1 σ P 1 φ * P φ * P 1 B C A σ 1 σ σ n σ 1 σ σ 11 +σ Figura 8 - Il cerchio principale di Mohr per i faci che i appoggiano all'ae x 3 ª 3 Aegnato allora uno tato tenionale: S = i σ 11 σ 1 σ 13 y j σ 1 σ σ 3 z k σ 13 σ 3 σ 33 { i ricavino le tre direzioni principali, ordinandole come egue: () σ 1 σ σ 3 (3) I tre cerchi di Mohr relativi ai tre faci di piani che i appoggiano alle tre direzioni principali ono immediatamente diegnabili, riportando emplicemente ull'ae orizzontale i tre egmenti: σ 3 = P 1 ; σ = P ; σ 1 = P 1 e tracciando i cerchi di centri: (4) C 1 = P +P 3 ; C = P 1 +P 3 ; C 3 = P 1 +P e diametri H - 1 L, H 1-3 L e H 1 - L, ripettivamente, come illutrato in Figura 9. (5) In Figura 10 e' riportato il cao in cui le tre tenioni principali ono poitive, e ditinte tra loro. Dal uo eame i poono dedurre parecchie caratteritiche dello tato tenionale nel punto del corpo in eame. Ad eempio, e' banale calcolare la tenione tangenziale maima, pari a H 1-3 Lê, e capire che ea agice u di un piano del facio che i appoggia all'ae, e preciamente ul piano con traccia che bieca l'angolo 1-3. Ad ea i accompagna la tenione normale H Lê. Si ritrovano coi' in via grafica i riultati della Lezione 11. Si tudino con cura i egni delle tenioni tangenziali ulle facce del cubetto elementare.

9 Lezione 1 - I cerchi di Mohr.nb 78 τ nm P 3 P P 1 C 1 C C 3 σ n σ 1 σ σ 3 Figura 9. - I tre cerchi principali di Mohr per i faci che i appoggiano alle tre direzioni principali τ nm H P 3 P σ n C 1 C C 3 P 1 K σ 1 σ σ 3 Figura 10 - Lo tato tenionale corripondente alla maima tenione tangenziale

10 79 Lezione 1 - I cerchi di Mohr.nb Note [Mohr] - Si veda. Mohr, Zivilingenieur, pag. 113 (188) [Torna al teto]

Lezione 12 - I cerchi di Mohr

Lezione 12 - I cerchi di Mohr Lezione 1 - I cerchi di Mohr ü [A.a. 011-01 : ultima revisione 3 novembre 013] In questa lezione si descrive un classico metodo di visualizzazione dello stato tensionale nell'intorno di un punto generico

Dettagli

Lezione 25 - Flessione deviata e sforzo normale eccentrico

Lezione 25 - Flessione deviata e sforzo normale eccentrico Lezione 5 - Fleione deviata e forzo normale eccentrico ü [A.a. 011-01 : ultima reviione 1 gennaio 01] Con lo tudio della fleione fuori del piano i e' eaurito l'eame delle ollecitazioni emplici di De Saint

Dettagli

Lezione 25 - Flessione deviata e sforzo normale eccentrico

Lezione 25 - Flessione deviata e sforzo normale eccentrico Lezione 5 - Fleione deviata e forzo normale eccentrico [Ultimareviione: reviione:0 0gennaio gennaio009] Con lo tudio della fleione fuori del piano i e' eaurito l'eame delle ollecitazioni emplici di De

Dettagli

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.7

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.7 ESERCZO n.7 Data la ezione cava riportata in Figura, determinare: a) gli ai principali centrali di inerzia; b) l ellie principale centrale di inerzia; c) il nocciolo centrale di inerzia. cm cm A#7 . Determinazione

Dettagli

ESERCIZIO 1 L/2 C.R. D

ESERCIZIO 1 L/2 C.R. D SRIZIO Il itema di corpi rigidi in figura è oggetto ad uno potamento impreo (cedimento), in direzione verticale e vero il bao, in corripondenza del vincolo in. Si vuole determinare la nuova configurazione

Dettagli

Esercitazione 05: Collegamenti bullonati e saldature

Esercitazione 05: Collegamenti bullonati e saldature Meccanica e Tecnica delle Cotruzioni Meccaniche Eercitazioni del coro. Periodo II Prof. Leonardo BERTINI Ing. Ciro SNTUS Eercitazione 05: Collegamenti bullonati e aldature Indice 1 Collegamenti bullonati

Dettagli

Si vuole trafilare una barra di acciaio di diametro pari a 10 millimetri, fino a portarla ad un diametro di 8 millimetri. D F D I

