Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni"

Transcript

1 Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione della variabilità della produzione Nel controllo della qualità si distinguono tre aspetti 1. aspetti tecnologici 2. aspetti economico-manageriali 3. aspetti statistici 1

2 Programma Controllo in corso di produzione Carte di controllo per variabili Carte di controllo per la variabilità Carte di controllo per la media Carte CUSUM e EWMA Carte di controllo per attributi 2

3 I metodi del controllo statistico della qualità, o meglio dello Statistical Process Control (SPC) si dividono in due grandi gruppi: Metodi per il controllo in corso di produzione (on-line) Metodi per il controllo fuori produzione (off-line) I metodi statistici per il controllo off-line riguardano sostanzialmente il disegno dell esperimento e la teoria del campionamento. Il controllo offline, che almeno idealmente dovrebbe essere progettato e applicato in tutto il cammino di produzione di un prodotto, si pone come scopo quello di ridurre o rimuovere le potenziali cause che generano variabilità. Coinvolge di solito un gruppo di diversi esperti (progettista, addetto al management, ecc.) in vari settori e può portare ad un notevole miglioramento della qualità del prodotto (Taguchi, 1985, 1986) 3

4 Controllo in corso di produzione Lo SPC utilizza le carte di controllo come strumento principale per individuare scostamenti significativi dai valori standard ritenuti accettabili Le variazioni possono essere di natura accidentale oppure sistematica. Le prime una volta note sono ineliminabili le seconde, con i metodi dello SPC, vanno individuate, distinte dalle prime e attribuite ad una delle possibili cause differenza tra le macchine differenza tra gli addetti differenze tra i materiali differenze in ciascuno di questi fattori nel tempo 4

5 Carte Shewhart Sia X la caratteristica o variabile sottoposta a controllo. Sia X N(µ, σ) Le carte di controllo servono a verificare se i campioni estratti durante la fase di lavorazione provengono da un processo che presenta media e varianza costanti rispetto alla caratteristica osservata. Da un processo produttivo che fornisce un prodotto la cui caratteristica X è osservata si estraggono m campioni di ampiezza n x 11,x 12, x 21,x 22,. x i1,x i2,...., x 1j,..., x 1n..., x 2j,..., x 2n...., x ij,..., x in. x m1,x m2,..., x mj..., x mn 5

6 Poiché sappiamo che X N ( µ, ) σ n fissato un valore α piccolo è possibile determinare un valore z 1 α 2 P ( ) σ σ µ z 1 α n X µ + z 2 1 α n = 1 α 2 tale che Gli estremi µ z 1 α 2 σ n ; µ + z 1 α 2 σ n si assumono come limiti di controllo di una carta per la media e α rappresenta la probabilità che il campione osservato cada fuori questi limiti quando l ipotesi che la media sia uguale a µ è vera. (FALSO ALLARME) Dobbiamo determinare z 1 α 2 inoltre µ e σ non sono noti 6

7 Limiti di k sigma Il valore di z 1 α si può fissare pari a 3 (carte 3 sigma) e in questo caso 2 α = P ( Z < 3) = P (Z < 3) + P (Z > 3) = 2(1 P (z < 3)) = Quindi il 99, 73% delle medie dei campioni estratti da quel processo produttivo è contenuto nell intervallo µ 3 σ ; µ + 3 σ n n Limiti di probabilità Si fissa il valore di α, ad esempio α = e si ottiene z 1 α = Quindi il 98% delle medie dei campioni estratti da quel processo produttivo è contenuto nell intervallo µ σ ; µ σ n n I limiti di probabilità sono in genere da preferire soprattutto nelle le carte per la dispersione. I limiti di Shewhart sono di più facile lettura. Poiché nella pratica µ e σ non sono note occorre stimarle sulla base delle osservazioni effettuate. Per ciascun gruppo si calcola la media campionaria x i e un indice di dispersione ˆσ i. 7

8 Come stima di µ si utilizza x = x x m m = 1 m m i=1 x i = 1 mn m n x ij i=1 j=1 La distribuzione delle medie campionarie dipende dallo s.q.m σ e quindi occorre stimare anch esso. Poiché la distribuzione dei più noti stimatori di σ non dipende dalla media di X ma solo dalla numerosità campionaria, la costruzione di una carta di controllo per una media deve essere preceduta da una carta di controllo per per la dispersione. In pratica le due carte vanno costruite e utilizzate simultaneamente, perché solo quando la varianza è sotto controllo ha senso andare a effettuare controlli della media. 8