Si vuole trafilare una barra di acciaio di diametro pari a 10 millimetri, fino a portarla ad un diametro di 8 millimetri. D F D I Eercizio C. Trafilatura di una barra d acciaio Si vuole trafilare una barra di acciaio di diametro pari a millimetri, fino a portarla ad un diametro di 8 millimetri. v I v D D I ILIERA Calcolare la forza

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

SEGNALI E SISTEMI 31 agosto 2017

SEGNALI E SISTEMI 31 agosto 2017 SEGNALI E SISTEMI 31 agoto 2017 Eercizio 1. [3+3+3+4 punti] Si conideri il modello ingreo/ucita LTI e cauale decritto dalla eguente equazione differenziale: dove a è un parametro reale. d 2 v(t) 2 +(1

Dettagli

Risonanza. Tracciare gli andamenti del modulo e della fase dell impedenza in funzione della frequenza f per il seguente bipolo: A R 1 R 2

Risonanza. Tracciare gli andamenti del modulo e della fase dell impedenza in funzione della frequenza f per il seguente bipolo: A R 1 R 2 6 Eercitazioni aggiuntive Eercizio 6. Tracciare gli andamenti del modulo e della fae dell impedenza in funzione della frequenza f per il eguente bipolo: A B [W]; [W]; [mf] Si calcoli l impedenza del bipolo

Dettagli

Uso della trasformata di Laplace per il calcolo della risposta

Uso della trasformata di Laplace per il calcolo della risposta Uo della traformata di Laplace per il calcolo della ripota Conigli generali (Aggiornato 7//) ) Si vuole qui richiamare l attenzione ul fatto che la preenza di zeri o di una truttura triangolare a blocchi

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi Coro di Progetto di Strutture POTENZA, a.a. 0 03 Serbatoi e tubi Dott. arco VONA Scuola di Ingegneria, Univerità di Bailicata marco.vona@uniba.it http://.uniba.it/utenti/vona/ CONSIDERAZIONI INTRODUTTIVE

Dettagli

dove x 0 R n è fissato.

dove x 0 R n è fissato. AMMISSIONE AL QUARTO ANNO: prova di ANALISI MATEMATICA (matematici e fiici) 26 Sia α (, ) (a) Provare che eite c α >, indipendente da t e, tale che (b) Calcolare c /2 (t σ) α (σ ) α dσ = c α, t, () (c)

Dettagli

ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST

ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST PROPRIETÀ DEI SISTEMI IN RETROAZIONE U E G () H () Si fa riferimento ad un generico itema in retroazione con funzione di traferimento a ciclo chiuo.

Dettagli

Esercizi di Controlli Automatici - 9 A.A. 2009/2010

Esercizi di Controlli Automatici - 9 A.A. 2009/2010 Eercizi di Controlli Automatici - 9 A.A. 2009/200 Eercizio. Dato il eguente chema, in cui gli amplificatori operazionali ono uppoti ideali, i calcoli la funzione di traferimento G() tra v in (t) e v out

Dettagli

16. Onde elastiche. m s

16. Onde elastiche. m s 1 Catena di ocillatori 16. Onde elatiche Vogliamo dicutere il fenomeno della propagazione ondulatoria in un mezzo elatico. A tale copo conideriamo un inieme di punti materiali dipoti lungo una retta, ad

Dettagli

Errori e cifre significative. Incontro iniziale LAB2GO

Errori e cifre significative. Incontro iniziale LAB2GO Errori e cifre ignificative Incontro iniziale LABGO La ditribuzione gauiana f tinyurl.com/labcalcquiz Propagazione degli errori Miure dirette: la grandezza fiica viene miurata direttamente (ad e. Speore

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli

Cerchio di Mohr. n y. n x

Cerchio di Mohr. n y. n x t nm m t n P n s n Sia P un punto generico del continuo e z una generica retta passante per esso. Fissato un riferimento cartesiano {,, z}, siano n=[n n 0] T ed m=[m m 0] T due versori ortogonali nel piano

Dettagli

Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui:

Calcolo della tensione ammissibile Dovendo essere il grado di sicurezza non inferiore a 3 si ricava che il coefficiente di sicurezza γ è 3 per cui: Il recipiente diegnato in figura ha una configurazione cilindrica avente diametro interno D = 000 mm è chiuo con fondi emiferici, eo è itemato u due elle A e B pote ad una ditanza L AB = 7000 mm e fuoriece

Dettagli

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5 . Introduzione... 2 2. Il convertitore a emplice emionda... 3 2. Il itema di controllo... 5 3. Il convertitore monofae nella configurazione a ponte... 7 4. Il fenomeno della commutazione... . Introduzione

Dettagli

Postulato delle reazioni vincolari

Postulato delle reazioni vincolari Potulato delle reazioni vincolari Ad ogni vincolo agente u un punto materiale P può eere otituita una forza, chiamata reazione vincolare, che realizza lo teo effetto dinamico del vincolo. reazione vincolare

Dettagli

= 20 m/s in una guida verticale circolare. v A A

= 20 m/s in una guida verticale circolare. v A A Eercizio (tratto dal Problema 4.39 del Mazzoldi Un corpo di maa m = 00 Kg entra con elocità A licia di raggio = 5 m. Calcolare: = 0 m/ in una guida erticale circolare. la elocità nei punti B e C;. la reazione

Dettagli

Il Luogo delle Radici

Il Luogo delle Radici Il Luogo delle Radici Il luogo delle radici è un procedimento, otanzialmente grafico, che permette di analizzare come varia il poizionamento dei poli di un itema di controllo in retroazione al variare

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

Asse neutro che taglia la soletta. Influenza delle modalità costruttive

Asse neutro che taglia la soletta. Influenza delle modalità costruttive Univerità degli Studi di Roma Tre Coro di Tecnica dll delle Cotruzioni i I Modulo A/A 27-88 LEZIONE N 15 CLS TRAVE COMPOSTE ACCIAIO-CLS CLS SEMPLICEMENTE APPOGGIATA Analii allo tato limite ultimo della

Dettagli

Flessione su 4 punti. Configurazione sperimentale. Schematizzazione di calcolo. Studio delle sollecitazioni semplici. Taglio.

Flessione su 4 punti. Configurazione sperimentale. Schematizzazione di calcolo. Studio delle sollecitazioni semplici. Taglio. Fleione u punti Configurazione imentale Scematizzazione di calcolo Taglio omento flettente Studio delle ollecitazioni emplici Tratto ollecitato da fleione pura la ua deformata è un arco di cercio Deformazioni

Dettagli

ESERCIZI SULLE SUPERFICI. 1) Calcolare le curvature principali, la curvatura media e la curvatura Gaussiana della sfera

ESERCIZI SULLE SUPERFICI. 1) Calcolare le curvature principali, la curvatura media e la curvatura Gaussiana della sfera ESERCIZI SULLE SUPERFICI Calcolare le curvature principali, la curvatura media e la curvatura Gauiana della fera α u; v = r in u co v ; r in u in v ; r co u Dato il paraboloide ellittico α u; v = u; v;

Dettagli

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008 MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 1) 28 Novembre 2008 SOLUZIONI 1. (4 punti) L indice di maa corporea (IMC) è ottenuto dal rapporto tra maa, eprea in Kg, e l altezza, eprea in m, al quadrato.

Dettagli

Lezione 2 - Algebra. x + 1 x 2 a b + b a 2. Problema 2 Siano a, b, c R, provare che

Lezione 2 - Algebra. x + 1 x 2 a b + b a 2. Problema 2 Siano a, b, c R, provare che Lezione - Algebra Problema 1 Siano a, b R +, dimotrare che a b + b a Soluzione: Poniamo x = a, oerviamo che b (x 1) 0 x x + 1 0 x + 1 x dato che x > 0, poiamo dividere ambo i membri per x, otteniamo: Problema

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Bittanti, BIO A-K) Settembre Si conideri il eguente itema dinamico a tempo continuo decritto mediante chema a blocchi: ut () _ yt () 9 a Si calcoli la funione

Dettagli

Trasformazione di Laplace

Trasformazione di Laplace Traformazione di Laplace Gabriele Sicuro. Definizioni fondamentali Sia data una funzione f : C; ea i dice originale e ono oddifatte le eguenti condizioni: () f (t) per t

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle otruzioni La fleione compota Verifica di ezioni oggette a fleione compota Fleione compota 1 tadio (Formule di Scienza delle otruzioni) on riferimento alla ezione omogeneizzata vale

Dettagli

Daniela Tondini

Daniela Tondini Daniela Tondini dtondini@unite.it Facoltà di Medicina veterinaria CdS in Tutela e beneere animale Univerità degli Studi di Teramo 1 Gli indici tatitici i uddividono in: indici tatitici di poizione indici

Dettagli

Variabili Gaussiane. Verifiche sforzo resistenza

Variabili Gaussiane. Verifiche sforzo resistenza Variabili Gauiane e le ditribuzioni di orzo () e di reitenza () ono gauiane o normali, allora i può calcolare acilmente il valore della probabilità di rottura P dell oggetto in eame (o la ua aidabilità).