9 Carte di controllo per la deviazione standard - carta R Nel caso in cui l ampiezza di ogni singolo campione sia piccola (in genere n 10) come indice per misurare la dispersione si utilizza l escursione campionaria o range. R = x (n) x (1) dove x (1), x (2),..., x (n) sono i valori osservati ordinati in maniera non decrescente. Si può dimostrare che + P (R < y) = n (F (x + y)f (x))n 1 f(x)dx dove F (x) e f(x) sono rispettivamente la funzione di ripartizione e la densità di X. L escursione o range relativo è definito come W = R σ e E(W ) = d 2, s.q.m(w ) = σ W = d 3, I valori d 2 e d 3 dipendono solo da n e sono tabulati. Poiché E ( R d2 ) = σ, R d2 è stimatore non distorto per σ. Inoltre σ R = d 3 σ. 9

10 La carta di controllo teorica a 3 sigma per R ha i limiti teorici E(R) ± 3σ R. Sostituendo i valori empirici otteniamo i limiti empirici di controllo superiore (UCL) e inferiore (LCL). Siano R 1, R 2,..., R m i range calcolati sugli m campioni di ampiezza n. Come stima di E(R) usiamo la media campionaria delle escursioni m come stima di σ R usiamo R = 1 m R i i=1 ˆσ R = d 3 d 2 R = d 3ˆσ, dove ˆσ = R d 2 I limiti di controllo a 3 sigma per la carta R risultano quindi UCL = R + 3 d 3 d 2 R = D 4 R CL = R LCL = R 3 d 3 d 2 R = D 3 R 10

11 Limiti di probabilità per la carta R Dalla tavola della distribuzione dei quantili della distribuzione di W possiamo ricavare i limiti di probabilità per la carta di controllo R. Posto α = abbiamo P ( wα 2 < R σ < w 1 α 2 ) = 1 α Da cui sostituendo a σ la sua stima non distorta R d2 otteniamo P (F 3 R < R < F 4 R) = 1 α, dove F 3 = wα 2 e F 4 = w 1 α 2, d 2 d 2 I limiti di probabilità (α = 0.002) per la carta R risultano quindi UCL = F 4 R CL = R LCL = F 3 R 11

12 Esempio Il diametro interno degli anelli dei pistoni di una automobile è misurato su m=25 campioni ciascuno di ampiezza n = 5 quando il processo è ritenuto sotto controllo. Alcune osservazioni sono riportate nella seguente tabella Vediamo i passi per la costruzione della carta R. 12

13 Calcoliamo i range per i 25 gruppi. Min Max Range La media dei range calcolati è la linea centrale della carta: R = i=1 R i =

14 Calcoliamo la stima non distorta di σ: ˆσ = R d 2 = I valori della costante d 2 sono tabulati in apposite tavole, come i valori della costante d 3, al variare di n. Nel nostro caso dobbiamo considerare d 2 (5) = e d 3 (5) = Il limite superiore di controllo è quindi UCL = R + 3 d 3 d 2 R = Mentre il limite di controllo inferiore risulta 0 in quanto R 3 d 3 d 2 R = Sulla carta di controllo vengono riportati: la linea centrale, i limiti di controllo superiore e inferiore e quindi tutti i valori dei 25 range calcolati sui 25 gruppi. Se non si osservano punti fuori dai limiti si può concludere che il processo è sotto controllo. 14

15 Carta di controllo R R Chart for diam.c Group summary statistics UCL LCL Group Number of groups = 25 Center = StdDev = LCL UCL = = Number beyond limits = 0 Number violating runs = 1 15

16 Carte di controllo per la deviazione standard - carta S Quando la dimensione dei campioni e superiore a 10 o quando la dimensione dei campioni è variabile è preferibile utilizzare la carta S. Lo stimatore corretto per la varianza della popolazione è Inoltre se X N(µ, σ 2 ) allora S 2 = 1 n 1 n j=1 (X i X) 2 nj=1 (X i X) 2 (n 1)S2 σ 2 = σ 2 Volendo stimare σ con S si può dimostrare che E(S) = ( 2 n 1 χ 2 n 1 ) 1/2 Γ(n/2) Γ((n 1)/2) σ = c 4σ e σ S = σ 1 c