Dettagli

Lezione 19 ALCUNI PROBLEMI RELATIVI A CONDOTTE A SEZIONE CIRCOLARE

Lezione 19 ALCUNI PROBLEMI RELATIVI A CONDOTTE A SEZIONE CIRCOLARE Appunti dei cori di Idraulica e Idrodinamica ezione 9 ACNI PROBEMI REATIVI A CONOTTE A SEZIONE CIRCOARE Come accennato nella EZIONE 8, e conideriamo il moto tazionario di un fluido incomprimibile all interno

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 3) 28 Novembre 2008

MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 3) 28 Novembre 2008 MATEMATICA E STATISTICA CORSO A I COMPITINO (Tema 3) 28 Novembre 2008 Soluzioni 1.(4 punti) L indice di maa corporea (IMC) è ottenuto dal rapporto tra maa, eprea in Kg, e l altezza al quadrato, eprea in

Dettagli

Sistemi a segnali campionati

Sistemi a segnali campionati Capitolo. INRODUZIONE 6. Sitemi a egnali campionati Si conideri il eguente itema lineare tempo continuo: G() : ẋ(t) Ax(t)+Bu(t) y(t) Cx(t) U() G() Y() Se i inerice un ricotruttore di ordine zero H () e

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c ; P 1 1( ( + 4 ; P ( ( + ( + 3 ;

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Eame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 5/6 Secondo Appello. 6 febbraio 5. Cognome: Nome N matr. o cod. perona: Domande di teoria ripondere a tre domande

Dettagli

Esperienza n 6: Pendolo di Kater

Esperienza n 6: Pendolo di Kater Eperienza n 6: Pendolo di Kater Sperimentatori: Marco Erculiani (N maricola 4549 v.o.) Ivan Noro (N matricola 458656 v.o.) Materiale a dipoizione: I materiali utilizzati per queta eperienza ono: Un pendolo

Dettagli

LAVORO ED ENERGIA. 1J = 1N 1m

LAVORO ED ENERGIA. 1J = 1N 1m ppunti di fiica LVORO ED ENERGI LVORO Nel linguaggio cientifico il termine lavoro ha un ignificato ben precio e talvolta divero da quello che queto termine aume nel linguaggio quotidiano. In fiica il concetto

Dettagli

A) elemento della barra tra B) elemento della barra con

A) elemento della barra tra B) elemento della barra con Esercizio Una barra prismatica, la cui sezione retta ha area A 0 =00 mm 2, è soggetta a una forza di trazione pari a F=20.000 N. Qual è la forza agente su una superficie tagliata obliquamente, la cui normale

Dettagli

Grandezze fisiche, vettori:

Grandezze fisiche, vettori: Grandezze fiice, vettori: Generalità: oluzioni Problema di: Generalità - I0001 Sceda 3 Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Eeguire le converioni di unità di

Dettagli

Compito di Fondamenti di Automatica settembre 2006

Compito di Fondamenti di Automatica settembre 2006 Compito di Fondamenti di Automatica ettembre 2006 Eercizio 1. Si conideri lo chema di figura (operazionale ideale, eccetto per il guadagno che puó eere definito da una G(), reitenze uguali, condenatori

Dettagli

Diagramma circolare di un motore asincrono trifase

Diagramma circolare di un motore asincrono trifase Diagramma circolare di un motore aincrono trifae l diagramma circolare è un diagramma che permette di leggere tutte le grandezze del motore aincrono trifae (potenza rea, perdite nel ferro, coppia motrice,

Dettagli

Divisori e combinatori

Divisori e combinatori Diviori e combinatori Luca Vincetti a.a. - Diviori e combinatori La combinazione lineare di egnali differenti o, all invero, la uddiviione di un unico egnale in componenti divere fa parte della normale

Dettagli

Un sistema reazionato può essere schematizzato come combinazione di due blocchi lineari e di un circuito sommatore, così come mostrato in Fig.

Un sistema reazionato può essere schematizzato come combinazione di due blocchi lineari e di un circuito sommatore, così come mostrato in Fig. STILITÀ DEI CIRCUITI REIONTI Introduzione Un itema reazionato può eere chematizzato come combinazione di due blocchi lineari e di un circuito ommatore, coì come motrato in Fig.: E U Σ Fig.: chema a blocchi

Dettagli

Esercizi di Segnali e Sistemi. GLI ESERCIZI 1,2,3,4,11 COSTITUISCONO UN TEMA D ESAME TIPICO

Esercizi di Segnali e Sistemi. GLI ESERCIZI 1,2,3,4,11 COSTITUISCONO UN TEMA D ESAME TIPICO Eercizi di Segnali e Sitemi. GLI ESERCIZI,2,3,4, COSTITUISCONO UN TEMA D ESAME TIPICO Eempio Conideriamo la funzione di traferimento G() = + Si calcoli la forma di Smith Mc-Millan. Soluzione: G() = N(),

Dettagli

Lezione 18. Stabilità di sistemi retroazionati. F. Previdi - Fondamenti di Automatica - Lez. 18 1

Lezione 18. Stabilità di sistemi retroazionati. F. Previdi - Fondamenti di Automatica - Lez. 18 1 Lezione 18. Stabilità di itemi retroazionati F. Previdi - Fondamenti di Automatica - Lez. 18 1 Schema 1. Stabilità di itemi retroazionati 2. Diagramma di Nyquit 3. Criterio di Nyquit 4. Etenioni del Criterio

Dettagli

Segnali a tempo continuo

Segnali a tempo continuo Capitolo IV CARAERIZZAZIOE EERGEICA DEI SEGALI IV. - Denità pettrale di potenza. Segnali a tempo continuo Analogamente al cao dei egnali determinati, è utile individuare una caratterizzazione energetica

Dettagli

1. Teorema di reciprocità

1. Teorema di reciprocità 1. Teorema di reciprocità Conideriamo un mezzo in cui ono preenti le orgenti (J 1, M 1 ) che producono un campo (E 1, H 1 ) e le orgenti (J 2, M 2 ) che producono un campo (E 2, H 2 ). Determineremo una

Dettagli

Con riferimento ad uno schema di trave semplicemente appoggiata di lunghezza L = 6 m il momento flettente massimo in mezzeria è pari a:

Con riferimento ad uno schema di trave semplicemente appoggiata di lunghezza L = 6 m il momento flettente massimo in mezzeria è pari a: Eempio Verifica dell apertura delle feure Si conidera la ezione rettangolare caratterizzata dalle eguenti proprietà: - bae b = 00 mm, - altezza totale h = 00 mm, - copriferro c =0 mm, - altezza utile d

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Una combinazione lineare W = a X + a Y + a 3 Z +., di variabili aleatorie indipendenti X,Y,Z, ciacuna avente una legge di ditribuzione qualiai ma con valori attei comparabili

Dettagli

Soluzione del compito di fisica 2 del 29 giugno 2015

Soluzione del compito di fisica 2 del 29 giugno 2015 del compito di fiica del 9 giugno 05 Elettrodinamica Una pira è compota da due emicirconferenze AC e AD di raggio R, giacenti u piani verticali. i celga DAC come vero poitivo di orientazione della pira.

Dettagli

Modello monodimensionale per le correnti in moto turbolento vario. Fig. 1

Modello monodimensionale per le correnti in moto turbolento vario. Fig. 1 Modello monodimenionale per le correnti in moto turbolento vario 1. Decompoizione dei campi di moto turbolento vario Prima di affrontare la definizione del modello per le correnti in moto turbolento vario,

Dettagli

Geotecnica e Laboratorio. Tensioni totali, neutrali e efficaci

Geotecnica e Laboratorio. Tensioni totali, neutrali e efficaci Coro di Laurea a ciclo Unico in Ingegneria Edile-Architettura Geotecnica e Laboratorio Tenioni totali, neutrali e efficaci Prof. Ing. Marco Favaretti e-mail: marco.favaretti@unipd.it ebite:.marcofavaretti.net

Dettagli

Progetto di reti correttrici e controllori PID e traduzione nel discreto con il metodo di emulazione

Progetto di reti correttrici e controllori PID e traduzione nel discreto con il metodo di emulazione Progetto di reti correttrici e controllori PID e traduione nel dicreto con il metodo di emulaione Eerciio. Si conideri lo chema di controllo rappreentato in figura dove P () = con a = 40. a + r(t) + S

Dettagli

1 = (parabola unitaria) si determini l errore di regolazione a regime:

1 = (parabola unitaria) si determini l errore di regolazione a regime: A - Tet d ingreo alla Prova Scritta di Controlli Automatici A del Ottobre 00 ( + ) ( ) + ) Dato un itema dinamico Σ con funzione di traferimento T() crivere i modi di Σ : ( + ) + 9 t { modi di Σ } {, tt,,

Dettagli

Meccanica Applicata alle Macchine Appello del 12/01/2012

Meccanica Applicata alle Macchine Appello del 12/01/2012 Meccanica Applicata alle Macchine Appello del 12/01/2012 1. Eeguire l analii tatica del meccanimo in figura 2 (cala 1:1). Si calcoli l azione reitente ul membro 5 quando F m =1N. 2. In figura 1 è rappreentato