17 Siano S 1, S 2,..., S m gli scarti quadratici medi calcolati sugli m campioni di ampiezza n. Come stima di E(S) usiamo la media campionaria delle escursioni come stima di σ R usiamo S = 1 m m S i i=1 ˆσ S = S 1 c 2 4 c 4 I limiti di controllo a 3 sigma per la carta S risultano quindi UCL = S + 3 S c 4 1 c 2 4 = B 4 S CL = S LCL = S 3 S 1 c 2 4 c = B 3 S 4 17

18 L efficienza di R rispetto a S L utilizzo di R rispetto a S è preferibile per piccoli campioni solo per ragioni di semplicità computazionale. La carta S è comunque preferibile alla carta R in quanto il range risente in maniera determinante dei valori eccezionali. Per valutare quanto si perde in precisione utilizzando R invece di S consideriamo l efficienza relativa data dal rapporto delle varianze degli stimatori corretti R/d 2 e S/c 4 e = VAR(S/c 4) VAR(R/d 2 ) = (1 + c2 4 ) La seguente tabella mostra il valore di e per diversi valori di n c 2 4 d 2 2 d 2 3 n e

19 Carte di controllo per la media Una volta verificato che la varianza sia sotto controllo possiamo costruire la carta di controllo per i valori medi. Usando come stima di µ la media x = m 1 mi=1 x i, i limiti per la carta di controllo della media risultano, rispettivamente se usiamo come stima di σ R UCL = x + 3 R = x + A 2 R d 2 n ovvero S CL = x LCL = x 3 R = x A 2 R d 2 n UCL = x + 3 S = x + A 3 S c 4 n CL = x LCL = x 3 S = x A 3 S c 4 n 19

20 Carta di controllo S S Chart for diameter[1:25, ] UCL Group summary statistics LCL Group Number of groups = 25 Center = StdDev = LCL UCL = = Number beyond limits = 0 Number violating runs = 0 20

21 Carta di controllo x xbar Chart for diameter[1:25, ] UCL Group summary statistics LCL Group Number of groups = 25 Center = LCL = StdDev = UCL = Number beyond limits = 0 Number violating runs = 0 21

22 Interpretazione delle carte di controllo In genere l impianto di una carta di controllo prevede una prima fase in cui vengono raccolti i dati in un periodo in cui si ritiene che il processo sia sotto controllo per stabilire i limiti di controllo (UCL e LCL). Calcolati i limiti di controllo occorre verificare che tutti i campioni generino punti all interno dei limiti. Si possono verificare due casi almeno un punto è esterno ai limiti di controllo tutti i punti sono interni ai limiti di controllo Nel secondo caso non si può concludere che il processo sia sotto controllo. Occorre verificare che l andamento dei punti non presenti situazioni di non casualità nel posizionarsi attorno alla linea centrale, quali: 22

23 si osserva una successione troppo lunga di punti sopra o sotto la linea centrale (esistenza di più livelli produttivi) vi sono ciclicità (inadeguatezza del modello casuale ipotizzato) le stime campionarie mostrano un trend che mette in evidenza la tendenza del parametro osservato a crescere o diminuire (progressivo sregolamento del processo in atto) 23

24 Nel caso in cui almeno un punto cada fuori le linee di controllo occorre capire il perché. Ricordiamo che le carte sono costruite con la possibilità di dare un falso allarme con una probabilità pari ad α per ogni singolo campione osservato. La probabilità che r campioni risultino fuori controllo su m è p r,m = ( m) α r (1 α) m r r Mentre la probabilità di avere almeno un punto anomalo è p m = m i=1 p i,m = 1 (1 α) m Questa probabilità cresce al crescere di m e diventa non trascurabile per m grande (m > 20). Tuttavia tale probabilità è quasi totalmente assorbita dalla probabilità di osservare uno e un solo punto fuori controllo. 24