Dettagli

LEZIONI N 35 E 36 ANALISI ALLO STATO LIMITE ULTIMO DELLA SEZIONE INFLESSA

LEZIONI N 35 E 36 ANALISI ALLO STATO LIMITE ULTIMO DELLA SEZIONE INFLESSA LEZIONI N 35 E 36 ANALISI ALLO STATO LIMITE ULTIMO DELLA SEZIONE INFLESSA Nel cao delle ezioni inflee di cemento armato, la verifica di icurezza allo tato limite ultimo di reitenza conite nel controllare

Dettagli

ESPERIMENTO 2: ATTRITO

ESPERIMENTO 2: ATTRITO ESPERIMETO 2: ATTRITO Scopo dell eperimento: tudiare l attrito tatico, dinamico e volvente. MATERIALE A DISPOSIZIOE: 1 coppia di blocchetti 1 dinamometro di preciione da 5 1 dinamometro di preciione da

Dettagli

Definizioni e relazioni fondamentali

Definizioni e relazioni fondamentali Capitolo 1 Definizioni e relazioni fondamentali 1.1 Definizioni di E e B Il campo elettrico E (m 1 ) e l induzione magnetica B (T) ono definiti in riferimento alla forza che agice u una carica in movimento

Dettagli

Soluzione - calcolo di {t} 1 e {t} 2 : {t} 1 =[σ]{n} 1 = {t} 2 =[σ]{n} 2 =

Soluzione - calcolo di {t} 1 e {t} 2 : {t} 1 =[σ]{n} 1 = {t} 2 =[σ]{n} 2 = Unità : Stato di tensione e di deformazione Esercizio Dato un tensore della tensione [σ], date inoltre due dimensioni {n} e {n} - trovare le componenti dei vettori della tensione {t} e {t} agenti sulle

Dettagli

Modellistica e controllo PID di un pendolo inverso

Modellistica e controllo PID di un pendolo inverso Modellitica e controllo PID di un pendolo invero Note per le lezioni del coro di Controlli Automatici - A.A. 2009/0 Prof.a Maria Elena Valcher Modellitica Un ata di maa m è incernierata ad un carrello

Dettagli

ẋ 2 = x 1 10x u y = x 1 + x 2 [

ẋ 2 = x 1 10x u y = x 1 + x 2 [ Soluzione dell appello del 16 luglio 212 1. Si conideri il itema lineare decritto dalle eguenti equazioni: 1.1 Trovare le condizioni iniziali x() = ẋ 1 = x 1 ẋ 2 = x 1 1x 2 1u = x 1 x 2 [ x1, x 2, aociato

Dettagli

Regolazione e Controllo dei Sistemi Meccanici Figura 1: Schema di un montacarichi.

Regolazione e Controllo dei Sistemi Meccanici Figura 1: Schema di un montacarichi. Regolazione e Controllo dei Sitemi Meccanici 7-7-28 Figura : Schema di un montacarichi. Il itema in figura, cotituito da un motore elettrico azionante un verricello dove è avvolto un cavo di materiale

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 14 Gennaio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 14 Gennaio 2010 CORSO DI LURE IN SCIENZE BIOLOGICHE Prova critta di FISIC 4 Gennaio 00 ) Un bambino lancia una palla di maa m = 00 gr verticalmente vero l alto con velocità v 0 = m/, a partire da una roccia alta h 0 =

Dettagli

Fondamenti di Automatica Figura 1: Schema di centrifuga industriale: a) vista in assonometria b) vista frontale.

Fondamenti di Automatica Figura 1: Schema di centrifuga industriale: a) vista in assonometria b) vista frontale. Fondamenti di Automatica 6-9-26 Figura : Schema di centrifuga indutriale: a) vita in aonometria b) vita frontale. A In Fig..a è riportato lo chema emplificato di una centrifuga orizzontale indutriale di

Dettagli

K c s h. P(s) 1/K d. U(s) + Y(s)

K c s h. P(s) 1/K d. U(s) + Y(s) Eame di Fondamenti di Automatica Coro di Laurea Vecchio Ordinamento in Ingegneria Elettronica febbraio 3 Compito A Cognome: Nome Matricola: Email:. Ricavare la funzione di traferimento tra u ed y nel eguente

Dettagli

Ipotesi di piccoli spostamenti

Ipotesi di piccoli spostamenti POLTECNCO D MLANO - CORSO D STUD N NGEGNERA DE MATERAL A.A. 007-08 potei di piccoli potamenti Permette di confondere la traiettoria con lo potamento, ovvero aimilare la cinematica finita a quella di un

Dettagli

Esercitazione di Controlli Automatici 1 n 2. a.a. 2006/07

Esercitazione di Controlli Automatici 1 n 2. a.a. 2006/07 6 marzo 007 Eercitazione di Controlli Automatici n a.a. 006/07 Riferendoi al itema di controllo della temperatura in un locale di piccole dimenioni dicuo nella eercitazione precedente, e di eguito riportato:.

Dettagli

K EC = ck 200. V sdu V cd + V wd. (stati limite italiani) essendo: V cd = 0.60 f ctd b w d δ d s.

K EC = ck 200. V sdu V cd + V wd. (stati limite italiani) essendo: V cd = 0.60 f ctd b w d δ d s. BSRC RO D WWW.DRIOFLCCOVIO.I UI I DIRII RISERVI raggiungere il collao per deformazione ecceiva, riconoce quindi alle barre la capacità di aorbire ancora una tenione reidua. In realtà il modello Europeo

Dettagli

LEZIONE N 1. Richiami sui metodi di misura della sicurezza Metodo delle tensioni ammissibili Metodo semiprobabilistico agli stati limite

LEZIONE N 1. Richiami sui metodi di misura della sicurezza Metodo delle tensioni ammissibili Metodo semiprobabilistico agli stati limite LEZIONE N 1 Richiami ui metodi di miura della icurezza Metodo delle tenioni ammiibili Metodo emiprobabilitico agli tati limite Stato limite ultimo di ezioni in c.a. oggette a preofleione SLU per ezioni

Dettagli

RILIEVO TENSIONAMENTO TIRANTI IN ACCIAIO TRAVI DI COPERTURA. xxxxxxxxxxx

RILIEVO TENSIONAMENTO TIRANTI IN ACCIAIO TRAVI DI COPERTURA. xxxxxxxxxxx RILIEVO TENSIONAMENTO TIRANTI IN ACCIAIO TRAVI DI COPERTURA xxxxxxxxxxxx PROVA N. 3296/BZ 17 giugno 25 Committente: Collaudatore: Relatore: xxxxxxxxxxx dott. ing. xxxxxxxxx dott. ing. xxxxxxxxx Tiranti

Dettagli

CONDIZIONI DI RACCORDO DEI CAMPI ELETTROMAGNETICI ˆ = SULL INTERFACCIA TRA DUE MEZZI OMOGENEI

CONDIZIONI DI RACCORDO DEI CAMPI ELETTROMAGNETICI ˆ = SULL INTERFACCIA TRA DUE MEZZI OMOGENEI CONDIZIONI DI RACCORDO DEI CAMPI ELETTROMAGNETICI SULL INTERFACCIA TRA DUE MEZZI OMOGENEI Conideriamo le equazioni di Maxwell in una regione di pazio riempita da un mezzo omogeneo e iotropo caratterizzato

Dettagli

Lezione 11. Progetto del controllore

Lezione 11. Progetto del controllore Lezione Progetto del controllore Specifiche di progetto Conideriamo nuovamente un itema di controllo in retroazione: d y + + + y () G() + + n Fig : Sitema di controllo Supporremo aegnata la funzione di

Dettagli

1 La trasformata di Laplace

1 La trasformata di Laplace La traformata di Laplace Sia I un intervallo contenente il emiae reale poitivo: R + = [, + ) I e ia f : I C una funzione a valori reali o complei. Denizione.. La funzione f è L-traformabile (o traformabile

Dettagli

SIST DI CONTROLLO IN RETROAZ. NEGATIVA Proprietà generali dei sistemi in retroazione

SIST DI CONTROLLO IN RETROAZ. NEGATIVA Proprietà generali dei sistemi in retroazione SIST DI CONTROLLO IN RETROAZ. NEGATIVA Proprietà generali dei itemi in retroazione R E C G + - Y H G rappreenta il regolatore, l'amplificatore di potenza, l'attuatore ed il itema controllato e prende il

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

Esame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento) 16 Giugno 2008 (Bozza di soluzione)

Esame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento) 16 Giugno 2008 (Bozza di soluzione) Eame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento 6 Giugno 28 (Bozza di oluzione NB. Si coniglia vivamente di ripaare anche argomenti non trettamente inerenti la materia oggetto della prova

Dettagli

Azienda Energetica Valtellina Valchiavenna S.p.A. Servizio - Elettrico. Guida per la connessione degli impianti di produzione alla rete AEVV