25 Il grafico mostra la situazione per α = In rosso p 1,m, in nero p m p m 25

26 Regole Empiriche di Comportamento Se una carta per la media (o per lo scarto quadratico medio) presenta 2 o più punti fuori controllo si può affermare che i campioni estratti non sono omogenei rispetto ai parametri considerati (media e s.q.m.) e quindi concludere che il processo è fuori controllo. Nel caso in cui ci sia un solo punto fuori controllo non si può trascurare la possibilità che questo sia un falso allarme. Se lo stesso punto si presenta in situazione di fuori controllo in entrambe le carte è alquanto improbabile che si tratti di un evento casuale. Occorre indagare i motivi che hanno generato questa situazione. Si cerca di capire come si sono raccolti i dati che hanno generato le osservazioni anomale. 26

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

Carte di controllo per attributi

Carte di controllo per attributi Carte di controllo per attributi Il controllo per variabili non sempre è effettuabile misurazioni troppo difficili o costose troppe variabili che definiscono qualità di un prodotto le caratteristiche dei

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

PRODUZIONE DI LENTI A CONTATTO

PRODUZIONE DI LENTI A CONTATTO 1 PRODUZIONE DI LENTI A CONTATTO Per monitorare il processo di produzione di un determinato tipo di lenti a contatto viene misurato, ad intervalli di tempo regolari di h 15 minuti, il diametro X (in mm)

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

LE CARTE DI CONTROLLO (4)

LE CARTE DI CONTROLLO (4) LE CARTE DI CONTROLLO (4) Tipo di carta di controllo Frazione difettosa Carta p Numero di difettosi Carta np Dimensione campione Variabile, solitamente >= 50 costante, solitamente >= 50 Linea centrale

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI

ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI (sintesi da Prof.ssa Di Nardo, Università della Basilicata, http://www.unibas.it/utenti/dinardo/home.html) ISTOGRAMMA/DIAGRAMMA

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli

Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli Programma dell insegnamento di Metodi Statistici di Controllo della Qualità Prof. Paolo Cozzucoli Corso di Laurea in Metodi Quantitativi per l Economia e la Gestione delle Aziende A.A. 2007-08 Disciplina

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Appunti del corso. Qualità

Appunti del corso. Qualità Appunti del corso Qualità ii INDICE CAPITOLO 1. Termini per la qualità 1.1 Aspetti generali 1.2 Variabilità CAPITOLO 2. Richiami di probabilità 2.1 La distribuzione binomiale 2.2 La distribuzione di Poisson

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0 Statistica per l azienda Esame del 19.06.12 COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

Funzione Operativa Caratteristica per la media

Funzione Operativa Caratteristica per la media Funzione Operativa Caratteristica per la media Se X N(µ 0, σ 0 ) allora il processo all istante t è considerato sotto controllo se calcolata x t risulta µ 0 z 1 α/2 σ 0 n < x t < µ 0 + z 1 α/2 σ 0 n Denotiamo

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Teoria e metodi del controllo statistico di un processo produttivo. Strumenti base Basi statistiche Problemi pratici

Teoria e metodi del controllo statistico di un processo produttivo. Strumenti base Basi statistiche Problemi pratici Teoria e metodi del controllo statistico di un processo produttivo Strumenti base Basi statistiche Problemi pratici Teoria e metodi del controllo statistico Introduzione Ogni processo produttivo, indipendentemente

Dettagli

Carte di controllo (Shewhart): monitoraggio della precisione e della giustezza dei risultati di prove chimiche M. BETTINELLI - UNICHIM

Carte di controllo (Shewhart): monitoraggio della precisione e della giustezza dei risultati di prove chimiche M. BETTINELLI - UNICHIM Carte di controllo (Shewhart): monitoraggio della precisione e della giustezza dei risultati di prove chimiche M. BETTINELLI - UNICHIM Milano, 4-5 novembre 014 1 Le carte di controllo Le carte di controllo

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELL ROLE Six Sigma Master lack elt Dicembre, 009 Introduzione Nell esecuzione dei progetti Six Sigma è di fondamentale importanza sapere se

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Carte di controllo CUSUM. Le carte a somme cumulate risultano utili quando occorre individuare scostamenti dal valore centrale di piccola entità.