Azienda Energetica Valtellina Valchiavenna S.p.A. Servizio - Elettrico. Guida per la connessione degli impianti di produzione alla rete AEVV alla rete EVV Pag. 1 di 5 LLEGTO B.2 DICHIRZIONE DI CONFORMIT DELL IMPINTO DI PRODUZIONE E SISTEM DI PROTEZIONE DI INTERFCCI I SENSI DELL NORMTIV VIGENTE La eguente dichiarazione deve eere compilata e

Dettagli

1. (solo nuovo ordinamento e diploma) Dato il sistema di controllo raffigurato, con

1. (solo nuovo ordinamento e diploma) Dato il sistema di controllo raffigurato, con Eame di Fondamenti di Automatica Coro di Laurea Nuovo e Vecchio Ord. in Ingegneria Elettronica Simulazione 9 Novembre 7 Cognome: Nome Matricola: E-mail: 1. (olo nuovo ordinamento e diploma) Dato il itema

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1 ANALISI MATEMATICA II Sapiena Univerità di Roma - Laurea in Ingegneria Informatica Eame del 7 gennaio 07 - Soluioni compito E Calcolare il eguente integrale di funione di variabile reale con i metodi della

Dettagli

Lezione 8 - Il teorema di Cauchy-Poisson

Lezione 8 - Il teorema di Cauchy-Poisson Lezione 8 - Il teorema di Cauchy-Poisson [Ultimarevisione: revisione:11 11dicembre dicembre2008] Come detto al termine della lezione precedente, occorre ora dare un criterio operativo per poter calcolare

Dettagli

DINAMICHE COMPLESSE NEL FERRO DI CAVALLO

DINAMICHE COMPLESSE NEL FERRO DI CAVALLO DINAMICHE COMPLEE NEL FERRO DI CAVALLO La mappa a erro di cavallo L inieme invariante Dinamica imbolica Dinamiche nell inieme invariante Ferro di cavallo e cao C. Piccardi e F. Dercole Politecnico di Milano

Dettagli

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 13 del 10/04/2018 PROGETTO E VERIFICA DI UN TRAVETTO

CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 13 del 10/04/2018 PROGETTO E VERIFICA DI UN TRAVETTO CORSO DI TECNICA DELLE COSTRUZIONI ESERCITAZIONE n 13 del 10/04/018 PROGETTO E VERIFICA DI UN TRAVETTO 1) MATERIALI IMPIEGATI (par 11,113 e 411 del DM 14/01/008) Calcetruzzo: Clae 5/30 cd ctd bd Acciaio

Dettagli

24. La sfera e la circonferenza nello spazio.

24. La sfera e la circonferenza nello spazio. 4. La fera e la circonferenza nello pazio. 1 4.1. Definizione. Diremo fera l inieme di tutti e oli i (il luogo dei) punti dello pazio che hanno la tea ditanza > (detta raggio della fera) da un fiato punto

Dettagli

GLI STATI LIMITE PER SOLLECITAZIONI NORMALI

GLI STATI LIMITE PER SOLLECITAZIONI NORMALI Coro ulle Norme Tecniche per le cotruzioni in zona imica (Oinanza PCM 3274/2003, DGR ailicata 2000/2003) POTENZA, 2004 GLI STATI LIMITE PER SOLLECITAZIONI NORMALI Prof. Ing. Angelo MASI DiSGG, Univerità

Dettagli

La libera circolazione delle persone e il mercato dell alloggio. Riassunto

La libera circolazione delle persone e il mercato dell alloggio. Riassunto La libera circolazione delle perone e il mercato dell alloggio Riaunto Luglio 2009 tudio u incarico dell Ufficio federale delle abitazioni Autori: ilvio Graf Armin Jan Daniel ager Contatto: ilvio.graf@zhaw.ch

Dettagli

M D Ad un certo istante ( t 0 ) la corda viene tagliata, determinare: b. il momento d inerzia del sistema ;

M D Ad un certo istante ( t 0 ) la corda viene tagliata, determinare: b. il momento d inerzia del sistema ; Compito A 1. Un corpo di maa m 1 =3 kg è in moto lungo l ae x con una velocità u 1 = m/; ad un certo itante è urtato elaticamente da un altro corpo di maa m che procede ullo teo ae e nello teo vero con

Dettagli

Controlli Automatici LB Scenari di Controllo

Controlli Automatici LB Scenari di Controllo Prof. Carlo Roi DEIS-Univerità di Bologna Tel. 51 2932 Email: croi@dei.unibo.it UR: www-lar.dei.unibo.it/~croi 1. come vincoli ulla funzione d'anello 2. Scenari di controllo 3. inee guida per il progetto

Dettagli