Carte di controllo CUSUM. Le carte a somme cumulate risultano utili quando occorre individuare scostamenti dal valore centrale di piccola entità. Carte di controllo CUSUM Le carte a somme cumulate risultano utili quando occorre individuare scostamenti dal valore centrale di piccola entità. Le carte Shewart utilizzano le informazioni solo dell ultimo

Dettagli

Il controllo statistico di processo

Il controllo statistico di processo Il controllo statistico di processo Torino, 02 ottobre 2012 Relatrice: Monica Lanzoni QUALITÀ DI DI UN UN PRODOTTO: l'adeguatezza del del medesimo all'uso per per il il quale quale è stato stato realizzato

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

Test per l omogeneità delle varianze

Test per l omogeneità delle varianze Test per l omogeneità delle varianze Le carte di controllo hanno lo scopo di verificare se i campioni estratti provengono da un processo produttivo caratterizzato da un unico valore dello s.q.m. σ. Una

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA Corso di laurea triennale in Statistica Gestione delle Imprese Laureando : Varotto Enrico Anno Accademico : 2004-2005 Relatore : Chiarissimo Prof.re G. Celant Titolo :

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Statistica per l azienda 19.06.2014 (1)

Statistica per l azienda 19.06.2014 (1) Statistica per l azienda 19.06.2014 (1) COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

I Metodi statistici utili nel miglioramento della qualità 27

I Metodi statistici utili nel miglioramento della qualità 27 Prefazione xiii 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento della qualità 1 1.1.1 Le componenti della qualità 2 1.1.2 Terminologia

Dettagli

Un primo passo verso PAT. Un applicazione di controllo preventivo

Un primo passo verso PAT. Un applicazione di controllo preventivo Un primo passo verso PAT Un applicazione di controllo preventivo Sommario Situazione iniziale: linea di produzione con controllo peso off-line Cambiamento vs. una linea con controllo peso automatico on-line

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Esercizi riassuntivi di probabilità

Esercizi riassuntivi di probabilità Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini)

Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Soluzioni degli Esercizi del Parziale del 30/06/201 (Ippoliti-Fontanella-Valentini) Esercizio 1 In uno studio sugli affitti mensili, condotto su un campione casuale di 14 monolocali nella città nella città

Dettagli

Costruzione ed uso delle Carte di Controllo

Costruzione ed uso delle Carte di Controllo Validazione dei metodi ed incertezza di misura nei laboratori di prova addetti al controllo di alimenti e bevande Costruzione ed uso delle Carte di Controllo Bologna 25 novembre 2004 Introduzione Grafico

Dettagli

Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE

Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE Corso di Laurea in Sicurezza igienico-sanitaria degli alimenti Metodologie statistiche per l analisi del rischio CONTROLLO STATISTICO DI PROCESSO PER IL MONITORAGGIO DEL RISCHIO NELL INDUSTRIA ALIMENTARE

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

Introduzione all Inferenza Statistica

Introduzione all Inferenza Statistica Introduzione all Inferenza Statistica Fabrizio Cipollini Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) G. Parenti Università di Firenze Firenze, 3 Febbraio 2015 Introduzione Casi di studio

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue Esercizi del Corso di Statistica Parte I - Variabili Aleatorie Continue 1. Costruire la variabile uniforme U sull intervallo [a, b], con a IR e b IR. 2. Sia X una variabile aleatoria tale che: 0 x < 1

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

CONTROLLI STATISTICI

CONTROLLI STATISTICI CONTROLLI STATISTICI Si definisce Statistica la disciplina che si occupa della raccolta, effettuata in modo scientifico, dei dati e delle informazioni, della loro classificazione, elaborazione e rappresentazione

Dettagli

Analisi dei Sistemi di Misurazione - MSA

Analisi dei Sistemi di Misurazione - MSA Data: 16 Marzo 2011 Indice Il processo zione impiego specifico Cenni di SPC e di MSA 2 CARATTERISTICA DA CONTROLLARE, TOLLERANZA E RELATIVA CLASSE DI IMPORTANZA METODO DI CONTROLLO STRUMENTO DI MISURA

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se

Dettagli

Criteri di Valutazione della scheda - Solo a carattere indicativo -

Criteri di Valutazione della scheda - Solo a carattere indicativo - Criteri di Valutazione della scheda - Solo a carattere indicativo - Previsioni Sono state fatte le previsioni e discussi i valori attesi con il ragionamento con cui sono stati calcolati E stata usata la

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli